Laser flash analysis of irradiated amorphous carbon stripper foils

M. Urban 1, K. Kupka 1,2, M. Tomut ∗2,3, C. Hubert1,2, A. Romanenko1,2, B. Lommel2, and C. Trautmann1,2

1Technische Universität Darmstadt, Germany; 2GSI, Darmstadt, Germany; 3NIMP, Bucharest, Romania

For high intensity operation at the planned FAIR accelerator, radiation-hard carbon stripper foils are of interest because they could provide intermediate charge states in SIS and replace both, the gas stripper at 1.4 MeV/u as well as the foil stripper at 11.4 MeV/u. Fatigue due to cyclic thermo-mechanical stress and additional stresses due to different thermal expansion coefficients of foil and mounting frame have to be understood in order to increase the lifetime [1, 2]. This report presents a first approach to measure the thermal diffusivity with the laser flash method of pristine and irradiated amorphous carbon (aC) foils. The diffusivity influences the heat transport and the temperature increase during irradiation.

The thermal diffusivity \(\alpha \), which contributes to the thermal conductivity \(\lambda(T) = \alpha(T) \cdot c_p(T) \cdot \rho(T) \), can be accessed by laser flash analysis (LFA). The technique measures the temperature evolution of the front side of the specimen after applying a laser pulse (1064 nm, up to 25 J) to the rear side (\(c_p \) and \(\rho \) are the specific heat and the density). Measurements were evaluated by use of Cowan model [3]. The diffusivity is proportional to the square of the thickness \(l \) and the time after 50% of the maximum temperature is reached at the front side \(t_{0.5} (\alpha \sim \frac{l^2}{t_{0.5}}) \). This illustrates the importance of sample thickness determination. To measure the foil thickness by means of profilometry the samples were fixed on a silicon wafer and height profiles across the edges of the foils were recorded (Fig. 1). The measurements reveal a great degree of roughness. As second method a thickness gauge was used. This method shows more consistent results (Fig. 2) than the profilometry and were therefore used for further diffusivity measurements.

Figure 1: Profilometer scan across the edge of a pristine 709 \(\mu \)g/cm\(^2\) thick aC stripper foil (produced by the GSI target laboratory) glued onto a silicon wafer.

First laser flash measurements on pristine and uranium irradiated aC foils of 250 \(\mu \)g/cm\(^2\) and 600 \(\mu \)g/cm\(^2\) are presented in Fig. 3. Due to the very small value of thermal diffusivity of aC and the strong thickness dependence of \(\alpha \), the measurement values of the thin samples are very low. Nevertheless, for both foils a significant decrease by ion irradiation is observable starting at low accumulated fluences. Further work on the thickness estimation needs to be carried out to improve accuracy of the LFA measurements. More irradiated samples need to be measured by means of LFA technique to verify these results and to understand ion-induced disordering processes leading to diffusivity decrease.

References