A novel DC current transformer using magneto-resistance sensors for FAIR

E. Soliman1, 2, H. Reeg1, M. Schwickert1, K. Hofmann2

1GSI, Darmstadt, Germany; 2IES Institute, TU Darmstadt, Germany.

A Novel DC Current Transformer (N-DCCT) for FAIR SIS100 is under development at GSI Beam Diagnostic department in collaboration with IES Institute of TU Darmstadt. DCCTs are used as non-intercepting standard tools for online beam current measurement in synchrotrons and storage rings. The working principle of commonly used DCCTs is well known \[1\]. However, at certain bunch frequencies in ring accelerators inaccurate readings are observed due to inter-modulation distortion. The N-DCCT senses the magnetic field created by the ion beam current, using Tunneling Magneto-Resistance (TMR) sensors. Also a closed-loop N-DCCT is currently under development.

TMR Sensor for N-DCCT

Currently a N-DCCT based on TMR sensors is under development at GSI. The N-DCCT open-loop structure is shown in Figure 1 \[2\]. The main measurement principle is precise detection of the ion beam DC magnetic field by TMR sensors. In the present setup the TMR sensors from MultiDimension Company \[3\] are placed inside an air gap of a high permeability ferromagnetic ring core with 10 mm width (VITROVAC \‘602SF\”). The value of the magnetic field inside the air gap is calculated according to the following formula:

\[
B_{\text{gap}} = \frac{\mu_0 I_p}{d}
\]

Where \(B_{\text{gap}}\) is the magnetic field inside the air gap in Tesla, \(\mu_0\) is the permeability of vacuum in Tm/A, \(I_p\) is the beam current and \(d\) is the air gap width in m.

The TMR’s output voltage is directly proportional to the ion beam current. A voltage amplifier is added to enhance the N-DCCT resolution. Printed circuit boards were fabricated to compare the performance of different MR sensors. A test setup has been prepared for the N-DCCT as shown in Figure 2. A mechanical support was manufactured to hold the flux concentrator. In addition a \(\mu\)-metal box for shielding covers the whole N-DCCT test setup.

A DC current is generated in a conducting wire at the center of the core using a power amplifier and a signal generator. The value of the produced voltage from the power amplifier is \(\pm 32\text{V}\). This will produce a \(\pm 0.32\text{A}\) in the wire. The value of the magnetic field intensity in the air gap of the core will be \(\pm 0.04\text{mT}\). The output voltage of the TMR sensors is amplified with a voltage amplifier of gain 10.

Tests were carried out for two different TMR sensors, MMLH45F and MMLP57F. Figure 3 shows the output voltage of the N-DCCT versus input current for the MMLH45F. The slope of transfer characteristic is the sensitivity of the N-DCCT. The measured value from the experimental test is 0.566V/A, while the theoretical value is 0.75V/A. The sensitivity of the TMR sensor to the magnetic field is 0.453mV/mT from the measurements and 0.6V/mT from the sensor’s datasheet. Measurements with the sensor type MMLP57F yielded a sensitivity of 0.275 V/A, compared to 0.31V/A (datasheet). The noise analysis for the system is currently under investigation.

References

\[\text{Figure 2: N-DCCT Test Setup.}\]

\[\text{Figure 3: Output Voltage of the N-DCCT.}\]

\[\begin{array}{c}
\text{Figure 1: N-DCCT Open Loop Structure.}
\end{array}\]

* Work supported BMBF project ID: 05P12RDRBG.
\#pt@desy.de

DOI:10.15120/GR-2015-1-FG-SIS100-11