A puzzle in the direct photon production

O. Linnyk†, W. Cassing1, and E. Bratkovskaya2

1Justus Liebig University of Giessen, Germany; 2FIAS; Goethe University Frankfurt am Main, Germany

Recent measurements of direct photon spectra and their \(v_2\) in Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV by the PHENIX Collaboration [1] stimulated a new wave of interest for real photons, since the thermal QGP photons were expected to dominate the spectra. But the experimental observation that the elliptic flow \(v_2(p_T)\) of direct photons is comparable to that of the pions was in contrast to the theoretical expectations. The photons produced in the QGP are not expected to show a considerable flow, because they are dominated by the emission in the initial phase before the elliptic flow fully develops. None of the theoretical models could describe simultaneously the photon spectra and \(v_2\), which is known as the “direct photon puzzle”.

Our results for the direct photon \(p_T\) spectra and \(v_2\) [2] are shown in comparison to the PHENIX data in the Figure below. We model the evolution of heavy-ion collisions by using the microscopic non-equilibrium transport approach Parton-Hadron-String Dynamics (PHSD), which describes the initial hard scatterings, string formation, creation of the strongly-interacting quark-gluon plasma as well as dynamical hadronization and the subsequent interactions in the expanding hadronic phase. The photons from QGP give up to 50% of the direct photon yield below 2 GeV/c, but a sizable contribution stems from hadronic sources such as meson-meson (\(mm\)) and meson-Baryon (\(mB\)) bremsstrahlung. The contribution from binary \(mm\) and \(VN\) reactions is minor compared to the partonic and bremsstrahlung channels. The hadron bremsstrahlung photons carry large \(v_2\) of the order of the pion \(v_2\), which leads to the direct photon \(v_2\) in agreement with the data within the systematical uncertainties. The PHENIX Collaboration found also that the midrapidity ‘thermal’ photon yield scales with the number of participants as \(dN/dy \sim N_{part}^{\alpha}\) with \(\alpha = 1.48 \pm 0.08\). Our predictions gave \(\alpha = 1.5\) due to the dominance of the \(mm\) and \(mB\) contribution, while the QGP channels scale with \(\alpha = 1.7\). Thus, according to the present PHSD results the \(mm\) and \(mB\) bremsstrahlung turn out to be an important source of direct photons, which contributes towards the resolution of the puzzle.

References


* Work supported in part by HIC4FAIR
† olena.linnyk@theo.physik.uni-giessen.de

Figure 1: The spectra (up) and elliptic flow (down) for the direct photons produced in Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. Our results within the PHSD approach [2] are given by the red solid lines. The PHENIX data (symbols) are from [1].

DOI:10.15120/GR-2015-1-MU-THEORY-28