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Introduction For equal model prior probabilities, the posterior odds re-
duces to the Bayes factd?,;. Both, model probabitlities

In this contribution we perfarm a Bayesian analysi_s Wmﬁnd Bayes factors have been obtained using the VEGAS
th? models a_m.d. daia presented N Ret. [1.]2 We first reg onte Carlo algorithm for the integration of the Bayesian
mind the definitions of the Bayesian quantities compute idence. The obtained relative precisions of the intsgral
here, and present the results of parameter estimation an

s Th its of model select dith lusi e smaller than0~3. The results of the computed model
ysiS. The resulls of model selection and the conclusion a[)‘?obabilities and Bayes factor are presented in the Part Il
presented in the part Il of this GSI scientific report.

of this report.

Computation m—enslesmTeenss Dl data)
smallest 68.3% interval(s)
. . lobal di
In the following M, denotes the pure exponential decay, 9 meanand standard deviation

and M; the modulated exponential decay. This analysis
has been performed using the BAT [2] and CUBA [3] C++
packages. All probabilities have been computed from un-
binned likelihood, reducing the information loss.

Parameter probabilities

The posterior probability density functions of the param-
eter(s) of intered is given by :

P(6|datg — L1938 0) (dﬁzi?tg )

where P(#) is the prior probability of, P(datg the nor-
malization term, and”(datdd) the marginal likelilihood. _. ] _ _ . . .
The Metropolis algorithm has been used to sample t gaure L '_I'W0_-d|men5|0nal posterior pro_baplllw-den_sny
marginal likelihood distribution. The high resolution bt '°" the oscillation frequency and the oscillation ampli-
obtained posterior distributions, as the one shown in figurté'dea in the 245 MHZ resonator EC-qlata set. The global
1, have been achieved using 10 Markov chains, each wiicde ©f the posterioP(a, w|data M) is found forw =

10 millions iterations. The convergence has been reachig‘(i35 anda = 0.09.

after about 140 thousands iterations.
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Bayesian parameter estimation

Model probabilities For all parameters, and for all possible combination of

parameter pairs, the 1- and 2-dimensional posterior prob-

abilities have been computed using the models and

M, and the data presented in Ref. [1]. Different pri-

P(dataM;)n; @) ors have been used. The posteriors computed with uni-
P(datg ' form prior distributions have shown, as expected, excellen

) ] B agreements with the unbinned likelihood analysis (see e.g.
wherer; is the prior probability of the model/;, P(datg figure 1 and Ref. [4]).

the normilzation term, and(datd\/;) the Bayesian Evi-

The posterior probability of a modéll; given the data
is given by

P(M;|datg =
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