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By analyzing a data set of 2.92 fb−1 of e+e− collision data taken at 
√
s = 3.773 GeV and 106.41 × 106

ψ(3686) decays taken at 
√
s = 3.686 GeV with the BESIII detector at the BEPCII collider, we measure 

the branching fraction and the partial decay width for ψ(3770) → γχc0 to be B(ψ(3770) → γχc0) =
(6.88 ± 0.28 ± 0.67) × 10−3 and Ŵ[ψ(3770) → γχc0] = (187 ± 8 ± 19) keV, respectively. These are the 
most precise measurements to date.

 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Transitions between charmonium states can be used to shed 
light on various aspects of Quantum Chromodynamics (QCD), the 
theory of the strong interactions, in both the perturbative and non-
perturbative regimes [1]. The ψ(3770) resonance is the lowest-

mass charmonium state lying above the production threshold of 
open-charm DD̄ pairs. It is assumed to be the 13D1 cc̄ state 
with a small 23S1 admixture. Based on this S–D mixing model, 
predictions have been made [2–6] for the partial widths of the 
ψ(3770) electric-dipole (E1) radiative transitions. These predic-
tions vary over a large range depending on the underlying model 
assumptions. One of the largest variations in predictions is for the 
partial width of ψ(3770) → γχc0 , with predictions ranging from 
213 keV to 523 keV. A precise measurement of the partial width 
of ψ(3770) → γχc0 provides a stringent test of the various the-
oretical approaches, thereby providing a better understanding of 
ψ(3770) decays.

In 2006, the CLEO Collaboration reported the first observa-
tion of ψ(3770) → γχc0/1 and measured the partial widths [7,8]. 
A comparison between their results and predictions of traditional 
theory models [2–5] indicates that relativistic and coupled-channel 
effects are necessary ingredients to describe the data. A similar 
conclusion has been drawn in ψ(3686) → γχcJ decays [9]. The re-
sults of CLEO were normalized to the cross section of ψ(3770) →
DD̄ to obtain the total number of ψ(3770) decays, which assumed 
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the contribution of ψ(3770) → non-DD̄ decays is negligible [27]. 
Recently, the BESIII Collaboration presented an improved measure-

ment of ψ(3770) → γχc1 [10].

In this Letter, we report on an alternative and complemen-

tary measurement of the branching fraction and partial width of 
ψ(3770) → γχc0 using χc0 → 2(π+π−), K+K−π+π− , 3(π+π−)

and K+K− decays. The results of our measurements are obtained 
by taking the relative strength with respect to the well-known 
ψ(3686) radiative E1 transition [11]. In this way, the measure-

ment will not depend on knowledge of the χcJ branching fractions 
to light hadron final states, which have large uncertainties [7]. This 
measurement forms an independent and more precise benchmark 
that can be compared to the predictions of various theoretical 
models.

2. BESIII detector and Monte Carlo simulation

In this work, we use 2.92 fb−1 of e+e− collision data taken at √
s = 3.773 GeV [12], and 106.41 × 106 ψ(3686) decays taken at √
s = 3.686 GeV [13] with the BESIII detector. These are labeled 

the ψ(3770) and ψ(3686) data samples, respectively, throughout 
this Letter.

The BESIII detector [14] has a geometrical acceptance of 93% of 
4π and consists of four main components. In the following, we de-
scribe each detector component starting from the innermost (clos-
est to the interaction region) to the most outside layer. The inner 
three components are immersed in the 1 T magnetic field of a su-
perconducting solenoid. First, a small-cell, helium-based main drift 
chamber (MDC) with 43 layers provides charged particle tracking 
and measurement of ionization energy loss (dE/dx). The average 
single wire resolution is 135 µm, and the momentum resolution 
for 1 GeV electrons in a 1 T magnetic field is 0.5%. The next detec-
tor after the MDC is a time-of-flight system (TOF) used for particle 
identification. It is composed of a barrel part made of two lay-
ers of 88 plastic scintillators, each with 5 cm thickness and 2.4 m 
length; and two endcaps, each with 96 fan-shaped plastic scintil-
lators of 5 cm thickness. The time resolution is 80 ps in the barrel, 
and 110 ps in the endcaps, corresponding to a K/π separation 
better than 2σ for momenta up to about 1.0 GeV. The third detec-



106 BESIII Collaboration / Physics Letters B 753 (2016) 103–109

tor component is an electromagnetic calorimeter (EMC) made of 
6240 CsI(Tl) crystals arranged in a cylindrical shape (barrel) plus 
two endcaps. For 1.0 GeV photons, the energy resolution is 2.5% 
in the barrel and 5% in the endcaps, and the position resolution is 
6 mm in the barrel and 9 mm in the endcaps. Outside the EMC, 
a muon chamber system (MUC) is incorporated in the return iron 
of the superconducting magnet. It is made of 1272 m2 of resistive 
plate chambers arranged in 9 layers in the barrel and 8 layers in 
the endcaps. The position resolution is about 2 cm.

A GEANT4 [15] based Monte Carlo (MC) simulation software 
package, which includes the geometric description of the detector 
and the detector response, is used to determine the detection effi-

ciency of the signal process and to estimate the potential peaking 
backgrounds. Signal MC samples of ψ(3686)/ψ(3770) → γχcJ are 
generated with the angular distribution that corresponds to an E1
transition, and the χcJ decays to light hadron final states are gen-
erated according to a phase-space model. Particle decays are mod-

eled using EvtGen [16], while the initial production is handled by 
the MC generator KKMC [17], in which both initial state radiation 
(ISR) effects [18] and final state radiation (FSR) effects [19] are con-
sidered. For the background studies of ψ(3686) decays, 106 × 106

MC events of generic decays ψ(3686) → anything are produced at √
s = 3.686 GeV. For the background studies of ψ(3770) decays, 

MC samples of ψ(3770) → D0 D̄0 , ψ(3770) → D+D− , ψ(3770) →
non-DD̄ decays, ISR production of ψ(3686) and J/ψ , QED, and qq̄
continuum processes are produced at 

√
s = 3.773 GeV. The known 

decay modes of the J/ψ , ψ(3686) and ψ(3770) are generated 
with branching fractions taken from the PDG [11], and the remain-

ing events are generated with Lundcharm [20].

3. Analysis

To select candidate events for ψ(3686)/ψ(3770) → γχcJ with 
χcJ → 2(π+π−)/K+K−π+π−/3(π+π−)/K+K− , we require at 
least 4/4/6/2 charged tracks to be reconstructed in the MDC, re-
spectively. All charged tracks used in this analysis are required to 
be within a polar-angle (θ ) range of |cos θ | < 0.93. It is required 
that all charged tracks originate from the interaction region de-
fined by |V z| < 10 cm and |V xy | < 1 cm, where |V z| and |V xy | are 
the distances of closest approach of the charged track to the colli-
sion point in the beam direction and in the plane perpendicular to 
the beam, respectively.

Charged particles are identified by confidence levels for kaon 
and pion hypotheses calculated using dE/dx and TOF measure-

ments. To effectively separate pions and kaons, a track is identified 
as a pion (or kaon) only if the confidence level for the pion (or 
kaon) hypothesis is larger than the confidence level for the kaon 
(or pion) hypothesis.

Photons are selected by exploiting the information from the 
EMC. It is required that the shower time be within 700 ns of 
the event start time and the shower energy be greater than 25 
(50) MeV in the barrel (endcap) region defined by | cos θ | < 0.80

(0.86 < | cos θ | < 0.92). Here, θ is the photon polar angle with re-
spect to the beam direction.

In the selection of γ 2(π+π−), background events from ra-
diative Bhabha events in which at least two radiative photons 
are produced and one of them converts into an e+e− pair are 
suppressed by requiring the opening angle of any π+π− com-

bination be larger than 10◦ . For the selection of γ K+K− , the 
background events of e+e− → γ e+e− are suppressed by requir-
ing EEMC < 1 GeV and EEMC/pMDC < 0.8 for each charged kaon, 
where EEMC and pMDC are the energy deposited in the EMC and 
the momentum measured by the MDC, respectively.

In each event, there may be several different charged and/or 
neutral track combinations which satisfy the selection criteria for 

Fig. 1. Invariant mass spectra of the (a) 2(π+π−), (b) K+K−π+π− , (c) 3(π+π−)

and (d) K+K− combinations for the ψ(3686) data. The dots with error bars are 
for data and the blue solid lines are the fit results. The red dashed lines are the 
fitted backgrounds. The red, pink and blue arrows show the χc0 , χc1 and χc2 nom-

inal masses, respectively. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

each light hadron final state. Each combination is subjected to 
a 4C kinematic fit for the hypotheses of ψ(3686)/ψ(3770) →
γ 2(π+π−), γ K+K−π+π− , γ 3(π+π−) and γ K+K− . For each fi-
nal state, if more than one combination satisfies the selection cri-
teria, only the combination with the least χ2

4C is retained, where 
χ2
4C is the chi-square of the 4C kinematic fit. The final states with 

χ2
4C < 25 are kept for further analysis.
To identify the χcJ decays, we examine the invariant mass 

spectra of the light hadron final states. Fig. 1 shows the corre-
sponding mass spectra for the ψ(3686) data, in which clear χc0 , 
χc1 and χc2 signals are observed. Since the χc1 cannot decay 
into two pseudoscalar mesons because of spin-parity conserva-
tion, the χc1 signal cannot be observed in the K+K− invariant 
mass spectrum. By fitting these spectra separately, we obtain the 
numbers of χcJ observed from the ψ(3686) data, Nψ(3686) , which 
are summarized in Table 1. In the fits, the χcJ signals are de-
scribed by the MC simulated line-shapes convoluted by Gaussian 
functions for the resolution. Backgrounds in the four channels are 
described by 3/3/3/1-parameter polynomial functions. The parame-

ters of the convoluted Gaussian functions and the Chebychev poly-
nomial functions are all free.

Fig. 2 shows the corresponding mass spectra for the ψ(3770)

data, in which clear peaks can be observed for the χc0 decays. 
Fitting to these spectra similarly, we obtain the number of χcJ

( J = 0, 1) decays observed from the ψ(3770) data, Nψ(3770) , which 
are summarized in Table 1. Due to the limited statistics, the decay 
ψ(3770) → γχc2 is not further considered in this analysis. The 
means and widths of the convoluted Gaussian functions for the 
χc0 signals are left free. For the χc1 , the mean and width of the 
convoluted Gaussian functions are fixed at the values taken from 
the fits to the ψ(3686) data. Backgrounds in the four channels are 
described by 6/2/6/2-parameter polynomial functions.

The background events from e+e− → (γISR)ψ(3686) produced 
near 

√
s = 3.773 GeV have the same event topologies as those 

from ψ(3770) decays and are indistinguishable from ψ(3770) de-

cays. In the fits to the ψ(3770) data, the size and line-shape of 
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Table 1

Measured RcJ (%), where Nψ(3770) and Nψ(3686) are the (peaking background corrected) num-

bers of χcJ observed from the ψ(3770) and ψ(3686) data, ǫψ(3770) and ǫψ(3686) are the 
detection efficiencies (%). The uncertainties are statistical only.

χcJ → LH J = 0 J = 1

2(π+π−) Nψ(3770) 756 ± 51 80 ± 26

ǫψ(3770) 24.1 ± 0.2 25.7 ± 0.2

Nψ(3686) 59976 ± 318 19712 ± 175

ǫψ(3686) 24.9 ± 0.2 26.5 ± 0.2

RcJ 6.64 ± 0.45 2.13 ± 0.69

K+K−π+π− Nψ(3770) 716 ± 54 46 ± 24

ǫψ(3770) 24.0 ± 0.2 25.4 ± 0.2

Nψ(3686) 46929 ± 240 11576 ± 115

ǫψ(3686) 23.3 ± 0.2 24.9 ± 0.2

RcJ 7.56 ± 0.57 2.00 ± 1.04

3(π+π−) Nψ(3770) 502 ± 54 76 ± 27

ǫψ(3770) 18.5 ± 0.2 20.0 ± 0.2

Nψ(3686) 36536 ± 237 19593 ± 153

ǫψ(3686) 18.1 ± 0.2 19.6 ± 0.2

RcJ 6.86 ± 0.74 1.94 ± 0.69

K+K− Nψ(3770) 283 ± 24 –

ǫψ(3770) 32.5 ± 0.2 –

Nψ(3686) 21452 ± 154 –

ǫψ(3686) 32.1 ± 0.2 –

RcJ 6.65 ± 0.57 –

Averaged RcJ 6.89 ± 0.28 2.03 ± 0.44

Fig. 2. Invariant mass spectra of the (a) 2(π+π−), (b) K+K−π+π− , (c) 3(π+π−)

and (d) K+K− combinations for the ψ(3770) data. The dots with error bars are 
data and the blue solid lines are the fit results. The red solid lines are the fitted 
combinatorial backgrounds. The red dashed lines are the sums of the peaking and 
fitted combinatorial backgrounds. The red, pink and blue arrows show the χc0 , χc1

and χc2 nominal masses, respectively. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

such backgrounds are fixed according to MC simulations, with the 
numbers of background events being determined by 

Nb
χcJ

= σ
χcJ,LH,obs

ψ(3686) ·Lψ(3770) · η, (1)

where Lψ(3770) is the integrated luminosity of the ψ(3770) data, 

σ
χcJ,LH,obs

ψ(3686) is the observed cross section of e+e− → ψ(3686) →
γχcJ with χcJ → LH, in which LH denotes 2(π+π−),

K+K−π+π− , 3(π+π−) and K+K− . In this work, we assume that 

there is no other effect affecting the ψ(3686) and ψ(3770) pro-

duction in the energy range from 3.73 to 3.89 GeV. The variable η
represents the rate of misidentifying ψ(3686) decays as ψ(3770)

decays, which is obtained by analyzing 1.5 × 106 MC events of 
ψ(3686) → γχcJ with χcJ → LH generated at 

√
s = 3.773 GeV. The 

observed cross section for ψ(3686) → γχcJ with χcJ → LH at a 
center-of-mass energy of 

√
s is given by 

σ
χcJ,LH,obs

ψ(3686) =
∫

σ
χcJ,LH

ψ(3686)(s
′) f (s′)F (x, s)G(s, s′′)ds′′dx, (2)

where s′ ≡ s(1 − x) is the square of the actual center-of-mass en-
ergy of the e+e− after radiating photon(s), x is the fraction of the 
radiative energy to the beam energy; f (s′) is the phase space fac-
tor, (Eγ (s′)/E0

γ )3 , in which Eγ (s′) and E0
γ are the photon energies 

in ψ(3686) → γχcJ transition at 
√
s′ and at the ψ(3686) mass, re-

spectively; F (x, s) is the sampling function describing the radiative 
photon energy fraction x at 

√
s [18]; G(s, s′′) is a Gaussian function 

describing the distribution of the collision energy with an energy 

spread σE = 1.37 MeV as achieved at BEPCII; σ
χcJ,LH

ψ(3686)(s
′) is the 

cross section described by the Breit–Wigner function 

σ
χcJ,LH

ψ(3686)(s
′) =

12πŴee
ψ(3686)Ŵ

tot
ψ(3686)B

χcJ,LH

ψ(3686)

(s′2 − M2
ψ(3686))

2 + (Ŵtot
ψ(3686)Mψ(3686))

2
, (3)

in which Ŵee
ψ(3686) and Ŵtot

ψ(3686) are, respectively, the leptonic 
width and total width of the ψ(3686), Mψ(3686) is the ψ(3686)

mass, B
χcJ,LH

ψ(3686) is the combined branching fraction of ψ(3686) →
γχcJ with χcJ → LH. Here, the upper limit of x is set at 1 −
m2

χcJ
/s, where mχcJ

is the χcJ nominal mass. We determine the 
branching fraction B

χcJ,LH

ψ(3686) by dividing the number of χcJ de-

cays of ψ(3686) by the total number of ψ(3686) and by the 
corresponding efficiency obtained in this work. The rates η of 
misidentifying ψ(3686) → γχc0/1/2 as ψ(3770) → γχc0/1/2 are 
estimated to be 4.72/6.40/7.60 × 10−4 , 4.40/6.27/7.57 × 10−4 , 
3.53/4.95/6.14 × 10−4 and 6.56/−/11.02 × 10−4 for χc0/1/2 →
2(π+π−), K+K−π+π− , 3(π+π−) and K+K− , respectively. These 
lead to the number of background events from e+e− →
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(γISR)ψ(3686) to be 90.6 ± 3.4/37.5 ± 1.4/76.5 ± 2.9, 70.0 ±
2.7/23.5 ± 0.9/51.0 ± 1.9, 56.6 ± 2.2/39.7 ± 1.5/73.5 ± 2.8 and 
34.9 ± 1.3/−/11.1 ± 0.4 for ψ(3770) → γχc0/1/2 with χc0/1/2 →
2(π+π−), K+K−π+π− , 3(π+π−) and K+K− decays, respec-
tively. The errors arise from uncertainties in the ψ(3686) reso-

nance parameters, the integrated luminosity of the ψ(3770) data 
Lψ(3770) and the misidentification rates η. In Eq. (1), the num-

ber of background events depends on the ratio of the misiden-

tification rate η over the efficiency ǫψ(3686) of reconstructing 
ψ(3686) → χcJ . Since η and ǫψ(3686) all contain the simulation 
of χcJ → LH, a possible systematic uncertainty from the simulation 
of χcJ → LH is canceled here.

4. Results

The ratio of the branching fraction for ψ(3770) → γχcJ divided 
by the branching fraction for ψ(3686) → γχcJ is determined chan-
nel by channel as

RcJ =
B[ψ(3770) → γχcJ]
B[ψ(3686) → γχcJ]

=
Nψ(3770) · Ntot

ψ(3686) · ǫψ(3686)

Nψ(3686) · Ntot
ψ(3770) · ǫψ(3770)

, (4)

where Nψ(3686) and Nψ(3770) are the numbers of χcJ observed from 
the ψ(3686) and ψ(3770) data, Ntot

ψ(3686) and Ntot
ψ(3770) are the total 

numbers of ψ(3686) and ψ(3770) decays, ǫψ(3686) and ǫψ(3770) are 
the efficiencies of reconstructing ψ(3686) and ψ(3770) → γχcJ

with χcJ → LH estimated by MC simulations, respectively. Here, 
Ntot

ψ(3770) is determined by σ obs
ψ(3770) · Lψ(3770) , where σ obs

ψ(3770) =
(7.15 ±0.27 ±0.27) nb is the cross section for ψ(3770) production 
[21–23] and Lψ(3770) is the integrated luminosity of the ψ(3770)

data set [12].
Table 1 summarizes the ratios RcJ measured via the different 

channels. The results are consistent within statistical uncertainties. 
From these measurements, we obtain the statistical-weighted aver-
ages R̄c0 = (6.89 ± 0.28 ± 0.65)% and R̄c1 = (2.03 ± 0.44 ± 0.66)%, 
where the first uncertainty is statistical and the second systematic.

In the measurements of R̄c0/1 , the systematic uncertainty arises 
from the uncertainties in the total number (0.81%) of ψ(3686)

decays (Ntot
ψ(3686) [13]); the integrated luminosity (1.0%) of the 

ψ(3770) data (Lψ(3770) [12]); the cross section (5.3%) for ψ(3770)

(σ obs
ψ(3770) [21–23]); the photon selection (1.4%), assigned based on 

1.0% per photon [24]; the MDC tracking (2.6%/4.0%); the particle 
identification (2.6%/4.0%); the statistical uncertainty (1.0%) of the 
efficiency due to the size of the simulated event sample; the 4C
kinematic fit (1.0%), estimated by comparing the measurements 
with and without the kinematic fit correction; the fit to mass 
spectra (6.4%/31.5%), estimated by comparing the measurements 
with alternative fit ranges (±20 MeV/c2), signal shape (simple 
Breit–Wigner function) and background shapes (±1 order of the 
polynomial functions); and the subtraction of ψ(3686) peaking 
background (0.5%/2.0%). The efficiencies of the MDC tracking and 
particle identification for K+ or π+ are examined by the doubly 
tagged hadronic DD̄ events. The difference between the efficien-

cies of data and MC is assigned as an uncertainty. Then, their 
effects on R̄c0/1 are estimated to be 2.6%/4.0%. Table 2 summa-

rizes these uncertainties. Adding them in quadrature, we obtain 
the total systematic uncertainty for R̄c0/1 to be 9.4%/32.6%.

Multiplying R̄cJ by the branching fraction B[ψ(3686) → γχcJ]
(and the total width Ŵtot

ψ(3770)) taken from the PDG [11], we obtain 
the branching fractions (and the partial widths) for ψ(3770) →
γχcJ , which are summarized in Table 3, where the first uncer-
tainty is statistical and the second systematic. In the measurement 
of B[ψ(3770) → γχcJ] (and Ŵ[ψ(3770) → γχcJ]), the systematic 
uncertainty arises from the uncertainties of R̄c0/1 and the uncer-

Table 2

Systematic uncertainties (%) in the measurements of R̄cJ .

R̄c0 R̄c1

Ntot
ψ(3686) [13] 0.81 0.81

σ obs
ψ(3770) [21–23] 5.3 5.3

Lψ(3770) [12] 1.0 1.0

MC statistics 1.0 1.0

Photon selection 1.4 1.4

MDC tracking 2.6 4.0

Particle identification 2.6 4.0

4C kinematic fit 1.0 1.0

Fit to mass spectra 6.4 31.5

Background subtraction 0.5 2.0

Total 9.4 32.6

Table 3

Comparisons of the partial widths for ψ(3770) → γχcJ (in keV), where B and Ŵ de-

note the branching fraction and the partial width for ψ(3770) → γχcJ , respectively. 
For the BESIII results, the first uncertainty is statistical and the second systematic. 
Detailed explanations about the CLEO results can be found in footnote 1.

Experiments J = 0 J = 1

B
BESIII(×10−3) 6.88 ± 0.28± 0.67 1.94± 0.42± 0.64

B
BESIII(×10−3) [10] – 2.48± 0.15± 0.23

ŴBESIII 187 ± 8± 19 53± 12± 18

ŴBESIII [10] – 67.5± 4.1± 6.7

ŴCLEO [7,8] 172 ± 30 70± 17

ŴCLEO
corrected

192 ± 24 72± 16

Theories

Rosner [2] (non-relativistic) 523 ± 12 73± 9

Ding–Qing–Chao [3]

non-relativistic 312 95

relativistic 199 72

Eichten–Lane–Quigg [4]

non-relativistic 254 183

with coupled channels 
corrections

225 59

Barnes–Godfrey–Swanson [5]

non-relativistic 403 125

relativistic 213 77

NRCQM [6] 218 70

tainties of B[ψ(3686) → γχc0/1] of 2.7/3.2% (and the uncertainty 
of Ŵtot

ψ(3770) of 3.7%).

5. Summary

In summary, by analyzing 2.92 fb−1 of e+e− collision data 
taken at 

√
s = 3.773 GeV and 106.41 × 106 ψ(3686) decays taken 

at 
√
s = 3.686 GeV with the BESIII detector at the BEPCII col-

lider, we measure the branching fraction B(ψ(3770) → γχc0) =
(6.88 ± 0.28 ± 0.67) × 10−3 and the partial width Ŵ[ψ(3770) →
γχc0] = (187 ± 8 ± 19) keV. These are obtained by first measuring 
the ratio with respect to the accurately known branching fraction 
for ψ(3686) → γχcJ decays. Our results are, thereby, not influ-
enced by the uncertainties in the branching fractions of χcJ decays 
to light hadrons as done in Ref. [7]. The branching fraction and 
partial width for ψ(3770) → γχc1 measured in this work are con-
sistent with our previous measurement [10] within errors. Table 3

compares the Ŵ[ψ(3770) → γχc0/1] measured at BESIII with those 
measured by CLEO [7,8]1 and the theoretical calculations from 
Refs. [2–6]. The partial width Ŵ[ψ(3770) → γχc0] measured at 

1 The CLEO measurements were based on the total width Ŵtot
ψ(3770) = (23.6 ±

2.7) MeV [25] and the cross section σ obs
ψ(3770)→DD̄

= (6.39 ± 0.10+0.17
−0.08) nb for de-

termining the total number of ψ(3770) decays, where the ψ(3770) → non-DD̄

decays were neglected. In addition, CLEO [7] cited B(ψ(3686) → γχc0) = (9.22 ±
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BESIII is consistent within errors with the one measured by CLEO 
with an improved precision. These results underline the fact that 
the traditional models [3–5] with a relativistic assumption or a 
coupled-channel correction agree quantitatively better with the ex-
perimental data than those [2–5] based upon non-relativistic cal-
culations. For these traditional models, the non-relativistic calcu-
lations clearly overestimate the partial width Ŵ[ψ(3770) → γχcJ]. 
The experimental data also support the recent calculation based 
on the non-relativistic constituent quark model (NRCQM) [6]. To-
gether with further theoretical developments, our results aim to 
contribute to a deeper understanding of the dynamics of charmo-

nium decays above the open-charm threshold.
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0.11 ± 0.46)% and B(ψ(3686) → γχc1) = (9.07 ± 0.11 ± 0.54)% to determine 
B(ψ(3770) → γχcJ) from Ref. [26]. Although CLEO determined the branching frac-
tion of ψ(3770) → non-DD̄ decays to be (−3.3 ± 1.4+4.8

−6.6)% and set an upper 
limit of 9% at 90% confidence level [27], the PDG value for ŴDD̄

ψ(3770)/Ŵtot
ψ(3770) [28]

from four measurements at BESII [22,29–31] implied the branching fraction for 
ψ(3770) → non-DD̄ decays to be (14.7 ± 3.2)%. At present, the PDG value 
for ŴDD̄

ψ(3770)/Ŵtot
ψ(3770) gives the branching fraction of ψ(3770) → non-DD̄ de-

cays to be (7+8
−9)% [11]. Therefore, for better comparisons, we also list the cor-

rected CLEO partial widths with the same input values as those used in our 
measurements, which are σ obs

ψ(3770) = (7.15 ± 0.27 ± 0.27) nb [21–23], Ŵtot
ψ(3770) =

(27.2 ±1.0) MeV, B(ψ(3686) → γχc0) = (9.99 ±0.27)% and B(ψ(3686) → γχc1) =
(9.55 ± 0.31)% [11].
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