The g Factor of Lithiumlike Silicon $^{28}\text{Si}^{11+}$

A. Wagner1,1, S. Sturm1,3, F. Köhler1,2, W. Quint2, G. Werth3, and K. Blaum1

1MPI für Kernphysik, D-69117 Heidelberg; 3Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz; 2GSI, D-64291 Darmstadt

The relativistic electron-electron interaction can be stringently tested by high-precision measurements of the gyromagnetic factor (g factor) of the valence electron bound in many-electron systems. Especially three-electron ions allow for a highly-sensitive test since they can be theoretically predicted to a high accuracy. To this end the g factor of the $2s$ valence electron bound in lithiumlike silicon $^{28}\text{Si}^{11+}$ has been determined with an uncertainty of $\delta g/g = 1.1 \cdot 10^{-9}$ [1], which is the most precise g factor measurement of a three electron system to date.

The g factor measurement

For the g factor measurement a single ion was stored in a cryogenic triple Penning trap setup for several months [2]. To determine the g factor via

$$g = 2 \frac{\nu_L}{\nu_c} \frac{q}{M_{\text{ion}}} \frac{m_e}{e} \tag{1}$$

the Larmor frequency ν_L and the free cyclotron frequency ν_c of the ion have to be measured, while the mass of electron m_e and ion M_{ion} are known from other high-precision experiments. The free cyclotron frequency can be determined by measuring the three eigenfrequencies of the ion in a first Penning trap. Simultaneously, microwaves close to the expected Larmor frequency are irradiated into the trap to induce spin flips. To determine the spin orientation with the continuous Stern-Gerlach effect, the ion is transported to a second Penning trap, where a magnetic inhomogeneity couples the spin orientation to the axial motion. Comparing the spin orientation to the orientation determined in the last cycle reveals if a spin flip was successfully induced. After several hundred cycles the spin flip probability as a function of the measured frequency ratio $\Gamma = \nu_L/\nu_c$ yields a g factor resonance as shown in Fig. 1.

We have recorded three resonances with different microwave powers to check for related systematic shifts. The experimental result $g_{\text{exp}} = 2.000\,889\,889\,(21)$ is in excellent agreement with the theoretical value $g_{\text{exp}} = 2.000\,889\,909\,(51)$. The comparison between experimental and theoretical g factor confirms the many-electron contribution on the level of 10^{-4}, which is the most stringent test of relativistic many-electron calculations to date. Since the experimental value is by more than one order of magnitude more precise than the theoretical value, any improvement of the theoretical g factor will immediately improve this test.

Outlook

For highly sensitive tests of quantum electrodynamics with heavy ions the achievable theoretical precision is limited by unknown nuclear parameters. A measurement of both lithium- and hydrogenlike ions allows to cancel the contributions of the nuclear parameters to a large extent, hereby significantly increasing the stringency of the test [3]. Moreover, if combined with a measurement of the boronlike charge state, the fine structure constant α can be determined with a comparable uncertainty as the current value [4].

Having finished the g factor measurement of lithiumlike silicon, a g factor measurement of hydrogenlike carbon was started, aiming for an improvement of the precision of the electron mass by one order of magnitude.

References