Synthesis of Au$_x$Ag$_{1-x}$ nanowire-networks with controlled composition and defined wire diameter

M. Dyzynski1,2, L. Burr2,3, C. Trautmann2, M. E. Toimil-Molares2, and I. Schubert2

1Hochschule RheinMain, Rüsselsheim, Germany; 2GSI, Darmstadt, Germany; 3Technische Universität Darmstadt, Germany

In this work, three dimensional AuAg-alloy-nanowire-networks with controlled composition and defined wire diameter were fabricated by electrodeposition in ion-track etched polymer templates. These structures are very interesting for applications in sensorics and catalysis since they exhibit a very high surface area and are mechanically stable due to their interconnected nanowires.

For the synthesis of the nanowire-networks, we have irradiated 30 µm-thin polymer foils at the GSI linear accelerator UNILAC with swift heavy ions of initial energy 11.4 MeV/u. Each foil is sequentially irradiated four times under an angle of 45° respective to the polymer surface. The ions damage molecular bonding in the foils and create cylindrical damage tracks. By chemical etching with aqueous 6-M NaOH solution at 50°C these ion tracks are transformed into nanochannels. Under these etching conditions, the etching rate amounts 23 nm/min. By varying the etching time between 2 min and 5 min nanochannels with defined diameter between 60-150 nm were fabricated. After creating a conductive cathode layer by sputtering gold on one side of the foil, nanowires are electrodeposited in the pores. We have deposited AuAg-nanowires using an electrolyte consisting of 50 mmol KAu(CN)$_2$ and 50 mmol KAg(CN)$_2$ in a three-electrode set-up. A Ag/AgCl electrode was used as reference electrode and a platinum coil as anode. All deposition potentials are given here vs. Ag/AgCl reference. Wet-chemical dissolution of the polymer leads to free-standing stable nanowire-networks. Fig. 1 shows the SEM image of a network with 100 nm wire diameter.

Figure 1: SEM image of a AuAg-nanowire-network with a wire diameter of 100 nm.

The applied voltage during the deposition was varied to create nanowires with controlled Au:Ag concentrations.

Fig. 2 shows details of EDX in SEM spectra including the M$_α$-peak of Au and L$_α$- and L$_β$-peak of Ag. All spectra are normalized to the height of the M$_α$-peak for clarity. Table 1 shows the concentration for networks deposited at voltages between -0.6 and -0.8 V. For the networks at -0.8 V the same Au:Ag concentration in the nanowires is found as present in the electrolyte. In contrast, for arrays consisting of parallel nanowires a Au:Ag concentration of 20:80 was measured at this potential [1]. We attribute this difference in wire composition between parallel nanowire arrays and networks to variations in the diffusion process, due to interconnections among pores and the different effective lengths.

Table 1: Au:Ag ratio in the nanowires of networks and parallel arrays for different deposition potentials.

<table>
<thead>
<tr>
<th>Potential/V</th>
<th>Networks Au:Ag [%]</th>
<th>Parallel arrays Au:Ag [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.8 V</td>
<td>50:50</td>
<td>20:80</td>
</tr>
<tr>
<td>-0.7 V</td>
<td>30:70</td>
<td>-</td>
</tr>
<tr>
<td>-0.6 V</td>
<td>20:80</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 2: EDX spectra of AuAg-alloy-nanowire-networks deposited at different voltages in the rage between -0.8 and -0.6 V.

References