```
X. Liu(刘翔)<sup>26</sup> X. X. Liu(刘晓霞)<sup>41</sup> Y. B. Liu(刘玉斌)<sup>30</sup> Z. A. Liu(刘振安)<sup>1</sup> Zhiqiang Liu(刘志强)<sup>1</sup>
Zhiqing Liu<sup>22</sup> H. Loehner<sup>25</sup> X. C. Lou(娄辛丑)<sup>1,e</sup> H. J. Lu(吕海江)<sup>17</sup> J. G. Lu(吕军光)<sup>1</sup> R. Q. Lu(鲁睿其)<sup>18</sup>
   Y. Lu(卢宇)<sup>1</sup> Y. P. Lu(卢云鹏)<sup>1</sup> C. L. Luo(罗成林)<sup>28</sup> M. X. Luo(罗民兴)<sup>51</sup> T. Luo<sup>42</sup> X. L. Luo(罗小兰)<sup>1</sup>
         M. Lv(吕蒙)<sup>1</sup> X. R. Lvu(吕晓睿)<sup>41</sup> F. C. Ma(马凤才)<sup>27</sup> H. L. Ma(马海龙)<sup>1</sup> L. L. Ma(马连良)<sup>33</sup>
    Q. M. Ma(马秋梅)<sup>1</sup> S. Ma(马斯)<sup>1</sup> T. Ma(马天)<sup>1</sup> X. N. Ma(马旭宁)<sup>30</sup> X. Y. Ma(马骁妍)<sup>1,b</sup> F. E. Maas<sup>14</sup>
         M. Maggiora<sup>48A,48C</sup> Q. A. Malik<sup>47</sup> Y. J. Mao(冒亚军)<sup>31</sup> Z. P. Mao(毛泽普)<sup>1</sup> S. Marcello<sup>48A,48C</sup>
          J. G. Messchendorp<sup>25</sup> J. Min(闵建)<sup>1</sup> T. J. Min(闵天觉)<sup>1</sup> R. E. Mitchell<sup>19</sup> X. H. Mo(莫晓虎)<sup>1</sup>
   Y. J. Mo(莫玉俊)<sup>6</sup> C. Morales Morales<sup>14</sup> K. Moriya<sup>19</sup> N. Yu. Muchnoi<sup>9,a</sup> H. Muramatsu<sup>43</sup> Y. Nefedov<sup>23</sup>
        F. Nerling<sup>14</sup> I. B. Nikolaev<sup>9,a</sup> Z. Ning(宁哲)<sup>1</sup> S. Nisar<sup>8</sup> S. L. Niu(牛顺利)<sup>1</sup> X. Y. Niu(牛讯伊)<sup>1</sup>
   S. L. Olsen(馬鵬)<sup>32</sup> Q. Ouyang(欧阳群)<sup>1</sup> S. Pacetti<sup>20B</sup> P. Patteri<sup>20A</sup> M. Pelizaeus<sup>4</sup> H. P. Peng(彭海平)<sup>45</sup>
   K. Peters<sup>10</sup> J. L. Ping(平加伦)<sup>28</sup> R. G. Ping(平荣刚)<sup>1</sup> R. Poling<sup>43</sup> Y. N. Pu(濮亚男)<sup>18</sup> M. Qi(祁鸣)<sup>29</sup>
            S. Qian(钱森)<sup>1</sup> C. F. Qiao(乔从丰)<sup>41</sup> L. Q. Qin(秦丽清)<sup>33</sup> N. Qin(覃拈)<sup>50</sup> X. S. Qin(秦小帅)<sup>1</sup>
                Y. Qin(秦瑶)<sup>31</sup> Z. H. Qin(秦中华)<sup>1</sup> J. F. Qiu(邱进发)<sup>1</sup> K. H. Rashid<sup>47</sup> C. F. Redmer<sup>22</sup>
    H. L. Ren(任海龙)<sup>18</sup> M. Ripka<sup>22</sup> G. Rong(荣刚)<sup>1</sup> X. D. Ruan(阮向东)<sup>12</sup> V. Santoro<sup>21A</sup> A. Sarantsev<sup>23,f</sup>
     M. Savrié<sup>21B</sup> K. Schoenning<sup>49</sup> S. Schumann<sup>22</sup> W. Shan(单蔵)<sup>31</sup> M. Shao(邵明)<sup>45</sup> C. P. Shen(沈成平)<sup>2</sup>
 P. X. Shen(沈培迅)<sup>30</sup> X. Y. Shen(沈肖雁)<sup>1</sup> H. Y. Sheng(盛华义)<sup>1</sup> W. M. Song(宋维民)<sup>1</sup> X. Y. Song(宋欣颖)<sup>1</sup>
           S. Sosio<sup>48A,48C</sup>
                                S. Spataro<sup>48A,48C</sup> G. X. Sun(孙功星)<sup>1</sup> J. F. Sun(孙俊峰)<sup>15</sup> S. S. Sun(孙胜森)<sup>1</sup>
     Y. J. Sun(孙勇杰)<sup>45</sup> Y. Z. Sun(孙永昭)<sup>1</sup> Z. J. Sun(孙志嘉)<sup>1</sup> Z. T. Sun(孙振田)<sup>19</sup> C. J. Tang(唐昌建)<sup>36</sup>
       X. Tang(唐晓)<sup>1</sup> I. Tapan<sup>40C</sup> E. H. Thorndike<sup>44</sup> M. Tiemens<sup>25</sup> D. Toth<sup>43</sup> M. Ullrich<sup>24</sup> I. Uman<sup>40B</sup>
          G. S. Varner<sup>42</sup> B. Wang(王斌)<sup>30</sup> B. L. Wang(王滨龙)<sup>41</sup> D. Wang(王东)<sup>31</sup> D. Y. Wang(王大勇)<sup>31</sup>
         K. Wang(王科)<sup>1</sup> L. L. Wang(王亮亮)<sup>1</sup> L. S. Wang(王灵淑)<sup>1</sup> M. Wang(王萌)<sup>33</sup> P. Wang(王平)<sup>1</sup>
P. L. Wang(王佩良)<sup>1</sup> Q. J. Wang(王庆娟)<sup>1</sup> S. G. Wang(王思广)<sup>31</sup> W. Wang(王炜)<sup>1</sup> X. F. Wang(王雄飞)<sup>39</sup>
Wang Yadi(王雅迪)<sup>20A</sup> Y. F. Wang(王贻芳)<sup>1</sup> Y. Q. Wang(王亚乾)<sup>22</sup> Z. Wang(王铮)<sup>1</sup> Z. G. Wang(王志列)<sup>1</sup>
        Z. H. Wang(王志宏)<sup>45</sup> Z. Y. Wang(王至勇)<sup>1</sup> T. Weber<sup>22</sup> D. H. Wei(魏代会)<sup>11</sup> J. B. Wei(韦江波)<sup>31</sup>
       P. Weidenkaff<sup>22</sup> S. P. Wen(文硕频)<sup>1</sup> U. Wiedner<sup>4</sup> M. Wolke<sup>49</sup> L. H. Wu(伍灵慧)<sup>1</sup> Z. Wu(吴智)<sup>1</sup>
         L. G. Xia(夏力钢)<sup>39</sup> Y. Xia(夏宇)<sup>18</sup> D. Xiao(肖栋)<sup>1</sup> Z. J. Xiao(肖振军)<sup>28</sup> Y. G. Xie(谢宇广)<sup>1</sup>
          Q. L. Xiu(修青磊)<sup>1</sup> G. F. Xu(许国发)<sup>1</sup> L. Xu(徐雷)<sup>1</sup> Q. J. Xu(徐庆君)<sup>13</sup> Q. N. Xu(徐庆年)<sup>41</sup>
      X. P. Xu(徐新平)<sup>37</sup> L. Yan(严亮)<sup>45</sup> W. B. Yan(鄢文标)<sup>45</sup> W. C. Yan(闫文成)<sup>45</sup> Y. H. Yan(颜永红)<sup>18</sup>
   H. X. Yang(杨洪勋)<sup>1</sup> L. Yang(杨柳)<sup>50</sup> Y. Yang(杨迎)<sup>6</sup> Y. X. Yang(杨永栩)<sup>11</sup> H. Ye(叶桦)<sup>1</sup> M. Ye(叶梅)<sup>1</sup>
      M. H. Ye(叶铭汉)<sup>7</sup> J. H. Yin(殷俊昊)<sup>1</sup> B. X. Yu(俞伯祥)<sup>1</sup> C. X. Yu(喻纯旭)<sup>30</sup> H. W. Yu(于海旺)<sup>31</sup>
           J. S. Yu(俞洁晟)<sup>26</sup> C. Z. Yuan(苑长征)<sup>1</sup> W. L. Yuan(袁文龙)<sup>29</sup> Y. Yuan(袁野)<sup>1</sup> A. Yuncu<sup>40B,g</sup>
               A. A. Zafar<sup>47</sup> A. Zallo<sup>20A</sup> Y. Zeng(曾云)<sup>18</sup> B. X. Zhang(张丙新)<sup>1</sup> B. Y. Zhang(张炳云)<sup>1</sup>
                C. Zhang(张驰)<sup>29</sup> C. C. Zhang(张长春)<sup>1</sup> D. H. Zhang(张达华)<sup>1</sup> H. H. Zhang(张宏浩)<sup>38</sup>
                H. Y. Zhang(章红字)<sup>1</sup> J. J. Zhang(张佳佳)<sup>1</sup> J. L. Zhang(张杰磊)<sup>1</sup> J. Q. Zhang(张敬庆)<sup>1</sup>
     J. W. Zhang(张家文)<sup>1</sup> J. Y. Zhang(张建勇)<sup>1</sup> J. Z. Zhang(张景芝)<sup>1</sup> K. Zhang(张坤)<sup>1</sup> L. Zhang(张磊)<sup>1</sup>
S. H. Zhang(张书华)<sup>1</sup> X. Y. Zhang(张学尧)<sup>33</sup> Y. Zhang(张瑶)<sup>1</sup> Y. H. Zhang(张银鸿)<sup>1</sup> Y. T. Zhang(张亚腾)<sup>45</sup>
   Z. H. Zhang(张正好)<sup>6</sup> Z. P. Zhang(张子平)<sup>45</sup> Z. Y. Zhang(张振宇)<sup>50</sup> G. Zhao(赵光)<sup>1</sup> J. W. Zhao(赵京伟)<sup>1</sup> J. Y. Zhao(赵静宜)<sup>1</sup> J. Z. Zhao(赵京周)<sup>1</sup> Lei Zhao(赵雷)<sup>45</sup> Ling Zhao(赵玲)<sup>1</sup> M. G. Zhao(赵明刚)<sup>30</sup>
      Q. Zhao(赵强)<sup>1</sup> Q. W. Zhao(赵庆旺)<sup>1</sup> S. J. Zhao(赵书俊)<sup>52</sup> T. C. Zhao(赵天池)<sup>1</sup> Y. B. Zhao(赵豫斌)<sup>1</sup>
    Z. G. Zhao(赵政国)<sup>45</sup> A. Zhemchugov<sup>23,h</sup> B. Zheng(郑波)<sup>46</sup> J. P. Zheng(郑建平)<sup>1</sup> W. J. Zheng(郑文静)<sup>33</sup>
           Y. H. Zheng(郑阳恒)<sup>41</sup> B. Zhong(钟彬)<sup>28</sup> L. Zhou(周莉)<sup>1</sup> Li Zhou(周立)<sup>30</sup> X. Zhou(周详)<sup>50</sup>
      X. K. Zhou(周晓康)<sup>45</sup> X. R. Zhou(周小蓉)<sup>45</sup> X. Y. Zhou(周兴玉)<sup>1</sup> K. Zhu(朱凯)<sup>1</sup> K. J. Zhu(朱科军)<sup>1</sup>
     S. Zhu(朱帅)<sup>1</sup> X. L. Zhu(朱相雷)<sup>39</sup> Y. C. Zhu(朱莹春)<sup>45</sup> Y. S. Zhu(朱永生)<sup>1</sup> Z. A. Zhu(朱自安)<sup>1</sup>
                      J. Zhuang(庄建)<sup>1,b</sup> L. Zotti<sup>48A,48C</sup> B. S. Zou(邹冰松)<sup>1</sup> J. H. Zou(邹佳恒)<sup>1</sup>
                                                             (BESIII collaboration)
```

Institute of High Energy Physics, Beijing 100049, China
 Beihang University, Beijing 100191, China
 Beijing Institute of Petrochemical Technology, Beijing 102617, China
 Bochum Ruhr-University, D-44780 Bochum, Germany
 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
 Central China Normal University, Wuhan 430079, China

⁷ China Center of Advanced Science and Technology, Beijing 100190, China

```
8 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
                        <sup>9</sup> G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
                        <sup>10</sup> GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
                                            <sup>11</sup> Guangxi Normal University, Guilin 541004, China
                                              <sup>12</sup> GuangXi University, Nanning 530004, China
                                        <sup>13</sup> Hangzhou Normal University, Hangzhou 310036, China
                      <sup>14</sup> Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
                                           <sup>15</sup> Henan Normal University, Xinxiang 453007, China
                                 <sup>16</sup> Henan University of Science and Technology, Luoyang 471003, China
                                               <sup>7</sup> Huangshan College, Huangshan 245000, China
                                               <sup>18</sup> Hunan University, Changsha 410082, China
                                         <sup>19</sup> Indiana University, Bloomington, Indiana 47405, USA
<sup>20</sup> (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN and University of Perugia, I-06100, Perugia, Italy
               <sup>21</sup> (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
              <sup>22</sup> Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
                             <sup>23</sup> Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
        <sup>24</sup> Justus Liebig University Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
<sup>25</sup> KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
                                               <sup>26</sup> Lanzhou University, Lanzhou 730000, China
                                              <sup>27</sup> Liaoning University, Shenyang 110036, China
                                          <sup>28</sup> Nanjing Normal University, Nanjing 210023, China
                                                Nanjing University, Nanjing 210093, China

Nankai University, Tianjin 300071, China
                                                <sup>31</sup> Peking University, Beijing 100871, China
                                               Seoul National University, Seoul, 151-747 Korea
                                                <sup>33</sup> Shandong University, Jinan 250100, China
                                        <sup>34</sup> Shanghai Jiao Tong University, Shanghai 200240, China
                                                 <sup>5</sup> Shanxi University, Taiyuan 030006, China
                                               <sup>36</sup> Sichuan University, Chengdu 610064, China
                                               ^{\rm 37} Soochow University, Suzhou 215006, China
                                           ^{38}Sun Yat-Sen University, Guangzhou 510275, China
                                               <sup>39</sup> Tsinghua University, Beijing 100084, China
          <sup>40</sup> (A)Istanbul Aydin University, 34295 Sefakoy, Istanbul, Turkey; (B)Dogus University, 34722 Istanbul, Turkey;
                                                 (C)Uludag University, 16059 Bursa, Turkey
                                  <sup>41</sup> University of Chinese Academy of Sciences, Beijing 100049, China
                                           <sup>42</sup> University of Hawaii, Honolulu, Hawaii 96822, USA
                                     <sup>43</sup> University of Minnesota, Minneapolis, Minnesota 55455, USA
                                      <sup>44</sup> University of Rochester, Rochester, New York 14627, USA
                                 ^{\rm 45} University of Science and Technology of China, Hefei 230026, China
                                          <sup>46</sup> University of South China, Hengyang 421001, China
                                           ^{\rm 47} University of the Punjab, Lahore-54590, Pakistan
          <sup>48</sup> (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy;
                                                       (C)INFN, I-10125, Turin, Italy
                                       <sup>49</sup> Uppsala University, Box 516, SE-75120 Uppsala, Sweden
                                                <sup>50</sup> Wuhan University, Wuhan 430072, China
                                              <sup>51</sup> Zhejiang University, Hangzhou 310027, China
                                            <sup>52</sup> Zhengzhou University, Zhengzhou 450001, China
                                 <sup>a</sup> Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
                                      ^b Also at Ankara University, 06100 Tandogan, Ankara, Turkey
                    <sup>c</sup> Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia and at the
                          Functional Electronics Laboratory, Tomsk State University, Tomsk, 634050, Russia
                                     ^d Currently at Istanbul Arel University, 34295 Istanbul, Turkey
                                 <sup>e</sup> Also at University of Texas at Dallas, Richardson, Texas 75083, USA
                               ^f Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia
                                           <sup>g</sup> Also at Bogazici University, 34342 Istanbul, Turkey
                          <sup>h</sup> Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
```

Abstract: From December 2011 to May 2014, about 5 fb $^{-1}$ of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process.

Key words: precision measurement, luminosity, Bhabha scattering, charmonium

PACS: 13.66.Jn **DOI:** 10.1088/1674-1137/39/9/093001

1 Introduction

As a τ -charm factory, the BESIII experiment has collected the world's largest sample of e⁺e⁻ collision data at center-of-mass (CM) energies between 3.810 GeV and 4.600 GeV. In this energy region, the charmonium-like states and higher excited charmonium states are produced copiously, which makes comprehensive studies possible.

The charmonium-like states discovered in recent years have drawn great attention from both theorists and experimentalists for their exotic properties, as reviewed e.g. in Ref. [1]. Being well above the open charm threshold, the strong coupling of these states to hidden charm processes makes their interpretation as conventional charmonium states very difficult. On the other hand, the theory of the strong interaction, Quantum Chromodynamics (QCD), does not prohibit the existence of exotic states beyond the quark model, e.g. molecular states, tetraquark states, hybrid states, etc. Either the verification or the exclusion of the existence of such states will help to evaluate the quark model and better understand QCD. Even though some states have been identified as higher excited charmonium states, such as the $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$, their large widths and interference with each other make their precise study complicated. In addition, the relationship between the charmonium-like states and higher excited charmonium states is still not clear. Precise knowledge of the timeintegrated luminosity is essential for quantitative analysis of these states.

In this paper, we present a measurement of the integrated luminosity based on analysis of the Bhabha scattering process $e^+e^- \rightarrow (\gamma)e^+e^-$. A similar method has been used in the luminosity measurement of $\psi(3770)$ data at BESIII [2]. The process has a simple and clean signature and a large production cross section, which allows for a small systematic and a negligible statistical uncertainty. A cross check of the result is performed by analyzing the di-gamma process $e^+e^- \rightarrow \gamma\gamma$.

2 The detector

BESIII is a general purpose detector which covers 93% of the solid angle and operates at the e⁺e⁻ collider BEPCII. A detailed description of the facilities is given in Ref. [3]. The detector consists of four main components: (a) A small-cell, helium-based main drift chamber (MDC) with 43 layers provides an average single-hit resolution of 135 μ m, and a momentum resolution of 0.5% for charged tracks at 1 GeV/c in a 1 T magnetic field; (b) An electro-magnetic calorimeter (EMC), consisting of 6240 CsI(Tl) crystals in a cylindrical structure (barrel and two endcaps). The energy resolution for 1.0 GeV photons is 2.5% (5%) in the barrel (endcaps), while the

position resolution is 6 mm (9 mm) in the barrel (endcaps); (c) A time-of-flight system (TOF), constructed of 5 cm thick plastic scintillators, arranged in 88 detectors of 2.4 m length in two layers in the barrel and 96 fanshaped detectors in the endcaps. The barrel (endcap) time resolution of 80 ps (110 ps) provides $2\sigma \text{ K/}\pi$ separation for momenta up to about 1.0 GeV/c; (d) A muon counter (MUC), consisting of nine layers of resistive plate chambers in the barrel and eight layers for each endcap. It is incorporated in the iron return voke of the superconducting magnet. Its position resolution is about 2 cm. A GEANT4 [4, 5] based detector simulation package has been developed to model the detector response. Due to the crossing angle of the beams at the interaction point, the e⁺e⁻ CM system is slightly boosted with respect to the laboratory frame.

3 Data sample and Monte Carlo simulation

Twenty-one data samples have been taken at CM energies between 3.810 GeV and 4.600 GeV. Six of the data sets exceed the others in accumulated statistics by an order of magnitude. These samples were taken on the peaks of charmonium-like states, like the Y(4260), Y(4360), and Y(4630), or higher excited charmonium states, like $\psi(4040)$, and $\psi(4415)$, in order to study these resonances and their decays in great detail. The data samples taken at the other CM energies serve as scan points to study the behavior of the cross section around these resonances. All individual data samples are listed in Table 1.

At each energy point, one million Bhabha events were generated using the BABAYAGA3.5 [6] generator with the options presented in Table 2. For the BABAYAGA3.5 generator, the uncertainty in calculating the cross section is 0.5\%, which meets the demand of the total uncertainty of luminosity measurement. The kinematic distributions of the final state particles from the BABAYAGA3.5 generator are consistent with those from data. In the simulation, the scattering angles of the final state particles were limited to a range from 20° to 160°, which slightly exceeds the angular acceptance of the detector, in order to save on computing resources. An energy threshold of 0.04 GeV was applied to the final state particles. The acollinearity of the events has not been constrained. Finally, the generation was taking into account the running of the electromagnetic coupling constant and final state radiation (FSR).

To study the background and optimize the event selection criteria, an inclusive Monte Carlo (MC) sample corresponding to a luminosity of 500 pb⁻¹ at CM energy of 4.260 GeV was generated, in which the Quantum Electrodynamics (QED) processes $e^+e^- \rightarrow e^+e^-$,

 $e^+e^- \to \mu^+\mu^-$ and $e^+e^- \to \gamma\gamma$, the continuum production of hadrons, and the initial state radiation (ISR) to J/ ψ and ψ (3686) resonance process were included. The BABAYAGA3.5 generator was used to simulate the relevant QED processes. Other processes, such as the decays of the J/ ψ , were generated with specialized models that have been packaged and customized for the BESIII Offline Software System (BOSS) (see [7] for an overview).

Table 1. Center-of-mass energy, luminosity obtained from the nominal measurement (L), cross check results (L_{ck}) , and relative differences between the two results. The uncertainties are statistical only. Superscripts indicate separate samples acquired at the same CM energy.

CM energy/GeV	L/pb^{-1}	$L_{\rm ck}/{\rm pb}^{-1}$	relative difference (%)
3.810	50.54 ± 0.03	50.11 ± 0.08	-0.85 ± 0.17
3.900	52.61 ± 0.03	52.57 ± 0.08	-0.08 ± 0.17
4.009	481.96 ± 0.01	480.54 ± 0.23	-0.30 ± 0.05
4.090	52.63 ± 0.03	52.37 ± 0.08	-0.49 ± 0.17
4.190	43.09 ± 0.03	43.08 ± 0.08	-0.03 ± 0.20
4.210	54.55 ± 0.03	54.27 ± 0.09	-0.62 ± 0.18
4.220	54.13 ± 0.03	54.22 ± 0.09	$+0.17\pm0.18$
4.230^{1}	44.40 ± 0.03	44.64 ± 0.08	$+0.54\pm0.20$
4.230^{2}	1047.34 ± 0.14	1041.56 ± 0.37	-0.56 ± 0.04
4.245	55.59 ± 0.04	55.52 ± 0.09	-0.13 ± 0.18
4.260^{1}	523.74 ± 0.10	524.57 ± 0.26	$+0.16\pm0.06$
4.260^{2}	301.93 ± 0.08	301.11 ± 0.20	-0.28 ± 0.08
4.310	44.90 ± 0.03	45.29 ± 0.08	$+0.87\pm0.19$
4.360	539.84 ± 0.10	541.38 ± 0.28	$+0.29\pm0.06$
4.390	55.18 ± 0.04	55.27 ± 0.09	$+0.16\pm0.18$
4.420^{1}	44.67 ± 0.03	44.77 ± 0.08	$+0.22\pm0.20$
4.420^{2}	1028.89 ± 0.13	1029.63 ± 0.37	$+0.07\pm0.04$
4.470	109.94 ± 0.04	109.51 ± 0.13	-0.39 ± 0.13
4.530	109.98 ± 0.04	109.47 ± 0.13	-0.46 ± 0.13
4.575	47.67 ± 0.03	47.57 ± 0.08	-0.21 ± 0.18
4.600	566.93 ± 0.11	$563.45{\pm}0.28$	-0.62 ± 0.06

Table 2. Options for the Babayaga3.5 generator used to generate the simulated MC data samples.

parameters	value	
Ebeam	2.130 GeV or others	
MinThetaAngle	20°	
MaxThetaAngle	160°	
MinimumEnergy	$0.04~{ m GeV}$	
MaximumAcollinearity	180°	
RunningAlpha	1	
FSR switch	1	

4 Event selection and results

Signal candidates are required to have exactly two oppositely charged tracks. The tracks must originate from a cylindrical volume, centered around the interaction point, which is defined by a radius of 1 cm perpendicular to the beam axis and a length of ± 10 cm along the beam axis. In addition, the charged tracks are required to be within $|\cos\theta| < 0.8$, where θ is the polar angle, measured by the MDC. Without applying further particle identification, the tracks are assigned as elec-

tron and positron depending on their charge. The deposited energies of electron and positron in EMC must be larger than $\frac{\sqrt{s}}{4.26} \times 1.55$ (GeV) to remove the di-muon background, where \sqrt{s} is the CM energy in GeV; the momenta of electron and positron are required to be larger than $\frac{\sqrt{s}}{4.26} \times 2$ (GeV/c), to suppress background events from lighter vector resonances produced in the ISR process, such as J/ψ , $\psi(3686)$ and other resonances, decaying into e⁺e⁻ pairs. For the data sample with a CM energy of 3.810 or 3.910 GeV, the effect of the remaining $\psi(3686)$ events is studied by applying a 20% larger momentum requirement, and is found to be negligible. The requirements on the deposited energies and momenta are not optimized in detail, as the number of the signal events in such an analysis is large enough. All the variables mentioned above are determined in the initial e⁺e⁻ CM frame. The ratio of the number of remaining background events to the number of signal events, estimated from the inclusive MC sample, is found to be less than 2×10^{-4} , which is negligible. Thus all the selected events are taken as Bhabha events.

Figure 1 shows the comparisons between data and MC simulation for the kinematic variables of the leptons by taking data at the CM energy of 4.260 GeV as an example. Reasonable agreement is observed in the angular and momentum distributions. The striking difference between data and simulation found in the distributions of energies deposited by the leptons in the EMC emerges from imperfections in the simulation of the energy response of individual detector channels. At the CM energies analyzed in this work, a single shower in the calorimeter can be so energetic that the deposited energy per crystal exceeds the dynamic range of the analog-to-digital converter (ADC), causing individual ADC channels to saturate. In the analysis presented here, the very loose requirements on the energy deposits will not cause

any bias, since they have been applied in regions of reasonable agreement between data and simulation. Relevant deviations between data and MC are considered as contributions to the systematic uncertainties.

The integrated luminosity is calculated with

$$L = \frac{N_{\rm Bhabha}^{\rm obs}}{\sigma_{\rm Bhabha} \times \epsilon},\tag{1}$$

where $N_{\rm Bhabha}^{\rm obs}$ is the number of observed Bhabha events, $\sigma_{\rm Bhabha}$ is the cross section of the Bhabha process, and ϵ is the efficiency determined by analyzing the signal MC sample. The cross sections are calculated with the BABAYAGA3.5 generator using the parameters listed in Table 2 and decrease with increasing energies. The efficiencies are almost independent of the CM energy, as intended by the choice of relative conditions on lepton momenta and deposited energies. The luminosity results

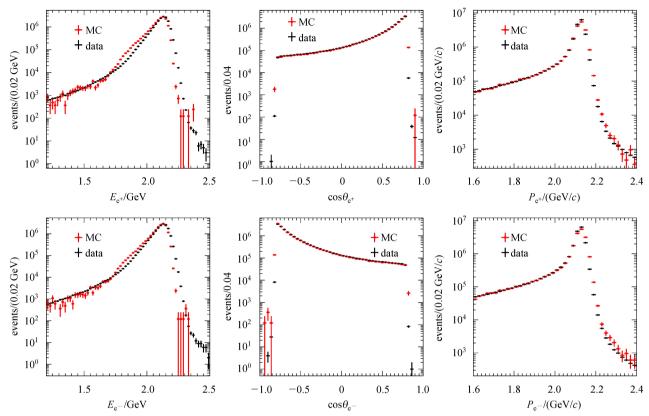


Fig. 1. (color online) Comparison between data and MC simulation at the CM energy of 4.260 GeV. The top row is for positron and the bottom row for electron. From left to right, the plots show the distribution of deposited energy in EMC, the distribution of the cosine of the polar angle measured by the MDC, and the distribution of the track momentum from the MDC. Black points with error bars illustrate data and red points are MC simulation. Note that the y-axis is in logarithmic scale and the MC is normalized to data by the number of events for each sub-plot. When drawing the distribution of one variable, the requirements on the other variables are applied.

calculated with Eq. (1) are listed in Table 1. The statistical accuracy of the resulting integrated luminosity is better than 0.1% at all energy points.

5 Systematic uncertainty

The following sources of systematic uncertainties are considered: the uncertainty of the tracking efficiency, the uncertainty related to the requirements on the kinematic variables, the statistical uncertainty of the MC sample, the uncertainty of the beam energy measurement, the uncertainty of the trigger efficiency, and the systematic uncertainty of the event generator.

To estimate the systematic uncertainty related to the tracking efficiency, the Bhabha event sample is selected using information from the EMC only, without using the tracking information in the MDC. The selection criteria are: at least two clusters in the EMC for each candidate, and the two most energetic clusters are assumed to originate from the e⁺e⁻ pair; the deposited energies of the two clusters are required to be larger than $\frac{\sqrt{s}}{4.26} \times 1.8$ (GeV).

At CM energies above 4.420 GeV, the requirement is changed to $\frac{\sqrt{s}}{4.26} \times 1.55$ (GeV). This adjustment allows us to avoid additional systematic uncertainties which would be introduced by the deviation of data and simulation in the deposited energy in the EMC, as discussed in Section 4. The polar angle of each cluster is required to be within $|\cos\theta^{\rm EMC}| < 0.8$, where $\theta^{\rm EMC}$ is the polar angle measured by the EMC; to remove the background from the di-photon process, $\Delta \phi$ is required to be in the range of $[-40^{\circ}, -5^{\circ}]$ or $[5^{\circ}, 40^{\circ}]$, where $\Delta \phi = |\phi_1 - \phi_2| - 180^{\circ}$ and $\phi_{1,2}$ are the azimuthal angles of the clusters in the EMC boosted to the CM frame. The efficiency that the selected Bhabha events pass through the track requirements applied in the nominal analysis is calculated for both data and MC sample, and the difference between them is taken as the systematic uncertainty connected to the tracking efficiency.

The systematic uncertainty in the polar angle acceptance is estimated by changing the requirement from $|\cos\theta| < 0.8$ to $|\cos\theta| < 0.7$. The difference between the resulting and nominal luminosity is taken as the associ-

ated systematic uncertainty. The systematic uncertainty caused by the requirement on the energy deposited in the EMC is estimated by changing the requirement from $\frac{\sqrt{s}}{4.26}\times 1.55$ (GeV) to $\frac{\sqrt{s}}{4.26}\times 1.71$ (GeV). The systematic uncertainty caused by the requirement on the momentum is estimated by changing the requirement from $\frac{\sqrt{s}}{4.26}\times 2$ (GeV/c) to $\frac{\sqrt{s}}{4.26}\times 2.06$ (GeV/c). The ranges are picked as these cause the largest deviations from the nominal luminosity result near the requirements applied.

The statistical uncertainty of the efficiency determined from MC simulations is 0.25%. The CM energy is determined using $e^+e^- \rightarrow (\gamma)\mu^+\mu^-$ events. The invariant mass of the di-muon system is calculated taking into account ISR and FSR effects¹⁾. The difference between the CM energy listed in Table 1 and that measured with the di-muon process is about 2 MeV, and the corresponding systematic uncertainty is estimated by changing the CM energy by 2 MeV in the MC simulation. The trigger efficiency for the Bhabha process is 100% with an uncertainty of less than 0.1% [8]. The theoretical uncertainty of the cross section calculated by the BABAYAGA3.5 generator is given as 0.5% [6].

Table 3. Summary of the systematic uncertainties.

source	relative uncertainty (%)
tracking efficiency	0.39
energy requirement	0.09
momentum requirement	0.43
polar angle requirement	0.38
MC statistics	0.25
beam energy	0.42
trigger efficiency	0.10
generator	0.50
total	0.97

The same systematic uncertainty estimation method is applied to all the sub-samples. The largest relative uncertainty among them is taken as the associated uncertainty for all the sub-samples. The systematic uncertainty

ties considered in this work are summarized in Table 3. By assuming the sources of the systematic uncertainties to be uncorrelated, the total uncertainty is calculated as 0.97% by adding the contributions in quadrature.

6 Cross check

To verify the result, a cross check with di-gamma events is performed. The event selection criteria are the same as those used in estimating the systematic uncertainty caused by the tracking efficiency, except for the requirement on $\Delta\phi$. In order to reduce the Bhabha background, the $\Delta\phi$ is required to be in the range of $[-0.8^{\circ}, 0.8^{\circ}]$, since photons are not deflected in the magnetic field.

The luminosity results of this cross check $(L_{\rm ck})$ are shown in Table, together with the relative differences to the nominal ones. Both results have good consistency for all individual measurements, indicating the robustness of the result.

7 Summary

The integrated luminosity of the data samples taken at BESIII for studying the charmonium-like states and higher excited charmonium states is measured to an accuracy of 1% with Bhabha events. The total uncertainty is dominated by the systematic uncertainty. A cross check with di-gamma events is performed and the results are consistent with each other. The result presented here is essential for future measurements of cross sections with these data, and has already been used in the discovery of charged charmonium-like states [9–12].

The BESIII collaboration would like to thank the staff of BEPCII and the IHEP computing center for their dedicated support.

References

- 1 Brambilla N, Eidelman S, Heltsley B K et al. Eur. Phys. J. C, 2011, 71: 1534
- 2 Ablikim M et al. (BESIII collaboration). Chin. Phys. C, 2013, 37: 032007
- 3 Ablikim M et al. (BESIII collaboration). Nucl. Instrum. Methods A, 2010, ${\bf 614}$: 345
- 4 Agostinelli S et al. (GEANT4 collaboration). Nucl. Instrum. Methods A, 2003, **506**: 250
- 5 Allison J, Amako K, Apostolakis J. et al. IEEE Trans. Nucl. Sci., 2006, 53: 270
- 6 Balossini G, Carloni Calame C M, Montagna G, Nicrosini O,

- Piccinini F. Nucl. Phys. B, 2006, 758: 227
- 7 PING R G. Chin. Phys. C, 2008, **32**: 599
- 8 Berger N, ZHU K, LIU Z A, JIN D P, XU H, GONG W X, WANG K, CAO G F. Chin. Phys. C, 2010, 34: 1779
- 9 Ablikim M et al. (BESIII collaboration). Phys. Rev. Lett., 2013, 110: 252001
- 10 Ablikim M et al. (BESIII collaboration). Phys. Rev. Lett., 2013, 111: 242001
- 11 Ablikim M et al. (BESIII collaboration). Phys. Rev. Lett., 2014, 112: 022001
- 12 Ablikim M et al. (BESIII collaboration). Phys. Rev. Lett., 2014, 112: 132001

¹⁾ M Ablikim et al. (BESIII collaboration). Measurement of the center-of-mass energy of the data taken by BESIII at center-of-mass energies between 3.81 GeV and 4.60 GeV, Paper in preparation.