

# Narrowband inverse Compton scattering x-ray sources at high laser intensities

D. Seipt<sup>1,2</sup>, S. G. Rykovanov<sup>1,2</sup>, A. Surzhykov<sup>1,2</sup>, and S. Fritzsche<sup>2,3</sup>

<sup>1</sup>GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt; <sup>2</sup>Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena; <sup>3</sup>Universität Jena, Institut für Theoretische Physik, 07743 Jena

Bright narrowband x- and gamma-ray sources based on the inverse Compton scattering of laser light on high-energy electron beams rely on the Doppler upshift of the laser frequency  $\omega' = 4\gamma^2\omega_0$ . However, these sources suffer from a limitation of the maximum laser intensity because the longitudinal ponderomotive force in a high-intensity laser pulse will effectively slow-down the electrons, reducing their  $\gamma$ -factor. This gradual slow-down of the electrons as the intensity ramps up leads to a reduced Doppler upshift causing spectral broadening of the generated x- or gamma-rays. Recent results [1, 2, 3] suggest that this ponderomotive broadening could be compensated by suitably chirped laser pulses. This compensation would allow to reduce the bandwidth of the generated x- and gamma-rays and to operate narrowband Compton sources in the high-intensity regime. Here we report on our recent findings on the determination of the optimal frequency modulation and its properties.

Let us assume a high-energy electron with asymptotic four-momentum  $p$  (and  $\gamma \gg 1$ ) collides head-on with an intense short laser pulse propagating along the direction  $n = (1, 0, 0, -1)$ , described by the normalized vector potential  $a^\mu = a_0 \varepsilon^\mu g(x^+) \cos \Phi(x^+)$ . The laser is assumed to be chirped with a local frequency  $\omega(x^+) = \partial \Phi / \partial x^+$ , with the light-front time  $x^+ = t + z$ , and where  $g$  denotes the laser's envelope function that changes slowly on the time-scale  $1/\omega$ . When the electron enters the laser pulse, its momentum has to be supplemented by the ponderomotive four-potential

$$p^\mu \rightarrow p^\mu + U^\mu, \quad U^\mu = \frac{ma_0^2 g^2(x^+)}{4\gamma} n^\mu, \quad (1)$$

that describes the longitudinal slow-down.

From the analysis of the scattering amplitude of nonlinear Compton scattering within the framework of strong-field QED in the Furry picture [3] we find the *local* frequency of the  $\ell$ -th harmonic of the scattered x-rays as

$$\omega'_\ell = \frac{4\gamma^2 \ell \omega(x^+)}{1 + \gamma^2 \vartheta^2 + \frac{a_0^2 g^2(x^+)}{2} + \chi(x^+)}, \quad (2)$$

where  $\chi = 2\ell\omega\gamma/m$  denotes the electron recoil, and  $\vartheta$  is the scattering angle. From Eq. (2) we can determine the optimal laser chirp via the condition  $d\omega'_\ell/dx^+ = 0$ . In other words: The optimal chirping prescription

$$\frac{\omega(x^+)}{\omega_0} = 1 + \frac{1}{1 + \gamma^2 \vartheta^2} \frac{a_0^2}{2} g^2(x^+) \quad (3)$$

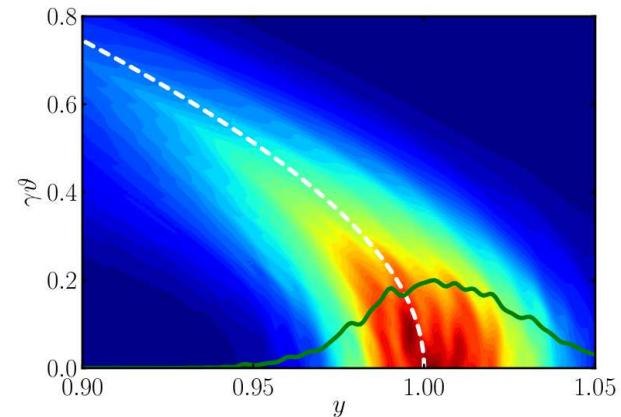



Figure 1: Simulated energy and angular radiation spectrum of a realistic electron beam interacting with a focused laser pulse with peak intensity  $a_0 = 2.83$ . The solid green line depicts the on-axis line-out of the radiation spectrum ( $y = \omega'/4\gamma^2\omega_0$ ). For simulation parameters cf. Ref. [3].

describes how the laser frequency needs to increase during the time of high laser intensity in order to exactly balance the ponderomotive red-shift due to the slow-down of the electrons. Eq. (3) shows that the ponderomotive broadening can be compensated only for just one particular scattering angle  $\vartheta$ . Moreover, the form of the optimal frequency modulation, Eq. (3), does not depend on the electron recoil during the scattering (no dependence on  $\chi$ ) and it removes the ponderomotive broadening from all higher harmonics in addition to the fundamental line (no dependence on  $\ell$ ). A numerical simulation of the compensated nonlinear Compton spectrum taking into account realistic laser focus geometries and electron bunches shows a reduction of the bandwidth from 80% to less than 5%, see Fig. 1.

To summarize, our analysis shows that the compensation of ponderomotive broadening by chirped laser pulses is a promising route towards operating narrowband Compton scattering x- and gamma-ray sources at high laser intensity.

## References

- [1] I. Ghebregziabher, B. A. Shadwick, and D. Umstadter, Phys. Rev. ST Accel. Beams **16**, 030705 (2013),
- [2] B. Terzić, K. Deitrick, A. S. Hofler, and G. A. Krafft, Phys. Rev. Lett. **112**, 074801 (2014).
- [3] D. Seipt, S. G. Rykovanov, A. Surzhykov and S. Fritzsche, arXiv:1412.2659.

\*d.seipt@gsi.de