Increased lifetime of hydrogen-like 192mOs observed in the ESR

1Department of Nuclear Physics, R.S.P.E., Australian National University, Canberra ACT 0200, Australia; 2Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom; 3Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany; 4GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany; 5Physikalisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany; 6ExtreMe Matter Institute EMMI, 64291 Darmstadt, Germany; 7US Army Research Laboratory, 2800 Powder Mill Road, Adelphi MD, USA; 8Schuster Laboratory, University of Manchester, Manchester M13 9PL, United Kingdom; 9Youngstown State University, One University Plaza, Youngstown, Ohio 44555, USA; 10II Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany; 11CERN, 1211 Geneva 23, Switzerland; 12School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom; 13Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; 14Institute of Physics, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; 15Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany; 16Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.

Using the Experimental Storage Ring (ESR) it is possible to distinguish between charge states of an isotope with sensitivity down to single ions [1]. Projectile fragmentation of a 197Au beam (478-492 A-MeV) with a 9Be target was performed and the resultant fragments were passed through the FRagment Separator [2] where isotopes of interest were separated before being injected into the ESR. The ions were cooled by electron and stochastic cooling enabling Schottky Mass Spectrometry to be used and nuclear decays within the ESR are inferred from changes in ion revolution frequency [3].

Prior studies of 192Os revealed an isomer with a lifetime of $\tau_{\text{neut}} = 8.5(14)$ s at 2015 keV. Three decay branches have been observed with transition energies of 47, 302, and 307 keV [4]. Neutral [5] and hydrogen-like internal conversion coefficients were calculated and indicate a decrease for all transitions (Table 1). For the 47 keV transition internal conversion in the hydrogen-like state is forbidden. An increased lifetime of $\tau_{\text{calc}} = 13.0(24)$ s due to the reduction of internal conversion can be expected.

An increased lifetime for 192mOs was measured from observations of 106 single hydrogen-like ions in the ESR (Figure 1). After Lorentz correction ($\gamma = 1.4$) the measured mean lifetime of 192mOs$^{75+}$ was $\tau_{\text{Lorentz}} = 14.2(16)$ s. The observed increase in lifetime is attributed to the reduction of internal conversion because of the high charge state.

Table 1: Calculated total internal conversion coefficients for transitions from 192mOs [4, 5].

<table>
<thead>
<tr>
<th>E_{trans} (keV)</th>
<th>I_γ</th>
<th>σ (neut)</th>
<th>α_LH (H-like)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.4</td>
<td>1.0031(6)</td>
<td>E3</td>
<td>7760</td>
</tr>
<tr>
<td>302.6</td>
<td>10.0(6)</td>
<td>E3</td>
<td>0.433</td>
</tr>
<tr>
<td>307.0</td>
<td>1.33(3)</td>
<td>M2</td>
<td>0.975</td>
</tr>
</tbody>
</table>

*Work supported in part by the Helmholtz-CAS Joint Research Group HCJRG-108, National Natural Science Foundation of China (No. 11105010), the Australian Research Council, UK STFC and AWE plc.

Figure 1: Lifetime curve for 192mOs$^{75+}$ produced by direct observation of highly charged single ions in the ESR.

References

doi:10.15120/GR-2014-1-PNI-AP-07