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Abstract

The E1IMI transition rate of the 2s2p Py — 252 1S, line in beryllium-like ions has been calculated
within the framework of relativistic second-order perturbation theory. Both multiconfiguration and
quantum-electrodynamical computations have been carried out independently to better understand
and test for all major electron—electron correlation contributions in the representation of the initial,
intermediate and final states. By comparing the results from these methods, which agree well for all
ions along the beryllium isoelectronic sequence, the lifetime of the metastable 252p > P, level is found to
be longer by about 2—3 orders of magnitude for all medium and heavy elements than was estimated
previously. This makes the *P, level of beryllium-like ions to one of the longest living (low-lying)
electronic excitations of a tightly bound system with potential applications for atomic clocks and in
astro physics and plasma physics.

1. Introduction

Since the beginning of atomic spectroscopy, metastable states have attracted much interest in studying electronic
excitations in many-electron atoms and ions and their interaction with light and matter. Perhaps the two best
known metastable states are the singlet and triplet 1525 *Slevels of neutral helium with lifetimes of about 19 ms
and ~ 8000 s [1], but where the decay of the 3S; needs still to be measured accurately. The large differences in the
lifetimes of these metastable levels arise from quantum-mechanical selection rules and the different coupling of
the electronic density to the radiation field. For the °S; level of helium, for instance, a simultaneous spin-flip of
one of the electrons is required in order to allow a transition into the 1s? S, ground state. Apart from long-living
atomic and ionic states, metastable levels are quite common in many branches of physics, including nuclear and
molecular isomers, amorphous solids, the folding of proteins, or even metastable formations of macroscopic
matter.

While transitions from metastable atomic states towards the ground level of the system are typically
forbidden due to the well-known electric-dipole selection rule, these levels can often still decay by either
higher-multipole or multi-photon transitions. For example, the helium °S, level mentioned above decays via
asingle-photon magnetic-dipole transition at 62.5 nm or by a E1E1 two-photon process [ 1-3]. Both of these
decay modes have been observed experimentally for various ions along the helium isoelectronic sequence [4—
6] as well as in astrophysical sources [7]. Beside the analysis of the total rates, recent emphasis was placed also
upon the angular emission and correlations of the two photons [8—11]. Only quite rarely, as for the nsnp 3P,
levels of alkaline-Earth-like atoms and ions with zero nuclear spin, neither any single-photon nor E1E1 two-
photon transition is possible, and such excited atoms must decay by an E1IM1 (or by an even weaker 3E1)
transition to the ns? 1S, ground state in order to obey the inversion symmetry (parity) of isolated atoms.
However, such weak decay channels are already not important for the quite analogous 1s2p 3P, state of
helium-like ions, which predominantly decays via a single-photon E1 transition to the 1s2s 35, level, though
the relative importance of the alternative E1IM1 transition mode increases with the nuclear charge Z[12, 13].
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In practice, moreover, such strongly suppressed E1IM1 transitions will become visible only for well-isolated
atoms and isotopes with zero-nuclear spin, in which no single-photon transitions can be induced by
hyperfine interactions or any external fields. When compared with the dipole-allowed E1E1 two-photon
transitions, the simultaneous emission of an electric and magnetic dipole photon is suppressed by (at least) a
factor o? in the fine-structure constantand, indeed, no E1E1 forbidden two-photon decay process has yet
been measured in the laboratory. For beryllium-like ions with non-zero nuclear spin, in contrast, the
hyperfine-induced decay rates of the 2s2p *P, level have been calculated and explored in first laboratory
measurements [14—17].

While, for the reasons given previously, pure EIM1 two-photon transitions are not relevant for
helium-like ions, they form the only decay mode for the lowest-excited 1s22s2p *P, level of beryllium-like
ions with zero nuclear-spin because of the necessary =0 — 0 transition into the 1s22s? 1S, ground state.
First theoretical estimates for the E1IM1 transition rate of this Py — 1S, line have been provided by
Schmieder [18] for beryllium-like ions with Z= 12 to 20 as well as by Laughlin [19] who made use ofa Z-
expansion method in order to derive the scaling rule AR, ~ 5 x 1078 Z s~!, and which predicts
lifetimes as long as 2 x 10% s,51s,and 0.4 s for beryllium-like Ne®t, Xe’F, and U ions, respectively.
From these computations, Laughlin concluded that the EIM1 transition rates are simply too small in order
to become observable in experiments [19]. Only recently, an indirect observation of the lifetime of the
252p 3P, level hasbeen considered in [20] by analyzing the dielectronic recombination (DR) data of zero

136X 59" jons, and a more direct measurement of this lifetime has meanwhile

nuclear-spin beryllium-like
been suggested at the GSI storage ring in Darmstadt [21]. Obviously, such lifetime measurements are of
great interest to better understand the electron—photon coupling beyond the well-known dipole
approximation.

Already from the 2s — 1s E1E1 transitions in helium-like ions, it is known however that two-photon
transition rates may depend quite sensitively on the treatment of relativistic and correlation effects as well as
the multipole structure of the radiation field. In this work, we therefore re-explore the 2s2p 3Py — 252 1§,
E1MLI transition rates for beryllium-like ions with zero nuclear spin within the framework of relativistic
second-order perturbation theory. Both a series of multiconfiguration and quantum-electrodynamic
computations have been carried out independently in order to explore how the correlated and relativistic
motion of the electrons in the initial, intermediate, and final states affect the two-photon rates and lifetimes.
From these computations, it is found that the lifetime of the metastable 2s2p 3P, level is larger by about 2-3
orders of magnitude for all medium and heavy ions along the beryllium isoelectronic sequence than estimated
previously. Apart from the relativistic contraction of the wave functions and the proper excitation energies to
the levels nearby, especially the electronic correlations in the 2s? 1S, ground state has been found relevant for
predicting reasonably accurate lifetimes.

2. Theory and computations

For isotopes with zero nuclear spin, the metastable 2s2p 3P, level cannot decay by any single-photon
transition, and the lowest-order decay channel is the strongly suppressed EIM1 two-photon process into
the 2s% ISy ground state, cf figure 1. The lifetime of this level is expected to be more than 12 orders of
magnitude larger than for the neighboured *P, levels and still more than 10 orders of magnitude longer
than for the *P,, which predominantly decays via M2 transitions. For such two-photon transitions,
second-order perturbation theoryis required in order to describe the coupling of the radiation field,
while the major electron—electron interaction contributions are usually treated non-perturbatively by
some proper wave function expansion of the initial, intermediate, and final states. Indeed, the selection
rules for the multi-photon transitions are derived quite easily from the standard single-photon selection
rules with regard to differences in their total angular momenta AJand the parity P, and by taking into
account the possible multipole transitions to the (virtual) intermediate states within the spectrum of the
atom or ion.

Because a good number of second-order perturbation calculations have been performed recently to
study the two-photon decay of helium- [2, 3, 10, 23] and beryllium-like ions [24], we here restrict ourselves
to a short compilation of the basic formulas as needed for the discussion next. In a relativistic, jj—coupled
representation of the atomic bound states involved, the second-order transition amplitude for the
emission of two photons with wave vectors k; (i = 1, 2) and polarization vectors u), (\; = 1) is given by
[10,24]




I0P Publishing

NewJ. Phys. 17 (2015) 103009 S Fritzsche et al
- Xe50* (I = 0) Xe50* (1 = 1/2)
550
I 2s2p 1P,
500 == E1
(t~1.5ps)
; I
E’, 450 wim / 2s zp 3p2
>
oo
s 9 v
c
O 150 == (TNZZ HS)
c
.9 I
3'3' 2s2p 3P, 2s2p 3P, :F=1/2
- — I L & N N ]
Q 100 - 3
X 252p 3P, I
IC-E1 E1IM1 HFS-E1
50 wm (t~0.4ns) W (t~3000s) (t~ 2.8 ms)
0 ok j - . .- F=1/2
25215,
Figure 1. Low-lying level scheme of beryllium-like ions and the decay of these levels by leading one- and two-photon transitions. The
excitation energies and lifetimes for zero nuclear-spin isotopes refer to Xe*** ions and are adapted from the literature [ 14, 22]. For
isotopes with non-zero nuclear spin I, as indicated on the right side of the figure for I = 1/2, hyperfine-induced (electric or magnetic
dipole) transitions become allowed for the Py , levels and then typically determine their lifetimes.
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where |, J;M;) and ‘ ary Mf> refer to the initial and final atomic states with well-defined total angular momenta
Ji,y and magnetic projections M; s respectively, and where o, r denote all additional quantum numbers that are
necessary for a unique specification of these states. The transition operator R describes the interaction of the
electrons with the (spontaneous) field fluctuations and can be written in velocity (Coulomb) gauge as a sum of
the one-particle multipole operators:

7A2(k, uA) = >, uy ek, (2)

where o, = (x> Q> O,) denotes the vector of the Dirac matrices for the mth particle >,

The well-known multipole decomposition of the electron—photon interaction operator (2) also enables one
to simplify the second-order amplitude (1) and to re-write it in terms of the standard single-photon amplitudes
[25-27] by just keeping a summation over all (one-electron) continua of the atom. In this simplified form, each
photon is identified as an irreducible component of the radiation field which, apart from its frequency, has also a
well-defined multipolarity L and parity P. From the reduced two-photon amplitudes, one then obtains the total
rate by integrating the (energy-) differential rate over half of the transition energy, f (bt dw; % for the
first photon, while the energy of the second photon is fixed of course due to energy coonservation.

Expression (1) of the transition amplitude is quite standard for second-order perturbation theory and
appears similarly also in studying two-photon excitation and ionization processes [24], or even the Rayleigh
scattering of high-energetic photons at heavy target materials [28—30]. The main differences in calculating the
various—energy-differential and total—two-photon transition rates and cross sections typically arise from the
different representation of the atomic bound states as well as the particular procedure in dealing with the

The different use of vand c in equations (1) and (2) need to be distinguished here; these notations are quite common in relativistic atomic
structure theory and should not lead to confusion.
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integration over the complete spectrum of intermediate states. Most generally, this integration includes a
summation over the discrete part of the spectrum as well as an integration over the positive- and negative-energy
continua. In a radial-angular representation of the (many-electron) atomic states one often distinguishes
different continua, owing to their overall symmetry J,, and P, with regard to a rotation and inversion of
coordinates. In the amplitudes (1), this symmetry of the continua is encoded into the symmetries of the
intermediate states | av, J,,) and requires them to be consistent with the particular multipoles of the radiation field
as well as the representation of the (correlated) initial and final states of the given transition. In the present work,
we independently applied two different methods to evaluate these amplitudes: (i) the multiconfiguration Dirac—
Fock (MCDF) method, in which all atomic states of interests are built from a finite set of jj-coupled
configuration state functions (CSF) and (ii) quantum-electrodynamical calculations, based on a perturbative
treatment of the interelectronic interaction. In the following, we briefly explain these two different approaches
and how they can be simplified in order to keep the computations feasible.

2.1. Use of relativistic wave function expansions
In the MCDF method, to summarize the first approach, a representation of all atomic states involved in
expression (1) are generated by using linear combinations of CSF of the given symmetry [26]

nC

Ya(PI) = D 6 (@)

r=1

WPI), 3)

where 1, refers to the number of CSF and { c,(«) } to the representation of the atomic state(s) in this many-
electron basis. Like in standard computations, the CSF are constructed as antisymmetrized products of a
common set of orthonormal orbitals and are optimized on the basis of the Dirac-Coulomb Hamiltonian.
Relativistic effects due to the Breit interaction, i.e., the magnetic and retardation contributions to the electron—
electron interaction, were then added to the representation {c¢, (o) } by diagonalizing the Dirac—Coulomb—Breit
Hamiltonian matrix [31, 32]. To describe excitation and decay processes in multiple and highly-charged ions the
MCDF method has been found a very versatile tool, especially if inner-shell electrons or different open shells are
involved in the computations [33, 34].

To generate the initial 2s2p 3P, and final 252 1S, atomic states as well as the relevant intermediate states of
the spectrum in equation (1), a series of computations has been carried out based on the three
152(2s% + 2s2p + 2p?) reference configurations. Especially for the 252 1S, ground state of beryllium-like ions,
the double excitations 2s> — 2p?and 25> — 3s% are known to be quite important and, for neutral beryllium,
they alone give rise to about 65% of the overall correlation energy for the 2s% 'S, ground level [35]. Using these
reference configurations, the wave function expansions have then been enlarged stepwise in order to incorporate
all 1s2(2s% + 2p? + 2sns + 2snp + 2snd) 2Ly levelswith J* = 0t and 1 aswellasn < 30,and by including
also single excitations of Brillouin’s type [36, 37]. This results in a total of 290 intermediate states with energies
partially well above of the single and double ionization limit. Because of the discretization of the radial grid for
the representation of the CSF, this procedure effectively incorporates a summation over the continuum since
single-electron excitations with n 2 8 usually belong already to the continuum of the corresponding lithium-
like and, for higher n, also to the helium-like ions. A great advantage of the MCDF method is that different
approximations with regard to the electron—electron correlations as well as the summation over the continuum
can be explored rather readily by choosing sets of CSF due to different classes of excitations [38].The major
computational models that were used in the present calculations will be explained next in section 3 together with
the >P, — 'S, E1MI transition rates.

Apart from the Breit interaction in the Hamiltonian matrix, we also included the vacuum polarization into
the Hamiltonian but no self-energy corrections that are more difficult to handle, especially for highly excited
states within the continuum. For the low-lying levels, however, all major QED corrections are incorporated
implicitly by applying accurate theoretical excitation energies [14, 22, 39] in the summation over the
intermediate states, though these corrections are not included into the wave function representation itself. This
clearly improves the agreement between the different approximations. Especially for the transition energies to
the two lowest levels, the uncertainties were estimated in these references to about 6 x 10~3 eV for the >Plevels
and 6 x 1072 eV for the ' Plevel [22]. From the comparison of these results we also learned about the
uncertainties that arise from the different approximations.

2.2. Quantum-electrodynamical treatment

In the QED treatment, we have accounted for the electron—electron correlation within the framework of
perturbation theory. In the zeroth-order approximation, we here solve the Dirac equation with alocal screening
potential, which partially incorporates already the interelectronic interaction. Indeed, the inclusion of a
screening potential into the unperturbed Hamiltonian is known as the extended Furry picture, a picture that
enables one to remove the quasi-degeneracy of the levels in the Coulomb potential and which improves the low-

4
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Figure 2. Feynman diagrams that represent the first-order interelectronic-interaction corrections to the two-photon emission and
which were evaluated here in the framework of the QED approach. The double lines describe the electron propagator in the effective
potential, containing the Coulomb field of the nucleus and the screening potential of electrons. The photon propagator is represented
by the wavy line, while the photon emission is depicted by a wavy lines with an arrow at the free end.

lying excitation energies already in zeroth-order approximation. The remaining interelectronic interaction is
then taken into account via the QED perturbation expansion following the description of [23]. In the present
calculations, we have rigorously taken into account all the first-order QED diagrams as depicted in figure 2. The
formal expressions for these diagrams in the case of a four-electron ion have been derived in a same way as it was
done for two-electron ions in [23] previously. We note, however, that the EIM1 transitions rates appear to be
quite sensitive to the treatment of the intermediate 15*2s2p, ,, J = 1level (which, in first order in the electron—
electron interaction, is just represented by a single determinant). Owing to this sensitivity, we have extended our
approach to partially account for the contributions with this intermediate state not only in the first-order but in
second and higher orders with regard to the electron—electron interaction. For this intermediate state, in
particular, we therefore performed a complete resummation of the ladder diagrams.

The rigorous QED approach employed in this work enabled us to perform the calculations without an o Z-
expansion, i.e., beyond the (so-called) Breit approximation. This approach accounts for the frequency-
dependence in the exact photon propagator, and for the interaction of bound electrons also with the Dirac
continuum, i.e. the summation runs over the complete Dirac spectrum of the positive and negative energy states.
As first shown in [40], the contribution from the negative-continuum energy states can be of a great importance
especially for the cases of M1 transitions. The negative-continuum effects were investigated also for the
transitions in beryllium-like ions in [41, 42], and for hydrogen-like ions, in [43, 44]. In the present QED
approach, we also sum over the negative-continuum energy states and, hence, evaluate this contribution
explicitly, similar as done for the helium-like ions in [23, 45]. In some further detail, this summation over the
spectrum has been performed by employing the dual-kinetic-balance finite basis set method [46] with basis
functions constructed from B-splines [47].

3. Results and discussion

As outlined previously, the major difficulty in calculating the two-photon transition amplitude (1) and rates
arises from the summation over the intermediate states and the extent to which the electron—electron
correlation is finally taken into account in the representation of the atomic bound states. For the 15252 1S,
ground state of beryllium-like ions, for example, sizeable correlation contributions are added by virtual double
excitations of the 2s2 electrons into the 2p and 3s shells, and which can be omitted only for high-Zions. Other
single and double excitations also affect the 152252p 3P, level and, similarly, also the representation of the
intermediate states. For these reasons, all atomic states in the MCDF computations were based on the

1s2(2s% + 2s2p + 2p?) reference configurations, together with possible single and double excitations of the 2> s
and 2p electrons. Moreover, in order to generate a proper one-particle spectrum that covers both the bound and
continuum states of the individual electrons, a x,, local-density potential was used [48, 49], and where o was
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Figure 3. EIM1 two-photon transition rates for the 2s2p 3Py — 2s2 1S, transition of zero nuclear-spin beryllium-like ions as a
function of the nuclear charge Z. Results are shown for different approximations of the transition amplitudes and in comparison with
previous (nonrelativistic) computations: best MCDF approximation (black solid line); QED computations based on a single-photon
exchange between all pairs of electrons (blue dashed line). These two relativistic computations are compared with the (non relativistic)
data by Schmieder ([18], red open diamonds) and Laughlin’s scaling formula (equation (5), green solid circles) as well as for Laughlin’s
scaling (4) but with a proper splitting >P, and *P; (black triangles). See text for further discussion.

Table 1. The lifetimes of the 2s2p 3P state and rates for the

252p 3Py — 2s? 1Sy EIMI decay of beryllium-like ions. Results of the QED
computations are compared with the nonrelativistic prediction

equation (5) previously obtained by Laughlin [19]. In the second column
we also present the corresponding transition energies from [ 14] that were
employed in present calculations. Numbers in square brackets denote
powers of ten.

Lifetime (s) Decay rate (s
Transition
z energy(eV) iy THiv AR Al
10 13.794 1.2[9] 2.0[8] 8.5[-10] 5.0[-9]
18 28.352 4.2[6] 1.0[6] 2.4[-7] 9.9[-7]
26 43.169 2.9[5] 3.7[4] 3.4[-6] 2.7[-5]
40 70.946 2.3[4] 7.6[2] 4.3[-5] 1.3[-3]
54 104.475 4.0[3] 5.1[1] 2.5[-4] 1.9[-2]
79 193.670 2.8[2] 1.7[0] 3.6[-3] 5.9[-1]
92 257.564 9.1[1] 4.2[-1] 1.1[-2] 2.4[0]

chosen to reproduce the binding energies of the electron in the low-lying 152212/’ levels. To further understand
the effects of different correlation contributions to the two-photon transition amplitude, a series of
systematically enlarged wave function expansions (3) was utilized to evaluate the E1IM1 rates as function of the
nuclear charge Z. Apart from the independent-particle model, a number of multi-configuration expansions
were analyzed especially for their influence of how the summation over the 2521 1L, stateswithn > 3 aswell
as the 2p” correlation contributions to the 'Sy ground state eventually affect the EIM1 amplitude. While,
typically, deviations of up to a factor 2 occured for different multi-configuration expansions (3), the results tend
to converge with increasing number of states in the representation of the one-particle spectra. The remaining
deviations are also quite moderate with regard to the overall relativistic effects. Here, we shall not discuss all these
computations in great detail but just display our best results, i.e., those from the largest expansions (3), and
compare them with the independent QED computations and previous (non relativistic) estimates; cf figure 3
and table 1.

In the QED approach, similarly, different screening potentials were employed to understand the interplay of
relativity and correlations in predicting accurate transition rates. These potentials include the core—Hartree,
Kohn-Sham, Perdew—Zunger, and local Dirac—Fock potentials. All these screening potentials have been utilized
quite frequently in recent QED calculations and need not to be described here in detail. In [50, 51], for example,
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these potentials were applied to calculate the binding and ionization energies of beryllium-like ions. Moreover,
to make use of perturbation theory in dealing with electron—electron correlations, the first-order corrections to
the transition energies and amplitudes were derived. For a given order in the electron—electron interaction the
corrections to the energies and rates are gauge invariant. This invariance provides an excellent tool to check for
the consistency of a formally equivalent expression and for the numerical implementation of all diagrams.
However, if one applies only first-order perturbation theory for the inter—electronic interaction, the two-photon
transition energy typically differs quite sizeably from the experiment. This applies to both the low-Zions because
of missing correlation contributions as well as to high-Zions, for which the radiative corrections become
important. For this reason, we employed the total transition energies (E; — Ey) from [14] here. Again, we have
also investigated here the role of the negative continuum and found that its contribution is less than 8% within
the velocity gauge and less than 1% in the length gauge for any of the screening potentials employed here. In our
final QED computations, as displayed in figure 3, the local Dirac—Fock potential and the length gauge were used
to calculate the two-photon transition rates. By comparing the results for the four screening potentials from
previously, an uncertainty of 10-20% is estimated for the two-photon transition rates apart, perhaps, from the
low-Z region for which the perturbation theory converges only slowly and where we assign an uncertainty of
about 50%.

Figure 3 displays the EIM1 two-photon transition rates for the 2s2p 3P, — 2s% IS transition of zero
nuclear-spin beryllium-like ions as a function of the nuclear charge Z. Results are shown from our best MCDF
and QED computations and are compared with previous nonrelativistic estimates that are available in the
literature. Most other computational models that were analyzed differ by less or about a factor 2 and were taken
to estimate the accuracy of the calculations. A proper treatment of the electron—electron interaction, in
particular, leads to some clear reduction of the transition rates, and this applies to both the MCDF and QED
computations. In figure 3, our fully relativistic calculations are compared also with the nonrelativistic estimates
by Schmieder ([18], red open diamonds) and Laughlin [19]; cftable 1. While Schmieder performed
nonrelativistic computations for six selected ions with Z = 12 to 20 and restricted the summation over the
intermediate states to just the two dominant 2s2p 3P, and 2s2p P, levels, Laughlin [19] applied a Z-expansion
and also presented his results in terms of a closed formula:

5
ASy = 48 x 10712 Z¢(E, + By ) 57 (4)

where E = E, + E, denotesthe 3Py —'S, transition energy (in atomic units) as shared by the two photons. The
non relativistic estimate E, + E,, = 0.06487 Z for this transition energy then leads to the simple scaling

ABD x5 x 10718 29 57! 5)

as displayed by the green solid circles in figure 3. If we use instead the correct two-photon energy in equation (4),
the black triangles are obtained, showing some moderate though not negligible reduction of the two-photon
transition rate for medium and heavy ions; see [20]. Schmieder [18] also estimated the rate for a 3E1 three-
photon decay that is suppresed by at least a factor o, the fine-structure constant, as well as the small P, — 'S,
transition energy. This has been confirmed by our own estimates for this three-photon decay with rates of about
10720 s7'and 5 - 10717 s~ ! for beryllium-like argon and uranium, respectively. When compared with the non
relativistic estimates for the EIM1 two-photon rates, the relativistic transition rates are clearly lowered for all
medium and heavy elements and deviate from previous computations by more than three orders of magnitude
for the heaviest beryllium-like ions. For more accurate predictions, our QED computations indicate also that the
radiative corrections to the two-photon transition amplitudes need to be taken into accout, a task that has never
been considered before in the literature.

All calculations were made for the transition amplitudes (1) and the corresponding E1IM1 rates as
summarized in figure 3. Obviously, the major decrease of these rates arises from the relativistic contraction of the
electron density as well as the treatment of the electron—electron interaction. No attempt has yet been made
however, to include the radiative corrections, and especially the self-energy diagrams, into the evaluation of the
two-photon transition rates. Of course, the strong reduction of the two-photon transition rate is associated also
with a much longer lifetime of the 1s2252p 3P, level since no other decay channel is simply possible for isolated
ions in this lowest-excited level along the beryllium isoelectronic sequence. For zero nuclear-spin isotopes, this
reduction in the transition rates gives rise to lifetimes as longas 7{&%5) = 4.2 - 106s, 4.0 - 10>s,and 91 s for Ar
14+ Xe >0+ and U+ ions, respectively; see table 1.° Therefore, ions with a nuclear charge larger than Xe " are
likely more preferable for performing lifetime measurements as proposed for the GSI storage ring [21].

For such measurements, indeed, lifetimes longer than about a second are required in order to have time to
prepare the ions in the 1s22s2p 3P, level, while they should not exceed the ion-beam storage due to vacuum
conditions and intra-beam scattering processes [20]. If these two conditions are fulfilled, the strength of the

® For medium (Z > 26) and heavy elements, the EIM1 lifetimes scales approximately like 75 = (6.15 x 10 x Z5%8 — 84.62) s.
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resonances as a function of storage time may help measure directly the EIM1 two-photon transition rate. In
practice, however, external electric and magnetic fields might also be important and may induce single-photon
transition, which would shorten the lifetime of the zero nuclear-spin beryllium-like ions in the 15*2s2p *P; level.
Such magnetically induced E1 transition, sometimes refered to as MIT, have been explored recently by Grumer
etal [52] and were found, for typical storage ring environments, comparable in order as obtained for the EIM1
two-photon rates. In addition, Maul et al [53] investigated the effects of the so-called Stark quenching for the
beryllium-like ions due to external electric fields.

4. Conclusions

In summary, the EIM1 transition rate of the 2s2p 3Py — 2s? 1S, line in zero nuclear-spin beryllium-like ions
has been calculated within the framework of relativistic second-order perturbation theory. Both
multiconfiguration and quantum-electrodynamic computations were independently performed in order to
include and test for all major contributions that affect this rate, such as the relativistically contracted wave
functions and electron—electron correlations in the representation of the initial, intermediate, and final states.
From the comparison of these two methods, which agree reasonably well for all ions along the beryllium
isoelectronic sequence, the lifetime of the metastable 2s2p *P; level is found to be larger by about 2-3 orders of
magnitude larger than predicted previously. This makes the *P, level of zero nuclear-spin beryllium-like ions to
one of the longest living (low-lying) electronic excitations of a tightly bound system with potential applications for
atomic clocks [54] or for studying correlation effects in high-Zions [55].
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