Measurement of β-delayed neutrons around the third r-process peak

R. Caballero-Folch1, C. Domingo-Pardo2, J. Agramunt2, A. Algora2, F. Ameil3, Y. Ayyad4, J. Benlliure5, M. Bowry5, F. Calviño1, D. Cano-Ort6, G. Corêtès4, T. Davinson7, I. Dillmann8,9, A. Estrade10, A. Evdokimov3,8, T. Faestermann11, F. Farinon3, D. Galaviz12, A. García-Rios6, H. Geissel10,8, W. Gelletly2, R. Gernhäuser14, M. B. Gómez-Hornillos3, C. Guerrero13, M. Heil3, C. Hinke11, R. Knöbel3, I. Kojouharov3, J. Kurcewicz3, N. Kurz3, Y. Litvinov3, L. Maier11, J. Marganiec14, M. Marta3,8, T. Martínez5, F. Montes15,16, I. Mukha3, D. R. Napoi17, Ch. Nociforo3, C. Paradela4, S. Pietri3, Z. Podolyák3, A. Procházka3, S. Rice5, A. Riego1, B. Rubio2, H. Schaffner3, Ch. Scheidenberger1,8, K. Smith18,19, E. Sokol20, K. Steiger11, B. Sun3, J. L. Tain2, M. Takechi3, D. Testov20,21, H. Weick3, E. Wilson5, J. S. Winfield3, R. Wood2, P. Woods3 and A. Yeremin20

1DFEN-UPC, Barcelona, Spain; 2IFIC, CSIC-UV, València, Spain; 3GSI, Darmstadt, Germany; 4USC, Santiago de Compostela, Spain; 5Department of Physics, University of Surrey, Guildford, UK; 6CIEMAT, Madrid, Spain; 7School of Physics and Astronomy, University of Edinburgh, UK; 8II. Physikalisches Institut, Justus-Liebig Universität Giessen, Germany; 9TRIUMF, Vancouver, Canada; 10St. Mary’s University, Halifax, Nova Scotia, Canada; 11Department of Physics E12, TUM, München, Germany; 12CFNUL, Lisbon, Portugal; 13CERN, Geneva, Switzerland; 14EMMI, GSI, Darmstadt, Germany; 15NSCL, MSU, East Lansing, Michigan, USA; 16JINA, MSU, East Lansing, Michigan, USA; 17INFN, Legnaro, Italy; 18Department of Physics, University of Notre Dame, South Bend, Indiana, USA; 19JINA, University of Notre Dame, South Bend, Indiana, USA; 20Flerov Laboratory, JINR, Dubna, Russia; 21IPN Orsay, France

This report summarizes the present status of the data analysis of the S410 experiment, which is about to reach final results. The measurements will give new relevant data such as half-lives and β-delayed neutron emission branching ratios of neutron rich nuclei beyond $N=126$ for isotopes of mercury, thallium and lead. The measurement used a primary beam of 238U at 1 GeV/u impinging on a 162Tb impinging on a 223 mg/cm2 Be target with a 223 mg/cm2 Nb stripper behind it. The FRS was operated using degraders at S1 and at S2 and the separation was done with the $B_{\rho} \Delta E_{-} B_{\rho}$ method. Nuclei identification was determined with standard FRS tracking detectors which allowed to identify about 40 isotopes in the range from Platinium ($Z=78$) to Francium ($Z=87$), all of them identified previously in [1] and [2]. The detection system consisted of SIMBA (Silicon Implantation detector and Beta Absorber) [3], based on a double side silicon detectors array.

In order to determine the half-lives for the implanted nuclei, several correlation methods have been studied. As a first approach the numerical method reported by [4] and [5] was applied as described in [6]. Recently we have been able to successfully apply a more conventional analysis method [7], based exclusively on time correlations for each implant, with all β-decay events in the neighboring pixels. Furthermore, it has been possible to determine the half-life of 210Pb via two different approaches: using the information of the alpha line of 6.778 MeV (210Po), in a similar way as it is reported in [8] for 213Pb, and by means of implant-β correlations. The good agreement between both values confirms that the implant-β method gives consistent half-lives for the measured nuclei.

In summary there are at least eight nuclei with enough statistics to determine their half-lives: 209,210Hg, $^{211-214}$Tl, $^{215-217}$Pb. Some of them were measured in previous experiments [5] [8]. The obtained half-lives are in reasonable agreement with those reported in these references.

Neutron emission events in correlation with implant-β have been observed for several of the measured nuclei using the Beta deLAYEd Neutron (BELEN) detector [9]. First values of P_{n} for nuclei beyond $N=126$ will be given for the first time for several nuclei in the region of interest.

References

* This work was supported by Spanish Ministry of Economy and Competitiveness under grants FPA 211-28770-C03-01 and AIC-D-2011-0705 and the Helmholtz association via the Young Investigators Group VH-NG-627.