Decay of $^{201-203}$Ra

Z. Kalaninová1,1, S. Antalic1, A.N. Andreyev2,3, F.P. Heßberger4,5, D. Ackermann4, B. Andel1, L. Bianco6, S. Hofmann4, M. Huyse7, B. Kindler8, B. Lommet8, R. Mann4, R.D. Page6, P. Sapple6, J. Thomson6, P. Van Duppen4, and M. Venhart8,1

1Comenius University, Bratislava, Slovakia; 2University of York, York, UK; 3ASRC, JAERI, Ibaraki, Japan; 4GSI, Darmstadt, Germany; 5Helmholtz Institut Mainz, Mainz, Germany; 6University of Liverpool, Liverpool, UK; 7KU Leuven, Leuven, Belgium; 8Institute of Physics, SAS, Bratislava, Slovakia

For the most neutron-deficient radium isotopes not much experimental information about decay properties is available up to now and in some cases reported data are not consistent. This was the motivation for our study of $^{201-203}$Ra.

The investigated isotopes were produced in fusion-evaporation reactions 56Fe + 147,149Sm at the velocity filter SHIP at GSI in Darmstadt. After separation from other particles, evaporation residues (ERs) were implanted into a 16-strip position sensitive silicon detector (PSSD) registering their α decays. α particles escaping from the PSSD were recorded by a system of six silicon detectors placed in the backward hemisphere covering 80 % of 2π. Nuclei were identified based on time and position correlations of ER implantations and their subsequent α decays.

Only two decay chains of 202Ra were reported until now, each one in different measurement [1,2]. Both experiments were performed at the RITU separator at JYFL yielding different values for α-decay energies (7860(60)keV [1] and 7740(20)keV [2]) and half-lives (0.7 ± 3.3 ms [1] and 16.30 ± 7 ms [2]). In our study we registered 16 correlation chains attributed to the decay of 202Ra. Nuclei were produced in the reaction 56Fe + 149Sm at several beam energies in the range of (244-275)MeV. Measured α-decay energy and half-life were 7722(7)keV and 3.8 ± 1.3 ms. The reduced α-decay width (δ_α^2) for this decay was 210±700 keV calculated using the Rasmussen formula [3] and assuming $\Delta L = 0$. It confirms the trend of increasing δ_α^2 at decreasing neutron number for radium isotopes. This is consistent with the trends for neighboring even-even radon and thorium isotopic chains [4].

Prior to our study, only one decay chain attributed to 201Ra was reported at RITU [2]. Based on daughter and granddaughter decay properties it was assumed to originate from the 13/2$^+$ state. In our measurement we registered one ER-α-2-α correlation chain in the reaction 56Fe + 147Sm at $E_{beam} = 249$ MeV with parent α-decay energy of 7842(12)keV and a half-life of 8 ± 4 ms. Properties of the α and 2 α decays correspond to known decays of the 3/2$^-$ state in 197Rn and 193Po, respectively. Based on the deduced unhindered character of the observed α decay we assume that it originates from the 3/2$^-$ state in 201Ra. We localized the 13/2$^+$ state in this isotope at 260(30)keV, which follows the trend of decreasing energies of the 13/2$^+$

References