GSI SCIENTIFIC REPORT 2014

FG-CS-06

mbspex driver software for PEXOR/KINPEX readout boards”

J. Adamczewski-Musch®, N. Kurz', S. Linev!, and the FAIR@GSI project
1
GSI, Darmstadt, Germany

Introduction

The GSI PEXOR/KINPEX (“PEX family”) PCle
boards were designed for data read out from various de-
tector front-ends via optical SFP connections to an X86
PC host [1]. Communication between PEX and front-end
hardware is handled via the gosip protocol [2]. For trig-
gered data acquisition, the trigger module TRIXOR can
be connected to PEX. The PEX boards have been applied
for many years with the data acquisition framework MBS
[3]. An improved Linux kernel module driver mbspex.ko
has been implemented such that concurrent access from
MBS and separate control processes is now possible. The
new application library libmbspex provides higher level
functionality to user space. Moreover, a command line
tool gosipcmd allows inspection and configuration of any
front-end register from an interactive shell, GUI, or re-
mote web server. Fig. 1 shows these mbspex software
components in a typical Linux host PC with MBS DAQ
and several control applications.

X86 PC
shell>gosipemd-z DABC
Gul webserver
--------- -~ ..,.....,,.....--»-.»1"' X,
e
| gosipcmd | MBS
¥ T
I libmbspex.a |4
:(l ‘ P
| oty & | mmap(
| filesystem fdevipexor0
mhbspex.ko Linux Kernel
. ' PCle layer
B e
4 PEXOR DA

Figure 1: Overview of mbspex software components on
an X86 Linux node

Linux device driver

Access of any user program to PEX and the connected
front-end hardware requires device driver software, usual-
ly consisting of a kernel module and optionally a corre-
sponding user space library.

Kernel module

The mbspex kernel module merges the previous simple
driver pexormbs for MBS data acquisition with the larger
pexor driver for DABC and FESA frameworks [4]. It im-

* PSP code: SD-SEM 2.3.6.5.1.6.30.

DOI:10.15120/GR-2015-1-FG-CS-06

plements all basic gosip protocol functionalities, like ini-
tialization of chains, front-end field bus access, and “to-
ken” data request, as ioctl() functions. Additionally, there
are DMA operations to send data to any destination point-
er in physical memory (MBS "pipe", see Fig.1). All these
ioctl() calls are protected by a kernel mutual exclusive
semaphore. This allows concurrent access to the PEX
device without crashing the system.

Since the kernel module keeps track of all initialized
devices at the sfp chains, a “broadcast” i/o is possible:
with one ioctl() the same value can be written to the same
address on all devices of a chain, or of all chains. Fur-
thermore, several registers of each frontend can be con-
figured at once from a single ioctl() data bundle. This can
be combined with broadcast mode and allows in principle
to safely reconfigure all frontends at once while data ac-
quisition read out is running.

On the other hand, all ioctl() calls of pexormbs driver
are remained in mbspex driver with the same key values.
So any legacy MBS code may ignore the “locked” ioctl()
features and still work directly on the PEX board control
registers. For this purpose file operation mmap() is still
implemented to map the PEX board memory to virtual
addresses of the MBS process. Alternatively, mmap() can
map any physical PC memory to user space. MBS is us-
ing this to access the reserved “pipe” memory for subev-
ent buffering.

Finally, mbspex.ko exports some PEX and TRIXOR
registers via the kernel sysfs feature. The properties can
be inspected by reading corresponding file handles under
directory /sys/class/mbspex/.

User library

The libmbspex user space library is written in C lan-
guage and uses the file system handle /dev/pexor0 with
ioctl() calls as interface to the kernel module (see Fig.1).
It provides high level functions for register i/o with the
PEXOR board, with any single front-end, or with all con-
figured front-end boards in a “broadcast” mode. Addi-
tionally, gosip “token mode” data transfer from the front-
end buffers and DMA transfer to PC host memory can be
initiated by simple function calls. All these functions are
protected against concurrent access already in the kernel
module. So different control applications like gosipcmd
may link and use libmbspex simultaneously. Moreover,
MBS user readout code can be based on libmbspex func-
tion calls only.

Application for MBS DAQ

The MBS DAQ framework does not operate the front-
end hardware directly, but just ensures that user read-out
functions are called whenever module TRIXOR receives
a trigger signal. It does not require libmbspex functionali-

511



FG-CS-06

ty, but interacts with mbspex.ko by means of ioctl() and
mmap() file operations. They are merely applied to wait
for next trigger, and to map the pipe buffer physical
memory (Fig. 1). These calls have been kept compatible
with the previous kernel module pexormbs.ko, so no mod-
ifications to MBS framework have been needed. Also any
legacy user readout code will work with mbspex.ko, since
memory mapped access to PEX control registers is still
supported.

However, to provide safe concurrent frontend access
between MBS and external control tools, adjustments in
MBS user readout code are necessary. Here any token
data request must use primitive function calls of libmb-
spex. An example of such readout code has been provided
for POLAND/QFW front-ends of FAIR beam diagnostic
projects [5].

Command line tool gosipcmd

The command line tool gosipcmd works as shell appli-
cation on top of libmspex (Fig.1). It provides interactive
command access to PEX board and the SFP-connected
frontend registers via gosip protocol. The resulting values
are printed to terminal. The main functionalities cover:

e reset PEX board, initialize SFP chains
read/write any address on frontend slave
incremental read/write from start address
register bit manipulation
broadcast mode: read/write same register at all
connected frontends

o configure / verify with script files *.gos

e plain or verbose, hex or decimal output mode
A more complete list of available options can be printed
using “gosipcmd -h”. At GSI gosipcmd is already pro-
vided at X86 Linux installations (hosts “X86L-nn") for
MBS v6.2.

Frontend control GUI

Since gosipcmd uses stdin/stdout as plain text data in-
terface, it can serve as base for any special front-end con-
figuration script, or graphical user interface (GUI) appli-
cation.

POLAND GUI

An example of such frontend GUI has been developed
for configuration of POLAND charge to frequency con-
verters of beam diagnostics [5]. It is designed with Qt4
graphics library and shown as screenshot in Fig.2. Since it
uses gosipcmd calls only, it is decoupled from the actual
mbspex library version and may work both with mbspex
and pexor driver installations, i.e. with MBS or FESA
read out. The stdout of gosipcmd is redericted to an em-
bedded text window which allows verbose register in-
spection, and dumping of event data buffers. PEX board
and SFP chains may be initialized on click. Each PO-
LAND frontend device can be selected and the meaning-
ful registers displayed and manipulated. Moreover, it is
possible to broadcast same register settings to all devices,

512

GSI SCIENTIFIC REPORT 2014

as this is already supported at kernel module level. Also
configuration scripts of gosipcmd (*.gos) may be selected
and applied from the GUI.

The POLAND GUI is installed at GSI for MBS v6.2 on
X86 Linux and available via alias “poland”.

wirL =] [oeve =] Aloes smnlast| enctian | nese

SHE L DEVD Lust reliesbeln fan 20 138020 2005

aw | nac |

I internal Ingger

vsplaymode

 Howmode
-| v Verbose

e ||

Figure 2: POLAND Qt4 GUI using gosipcmd interface

DABC webserver GUI

Besides such local control GUI, a remote control of
gosipcmd has been implemented as gosip plug-in for the
webserver of software framework DABC [6]. This web-
server runs as independent DABC process on the MBS
Linux node (Fig.1) and provides a full interface to the
local gosipcmd via HTTP request and response. A web
browser version of the POLAND GUI has been imple-
mented for this mechanism, using JavaScript with jQuery
Ul plug-ins (Fig.3).

2 " o nager
a2 "™ e anben Scanciset Iaitchain Raset Feset FIX

Trigge:.

SEIN0 DEVAD - Di 47 Jan 2015 1:12:51 CEL >Dump data OK =
OTFW Counters

oW | DAC Teigpger
JrLsn Mode 0113
(41 1 250k & 0.25pC7] - Irrars

[

1] w1

Dalstump

Figure 3: POLAND web GUI at DABC web server

Additionally, a generic gosipcmd browser command
line GUI will be available as part of the DABC webserver
controls for MBS v6.3 [7].

DOI:10.15120/GR-2015-1-FG-CS-06



GSI SCIENTIFIC REPORT 2014

[1]

[2]

[3]

References

J. Hoffmann, N. Kurz, S. Minami, W. Ott, and S.
Voltz, “PCl-express Optical Receiver”, GSI scientific
report 2008, p 258.

S. Minami, J. Hoffmann, N. Kurz, and W. Ott, “De-
sign and Implementation of a Data Transfer Protocol
via Optical Fibre*, presented at the 17th IEEE Real-
Time Conference, Lisboa 2010, Paper PDAQ-31
Multi  Branch System (MBS) home page:
http://www.gsi.de/mbs

[4] J. Adamczewski-Musch, H.G.Essel, S. Linev, “The

DABC Framework Interface to Readout Hardware”,

DOI:10.15120/GR-2015-1-FG-CS-06

[5]

FG-CS-06

IEEE TNS Vol.58, No.4, August 2011, pp. 1728-
1732

S. Léchner, J. Adamczewski-Musch, H. Bréuning, J.
Friihauf, N. Kurz, S. Linev, S. Minami, M. Witthaus,
“POLAND - Low Current Profile Measurement
Readout System”, GSI Scientific Report 2013,
d0i:10.15120/GR-2014-1-FG-CS-13

[6] Data Acquisition Backbone Core (DABC) home

page: http://dabc.gsi.de

[7] J. Adamczewski-Musch, N. Kurz, S. Linev, “Status

and developments for DAQ system MBS v6.3”, this
report

513



