Measurement of the Nuclear Modification Factor of Charged Particles in p–Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE at the LHC

M. L. Knichel$^1$, A. Andronic$^1$, P. Lüttig$^2$ and J. Otwinowski$^1$ for the ALICE Collaboration

$^1$GSI, Darmstadt, Germany; $^2$Institut für Kernphysik, Goethe University, Frankfurt, Germany

In September 2012 the LHC at CERN provided p–Pb collisions for the first time at the center-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV in a short run test run for the main p–Pb run in 2013. During a few hours of collisions the ALICE detector [1] collected data using a minimum bias trigger. For this analysis non-single-diffractive collisions have been selected with a trigger efficiency of 99.2%, leading to a $1.7 \times 10^6$ events, with negligible contributions from beam-gas background, single-diffractive and electromagnetic interactions. For tracking and determination of the transverse momentum the information from the large Time Projection Chamber (TPC) is combined with the hits in the Inner Tracking System (ITS).

The $p_T$ spectra are measured for primary charged particles in the $p_T$ range $0.5$ GeV/$c < p_T < 20$ GeV/$c$ and pseudorapidity $|\eta| < 0.3$. Primary charged particles are defined as all prompt particles produced in the collision, including decay products, except those from weak decays of strange hadrons. Details of the analysis can be found in [2].

The measured $p_T$ distribution can be compared to that measured in proton-proton collisions in terms of the nuclear modification factor $R_{\text{pPb}}$, which is defined as

$$R_{\text{pPb}}(p_T) = \frac{d^2N/d\eta dp_T}{\langle T_{\text{pPb}} \rangle d^2\sigma_{\text{pp}}^{\text{pp}} / d\eta dp_T}$$

$\langle T_{\text{pPb}} \rangle$ is the average nuclear overlap function calculated using Glauber MC, $\langle T_{\text{pp}} \rangle = 0.0983 \pm 0.035$ mb$^{-1}$.

As there is no measurement of $\sigma_{\text{pp}}^{\text{pp}}$ at $\sqrt{s} = 5.02$ TeV, the pp reference spectrum has been derived from the ALICE measurements at $\sqrt{s} = 2.76$ and 7 TeV. For the high-$p_T$ part above 5 GeV/$c$, where pQCD is reliable, the measured differential cross section at 7 TeV was scaled with a factor obtained from NLO calculations. At lower and intermediate $p_T < 5$ GeV/$c$, the measured cross sections at $\sqrt{s} = 2.76$ and 7 TeV have been interpolated in every $p_T$ bin assuming a power law behaviour in $\sqrt{s}$.

In absence of any nuclear effects $R_{\text{pPb}}$ equals unity under the assumption of binary collision scaling expected for high-$p_T$ processes. In Figure 1, the measured $R_{\text{pPb}}$ is compared to nuclear modification factors measured in Pb–Pb [3].

In our measurement of $R_{\text{pPb}}$ there is almost no enhancement at intermediate $p_T$, known as Cronin effect, which was observed at RHIC. For $p_T > 2$ GeV/$c$ the nuclear modification factor is consistent with unity, indicating only small contributions from cold nuclear matter effects in this $p_T$ range. At low $p_T < 2$ GeV/$c$ production of charged particles is suppressed in p–Pb compared to pp. Predictions from several models have been compared to the data, calculations based on the Color Glass Condensate (CGC) model are consistent with the measurement, see [2] for details including other models.

In central Pb–Pb collisions a strong suppression of particle production at high $p_T$ was observed, which remains substantial also for peripheral collisions. The measurement of Pb–Pb clearly shows that the suppression observed in Pb–Pb is not an initial state effect but due to the hot QCD medium.

References

