Measurement of the Dipole Polarizability of 68Ni

1NSCL/MSU, USA; 2GSI Darmstadt, Germany; 3University of Mainz, Germany; 4King Saud University, Saudi Arabia; 5University of Santiago de Compostela, Spain; 6Technische Universität Darmstadt, Germany; 7Technische Universität München, Germany; 8University of Vigo, Spain; 9University of Liverpool, United Kingdom; 10CEA Bruyères-le-Châtel, France; 11SINP Kolkata, India; 12Goethe University Frankfurt, Germany; 13Chalmers University of Technology, Göteborg, Sweden; 14Helmholtz-Zentrum Dresden-Rossendorf, Germany; 15Jagiellonian University of Krakow, Poland; 16University of the West of Scotland, Paisley, United Kingdom; 17STFC Daresbury Laboratory, United Kingdom; 18BARC Mumbai, India; 19TIFR Mumbai, India; 20Extreme Matter Institute/GSI Darmstadt, Germany

The Equation of State (EOS) of nuclear matter is at the center of many current research axes in nuclear science, ranging from nuclear structure considerations, over heavy-ion collisions to the physics of neutron stars. When dealing with radioactive nuclei with a large proton-neutron imbalance, one component of the nuclear EOS is of particular importance: the symmetry energy. Especially its density dependence is of interest, since this parameter has been shown to correlate strongly with nuclear properties such as the neutron-skin thickness or the amount of low-lying electric dipole (E1) strength [1]. Previously, measurements of low-lying E1 strength have been used to determine the parameters of the symmetry energy [2]. It has, however, been shown that the measurement of the dipole polarizability α_D is a more robust and less model-dependent observable to extract this information [3].

In an experiment performed at the R3B-LAND setup at GSI, Coulomb excitation of 68Ni was measured in inverse kinematics. By measuring the invariant mass of the 68Ni(γ,n)67Ni and 68Ni(γ,2n)66Ni decay channels, the excitation energy distribution of this nucleus was reconstructed in an energy window ranging from its 1n threshold and covering the regions of low-lying E1 strength and of the IVGDR. The latter was quantitatively measured at a centroid energy of $E_m = 17.1(2)$ MeV, with a width of $\Gamma = 6.1(5)$ MeV and exhausting 98.7(7)% of the energy-weighted sum rule (EWSR) [4]. Low-lying E1 strength described by a Gaussian function was also observed at $E_m = 9.55(17)$ MeV, with a width of $\sigma = 0.51(13)$ MeV and 2.8(5)% of the EWSR. Based on this observed E1 strength, a polarizability of $\alpha_D = 3.40(23)$ fm3 was measured from the 1n threshold to the upper integration limit of 28.4 MeV. Relativistic RPA calculations using the FSUGold parametrization [5] provided the correlation between the observable α_D and the neutron-skin thickness $\Delta R_{n,p}$ of 68Ni, as shown in Fig. 1. The extrapolation to the measured value of α_D provides a neutron-skin thickness of 0.17(2) fm, which is in good agreement with the value obtained from the measurement of low-lying E1 strength [1]. This new method for the extraction of neutron-skin thicknesses will also be applied to more exotic systems, thus constraining the symmetry energy further.

References
