Spin assignment of the 7.57 MeV state in the unbound nucleus 16Ne*

J. Marganiec1,2,3, F. Wamers1,2,3, T. Aumann1,3, L.V. Chulkov1,4, B. Jonson5, T. Nilsson5, H. Simon3, and the R3B collaboration

1TU Darmstadt, Germany; 2EMMI, GSI Darmstadt, Germany; 3GSI Darmstadt, Germany; 4NRC Kurchatov Institute, Moscow, Russia; 5Chalmers Tekniska Högskola, Göteborg, Sweden

Two-proton decay of the unbound nucleus 16Ne, produced in one-neutron knock-out from a 500 MeV/u 17Ne beam, has been studied at GSI. The beam was directed towards carbon (370 mg/cm2) or polyethylene (213 mg/cm2) targets. The reaction products were identified by means of position, energy loss, and Time-of-Flight measurements, using the R3B-LAND setup. Coincidences between 14O and two protons provided the momentum four vectors, which were transformed into the projectile rest-mass frame, where two different sets of non-relativistic Jacobi coordinates (T- and Y-system) were used in the analysis [1].

The internal kinetic energy (the relative energy) E_{fp} in the three-body system 14O+p+p (see Fig. 1), and the fractional energies in the fragment-proton (ϵ_{fp}) and the proton-proton (ϵ_{pp}) subsystems were reconstructed. The correlation functions normalized to unity, for the fractional-energy distributions $W(\epsilon_{fp})$ and $W(\epsilon_{pp})$ and the angular distributions $W(\cos \theta_{fp})$ and $W(\cos \theta_{pp})$, were constructed and analyzed. The required efficiency and acceptance corrections have been estimated using the Monte Carlo simulations (see Ref. [2] for details).

![Figure 1: 14O+p+p relative energy spectrum.](image)

In this case, the initial 2^+ state emits a proton from the $d_{5/2}$ shell feeding the 14O+p in a $d_{5/2}$ shell configuration in 15F. This 2^+ state is unstable and emits two protons. Its width is surprisingly narrow. This suggests that its structure can be more complicated than a 14O+p+p state. This state is also situated above the four proton emission threshold, which indicates a possible many-body structure. And the 12C+4p configuration with four protons in the (sd) shell, could be the cause of such a narrow width of this state [3]. A special case of such a structure could consist of an excited core together with two protons, 14O($2^+)+2p$ [4]. The theoretical predictions for the position of the second 2^+ state in 16Ne are $E^* = 4.2$ MeV [5] or $E^* = 3.6$ MeV [6], both close to the known position of the second 2^+ state in the mirror nucleus 16C [7]. From this mirror nucleus (the third 2^+ state of 16C is at $E^* = 6.11$ MeV [8]), the investigated state is assumed to be the third 2^+ state in 16Ne.

![Figure 2: Three-body correlations between the decay products of the $E_{rel} = 7.57$ MeV.](image)

Correlations between the decay products from the excited state at the resonance energy $7.57(6)$ MeV are shown in Fig. 2. The two peaks visible in $W(\epsilon_{fp})$ and $W(\cos \theta_{pp})$ have been associated with transition to the state at $E_{rel} = 2.8$ MeV in 15F. The results of the calculations for the assumed initial spin value $I^\pi = 2^+$ and channel spin $j = 5/2$ are shown in Fig. 2 as dashed lines. The physical background contributions are shown in Fig. 2 as dotted lines. The sum of these two contributions (solid lines) perfectly reproduces the experimental data (see Ref. [2] for details).

* Work supported by NAVI, GSI-TU Darmstadt cooperation, HIC for FAIR, EMMI and BMBF. (B.J.) is a Helmholtz International Fellow.

References