Calculation of the quadrupole moment $\sigma_x^2 - \sigma_y^2$ for an asymmetrical Pick-up*

Joel Alain Tsemo Kamga†, Wolfgang F.O. Müller†, Thomas Weiland†, Rahul Singh‡, Piotr Kowina‡, and Peter Forck‡

†Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, 64289 Darmstadt, Germany; ‡GSI, Planckstrasse 1, 64291 Darmstadt, Germany

Introduction

This report presents the simulation results for an asymmetric pick-up installed at GSI SIS-18. The pick-up is planned to be used as transverse beam size oscillations monitor at SIS-18, and possibly as a transverse emittance monitor [1] in future. The properties of the pick-up are studied in order to evaluate its usage as a quadrupole moment monitor. Further, a comparison of signal processing methods such as traditional difference over sum, log-ratio and modified log-ratio [2] with respect to the suppression of beam position contribution in the quadrupole moment $\sigma_x^2 - \sigma_y^2$ is presented.

Simulations and Results

Quadrupole signal for a centred beam

Assuming that the beam is long compared to the pick-up electrode, the pick-up properties are determined electrostatically with the simulation software CST EM Studio (Electrostatics solver). The quadrupolar signal Ξ for traditional diff-over-sum method is defined as $(R + L - T - B)/(R + L + T + B)$ where R, L, T and B are the voltages induced on the respective pick-up plates. It is calculated for a range of quadrupole moment such that transverse horizontal beam radius σ_x is varied from 7.5 mm to 50 mm while vertical beam radius σ_y is 7.5 mm.

![Figure 1: Quadrupole signal for a centred beam.](image)

Figure 1: Left: front view of the pick-up design; right: quadrupole signal Ξ using the diff over sum method; $\sigma_y/b = 0.075, 0.075 \leq \sigma_x/b \leq 0.5, \Xi = \sigma = 0, b = 100.3$ mm, $a = 35.3$ mm.

Figure 1 shows that the quadrupole signal is not linear in the whole range of the beam dimension used for the simulation. However, in the range covering typical SIS-18 beam dimensions, i.e. $0 \leq (\sigma_x^2 - \sigma_y^2)/b^2 \leq 0.05$, the curve fits well with a straight line (linear regression with the coefficient of determination $R^2 = 0.9997$), as shown by dotted line in Fig. 1. The slope m and the zero point $(\sigma_x^2 - \sigma_y^2)\sigma$ of the fitted line are 0.678 and 0.4593, respectively.

Effect of the beam position (Ξ, σ)

Now, taking into account the beam position in the quadrupole signal, the beam dimension can be obtained simply by Eq. (1).

$$\frac{\sigma_x^2 - \sigma_y^2}{b^2} = \frac{\Xi}{m} + (\sigma_x^2 - \sigma_y^2)\sigma_0 - n \left(\frac{x^2 - y^2}{b^2}\right) \quad (1)$$

![Figure 2: Relative error of the pick-up values of $(\sigma_x^2 - \sigma_y^2)/b^2$ at $\Xi/b = 0.075, \sigma_0/b = 0.05; b = 100.3$ mm](image)

Figure 2: Relative error of the pick-up values of $(\sigma_x^2 - \sigma_y^2)/b^2$ at $\Xi/b = 0.075, \sigma_0/b = 0.05; b = 100.3$ mm

In Fig. 2, the relative errors in the calculated quadrupole moment for a variation of σ_x in the range of 7.5 mm to 22.5 mm with a constant $\sigma_y = 7.5$ mm and beam position $(\Xi = 7.5$ mm, $\sigma_0 = 5$ mm) using different processing methods are shown.

Conclusions

In the beam size range of interest, the quadrupole signal calculated using the asymmetric pick-up is found to have a linear dependence on quadrupole moment for a centred beam. The dependence of quadrupole moment on beam position is studied by three signal processing methods. The modified log-ratio method shows the least influence of beam position on the quadrupole moment.

References

* Work supported by GSI
† tsemo@temf.tu-darmstadt.de

DOI: 10.15120/GR-2014-1-FG-UNILAC-15
FAIR@GSI
