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The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator 
RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–
evaporation reaction 209Bi(34S,3n)240Es. Half-lives of 6(2) s and 22+13

−6 s were obtained for 240Es and 
236Bk, respectively. Two groups of α particles with energies Eα = 8.19(3) MeV and 8.09(3) MeV were 
unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6)
and 0.04(2) were measured for 240Es and 236Bk, respectively. These new data show a continuation of the 
exponential increase of ECDF probabilities in more neutron-deficient isotopes.
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1. Introduction

One of the key challenges in understanding the creation and 
isotopic distribution of elements in nature is knowledge of the sta-
bility of the atomic nucleus. A nucleus comprised of Z protons and 
N neutrons is a complicated quantum bound system that possibly 
breaks up as a result of the interplay of the different fundamen-

tal forces in the interaction between the nucleons. The stability of 
a nucleus is quantified in terms of the half-life of its radioactive 
decays such as α, β± , electron capture (EC) and spontaneous fis-
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sion. Experimental data on the radioactive decays of nuclei with 
different combinations of Z and N has provided a basis for un-
derstanding the structure of the atomic nucleus and consequently 
helped to build up theoretical models [1].

On the other hand, the development and validation of theoreti-
cal models is only possible by examining their predictive power in 
the regions of unstable nuclei with extreme ratios of proton and 
neutron numbers [1–3]. Therefore, one of the main goals of exper-
imental nuclear physics is to expand our knowledge of previously 
unknown isotopes where new phenomena can be found and ex-
plored as in the case of β and electron-capture delayed fission [4]

(βDF and ECDF).
Recently, interest in the delayed fission processes has been re-

newed due to new studies of the low-energy fission properties of 
excited nuclei, especially in cases where the ground-state fission 
of the daughter nucleus is greatly hindered [4]. ECDF (consid-
ered in this work) is a two step process. First the mother nucleus 
undergoes EC decay, which is followed by fission of the excited 
daughter nucleus. The experimental probability of ECDF (PECDF) is 
determined as the ratio of the number of EC decays resulting in 
fission of the daughter nucleus to the total number of EC decays of 
the mother nucleus. PECDF has an exponential dependency on the 
corresponding fission barrier (Bsf) and Q value of the EC decay 
(Q EC) viz. Q EC-Bsf . ECDF has been widely observed in the neutron-
deficient odd–odd isotopes of elements Tl–Fr and Np–Md [4]. The 
ECDF probabilities were found to increase with decreasing neutron 
number in the isotopic chains and have reached values up to 0.1. 
The most comprehensive data on ECDF have been collected for Es 
isotopes with atomic mass numbers A = 242–248 [5–7]. The PECDF

increases from 3.5(18) · 10−6 in 248Es to 6(2) · 10−3 in 242Es re-
sulting in about one order of magnitude increase in PECDF for each 
removal of two neutrons. The trend is expected to continue in the 
yet unknown more neutron-deficient isotope 240Es.

The synthesis of such exotic nuclei is challenging mainly due 
to low production rates in the fusion–evaporation reactions that 
are the preferred way to produce them. Therefore, a dedicated ex-
periment is required for the synthesis and study of each neutron-
deficient isotope.

In this letter, we report on the results of experiments where 
the neutron-deficient isotope 240Es and its daughter 236Bk were 
synthesised. They have the highest PECDF measured so far for Es 
and Bk isotopes.

2. Experimental details

The hitherto unknown neutron-deficient einsteinium isotope 
240Es (Z = 99 and N = 141) was produced as an evaporation 
residue (ER) of the 243Es∗ compound nucleus formed in the fu-
sion reaction 34S + 209Bi. The experiment was carried out at the 
Accelerator Laboratory of the Department of Physics, University of 
Jyväskylä, Finland. The 34S7+ ion beam was produced in an ECR 
ion source and accelerated to energies of 174MeV and 178MeV by 
the K-130 cyclotron. The latter energy was reduced to 175MeV 
and 172MeV for parts of the experiment by using carbon foils 
with thicknesses of 0.2 and 0.4 mg/cm2 in front of the target. The 
209BiO2 target material with a thickness of 0.5 mg/cm2 (209Bi) was 
evaporated on to a 0.05 mg/cm2 carbon-backing foil. The target 
was rotated to prevent damage due to the irradiation. Typical beam 
intensity during the experiment was (0.6–1.3) · 1012 1/s. The bom-

barding energies correspond to excitation energies of the 243Es∗

compound nucleus of 39, 36, 35 and 34MeV, where the emission 
of 3 neutrons is predominant (estimated maximum cross section 
is about 6nanobarns) according to the calculation of the fusion–
evaporation reaction code HIVAP [8].

Evaporation residues recoiling out of the target were separated 
from the primary beam, target-like and transfer-reaction products 
according to their predicted magnetic rigidities by the gas-filled 
recoil separator RITU [9]. The pressure of the helium gas inside the 
recoil separator was 0.6mbar and the dipole magnet settings were 
tuned to yield a magnetic rigidity of 2.0 Tm to guide the ERs to the 
focal plane.

ERs entering the focal plane detection chamber first passed 
through a multi-wire proportional counter (MWPC) providing an 
energy-loss measurement (�E) and were then stopped in two ad-
jacent double-sided silicon strip detectors (DSSDs) of the GREAT

focal plane spectrometer [10]. In addition, time-of-flight (ToF) be-
tween the MWPC and DSSDs was measured. The DSSDs were 
300 µm thick and consisted of 60 horizontal and 40 vertical strips 
with a strip pitch of 1mm. The DSSDs were surrounded by 28 
silicon PIN diodes in a box configuration. Three Clover type [11]

high-purity germanium (HPGe) detectors and a planar HPGe de-
tector were used to detect γ rays at the focal plane. In addition, 
the planar HPGe detector mounted inside the vacuum chamber 
downstream from the DSSDs was used as a veto detector for the 
detection of light particles punching through the DSSDs.

The DSSDs were calibrated using the α decays of 213,212Rn, 
212,211At and 211Po nuclei produced in transfer reactions during 
the experiment. The energy resolution (FWHM) of the DSSDs was 
about 25keV at an α-particle energy of 8.09 MeV. The vertical 
strips on the front side of the DSSDs were amplified with high 
gains in order to have better resolution for α particles while the 
horizontal strips on the back side were used with lower gains for 
the detection of high energy events such as fission.

The energies of all signals from the detectors were timestamped 
with a 100MHz clock and recorded using the triggerless Total Data 
Readout (TDR) data-acquisition system [12]. The DSSDs were in-
strumented with analogue electronics. All of the HPGe and PIN 
detectors were instrumented with digital Lyrtech VHS-ADC cards. 
The γ -ray energies were determined using a Moving Window De-
convolution (MWD) algorithm [13] programmed in the FPGA of the 
14bit ADC cards. The temporal and spatial correlations in the data 
between the detectors were analysed using the GRAIN software 
package [14].

3. Results

The measured energy spectrum of the events detected in the 
DSSDs in anticoincidence with the MWPC and the planar HPGe is 
shown in Fig. 1(a). These events were considered to originate from 
the α decay of implanted nuclei. Several peaks corresponding to 
α decays of 214mFr (T1/2 = 3.35 ms), 214Fr (T1/2 = 5.0 ms), 213Rn 
(T1/2 = 19.5 ms), 212mAt (T1/2 = 119 ms), 212At (T1/2 = 314 ms) 
and 211Po (T1/2 = 516 ms) were identified in ER–α correlation 
analysis. Their ERs (hereafter: transfer recoil, TR) were mostly fast 
(high energy deposit in the DSSDs) and thus also had a short time-

of-flight indicating production via transfer reactions. In the further 
analysis only α-like events detected without correlations with such 
TRs were included.

In contrast, ERs from fusion reactions have well defined kine-
matics with smaller kinetic energies and longer time-of-flight 
which allowed different conditions on the energy and time-of-

flight to be applied. The found ER–α correlations with such fusion 
ERs are shown in Fig. 2 as decay time (�tER–α < 200 s) versus 
α-particle energy. The short-lived products from transfer reactions 
were still observed indicating the presence of a low velocity com-

ponent of TRs which have the same energy and time-of-flight as 
the fusion ERs. However, they were distributed in the low-rigidity 
side of the DSSDs similar to fast TRs. Thus, events with short cor-
relation times (marked as Region 1 in Fig. 2) and from five strips at 
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Fig. 1. Energy spectra of α particles measured in the DSSDs and vetoed with the 
MWPC and the planar HPGe detector from the 34S + 209Bi reaction: (a) all α-like 
events; (b) α-like events following a recoil implantation within 200 s; (c) α-like 
events following a recoil implantation within 30 s; (d) as in (b) but followed by a 
second α decay within 1200 s gated on the α particle energy of 236Cm. In pan-
els (b), (c) and (d) the fast components identified as decays from transfer-reaction 
products shown in Fig. 2 (Region 1) have been excluded (see text for details). The 
α-particle energy ranges assigned to 240Cf and 240Es are shaded in blue. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 2. A two-dimensional plot of the ER–α correlation times on a logarithmic scale 
as a function of the α-particle energies observed in the 34S + 209Bi reaction. The 
maximum searching time was 200 s.

the end of the low-rigidity side of the DSSDs were removed from 
further analysis and only the remaining part of the data (labelled 
Region 2) was inspected for the presence of radioactive decays.

A projection of the two-dimensional plot in Fig. 2 excluding 
Region 1 is shown in Fig. 1(b) where an additional α line at an en-

Fig. 3. Time distributions of (a) the correlated α-like events at the energy of 
8.19 MeV; (b) 8.09 MeV; (c) the correlated fission-like events without α-like or es-
cape α-like signals between the ER and decay; (d) the fission-like events that were 
followed after a correlated α at the energy of 8.09 MeV or an escape α-like event. 
In panels (a) and (b) the blue (red) curve corresponds to the fast (slow) compo-

nent obtained from a two-component fit to the data. The dashed black line shows 
the sum of the two components. Note the change in the scale at 100 s. In panels 
(c) and (d) the half-life of the fission events was determined using the maximum-

likelihood method and the time distribution functions with the calculated half-life 
and the number of events were plotted. In (d) the events where full-energy (escape) 
α decays were seen are marked with blue (red) lines. See text for details. (For in-
terpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

ergy of 7.57(3) MeV (42 events) has appeared. Choosing a shorter 
searching time of 30 s reduces the random correlations as shown 
in Fig. 1(c). Random events corresponding to energies of At have 
disappeared while at an energy of 8.09(3) MeV (60 events) a peak 
still remained. Also a well-concentrated peak of α-like events at 
an energy of 8.19(3) MeV (27 events) is visible.

The inspection of time distributions of ER–α(8.19MeV) and 
ER–α(8.09MeV) events show a presence of radioactive decay with 
a half-life of around 6 s (see Fig. 3(a) and (b)). The correlation 
search time was expanded to 6 hours to cover distributions of 
random correlations that have non-negligible contributions to the 
6 s-activity. Location of the random peak was in agreement with 
expected value of ≈ 3700 s deduced from an average counting rate 
(2.7 · 10−4Hz/pixel) of fusion-like ERs. Hence, half-lives and num-

bers of events associated with the 6 s-activity were extracted from 
fits of the whole time distributions by a two-component density 
distribution functions according to Ref. [15]. A half-life of 6(2) s
was deduced for both of the fast activities.

ER–α1–α2 correlations were searched for using correlation 
times of �tER–α1 < 200 s and �tα1–α2 < 1200 s. The resulting two-

dimensional α1–α2 correlation plot is shown in Fig. 4. Most of 
the observed events are random correlations corresponding to the 
high-intensity α peaks of the transfer-reaction products. However, 
several mother α-decay events that have a non-random origin are 
followed by α particles of a daughter nucleus with energies in 
the range 6.85–7.05MeV. An energy spectrum of these mother α
events is shown in Fig. 1(d). Events were detected at energies 
corresponding to the aforementioned three α lines at 7.57, 8.09 
and 8.19MeV. According to the agreement between the measured 
�tα1–α2(6.95MeV) ≈ 430 s time and literature values, all of these 
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Fig. 4. Mother and daughter α-particle energies for the correlated events of the 
type ER–α1–α2 observed in the 34S + 209Bi reaction. The maximum searching times 
were 200 s for the ER–α1 pair and 1200 s for the α1–α2 pair. Expected random 
correlations from the decays of transfer-reaction products are marked with dashed 
red lines. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

chains were attributed to populate 236Cm (Eα = 6.954(20) MeV

and T1/2 = 410(50) s [16]).

Four of the observed ER–α1(7.57MeV)–α2(
236Cm) chains were 

attributed to the decay of 240Cf. Direct production of 240Cf as ER in 
the p2n channel of the fusion reaction is estimated to have a cross 
section of at least ten times smaller than the 3n channel according 
HIVAP calculations [8] and experimental observations in similar 
reactions [17]. The contribution of directly produced 240Cf was es-
timated to be less than one event of ER–α1(7.57MeV)–α2(

236Cm) 
type. Therefore, most of the correlated α-decay events of 240Cf are 
likely to originate from the EC decay of 240Es considering the sta-
tistical uncertainties.

Four chains with Eα1 = 8.09 MeV and one with Eα1 = 8.19 MeV

were observed. These chains were attributed to originate from the 
α decay of 240Es, which then proceeds to 236Cm through the EC 
decay of 236Bk. The observation of such genetic α-decay chains 
leading to known 236Cm shows that the two unassigned α lines 
observed in ER–α correlations originate from the decay of 240Es.

We note that two more non-random ER–α1–α2 chains were 
observed with Eα1 energies of about 8.02 MeV and 7.97 MeV

(see Fig. 1(d) and 4). Additionally, weak peaks were observed in 
ER–α correlations at these two energies, and half-lives of ≈ 5.2 s
and ≈ 4.4 s, respectively, were found for the 8.02(3) MeV and 
7.97(3) MeV events (see Fig. 1(c)). Therefore, also these two groups 
of α particles were tentatively assigned to 240Es. Additionally, fol-
lowing the ER correlated α decays of 240Es, 240Cf and 236Cm, a few 
correlated decay chains of α(232Pu)–α(228U)–α(224Th)–α(220Ra)–

α(216Rn)–α(212Po) were revealed by further event-by-event anal-
ysis.

Six photon events with energies of 125(3) keV (three events), 
112(3) keV, 89(3) keV and 67(3) keV were detected in prompt co-
incidence with the correlated 8.09MeV α particles assigned to 
240Es. Two of them have energies similar to E(Kα1) = 112 keV, 
E(Kβ1) = 127 keV and E(Kβ3) = 125 keV X-rays from Bk [18]. How-

ever, the tabulated relative intensities of the X-rays are inconsistent 

Fig. 5. The proposed decay scheme of the new isotopes 240Es and 236Bk. The mea-

sured values for 240Es and 236Bk are from this work, 240Cf from [20] and 236Cm 
from [16].

with the 125(3) keV events being X-rays. It is possible that the 
112(3) keV event is a Bk X-ray, which would support the assign-
ment to the α decay of 240Es. The 125keV photons are assigned to 
be γ rays rather than X-rays. The attribution of a 125 keV transi-

tion to the proposed decay scheme is still tentative due to the low 
statistics.

Fission activities were searched for in ER–fission and ER–α–

fission correlations. Fission-like events were required to have an 
energy ≥ 50 MeV (in the DSSD) and no signals in the MWPC. The 
time distribution of the correlated fission-like events from ER–
fission is shown in Fig. 3(c). Again two components similar to the 
cases of correlated α decays (compare Figs. 3(c) and 3(a), (b)) were 
observed and the long-lived events were attributed to be random. 
We noted that γ rays were not detected in coincidence with most 
of the fission-like events in the random component, whereas, most 
of the fission-like events in the faster component have at least one 
γ ray in coincidence.

Fifteen fission-like events with a half-life of 5(2) s were as-
signed to the decay of 240Es, as a similar half-life was observed 
for its α decay. However, these fission events are unlikely to origi-
nate directly from the ground state of 240Es. Its spontaneous fission 
branch is greatly hindered due to the unpaired single neutron and 
proton. Accordingly, these fission events were attributed to occur 
from the excited states of 240Cf that are populated in the EC decay 
of 240Es.

Additionally, four ER–α–fission chains were also observed 
where all ER–α members were 8.09MeV α events attributed to 
240Es. Another four chains were identified as being ER–α(escape)–

fission where the α particles escaped in the backward direction 
from the DSSDs depositing only part of their kinetic energy. The 
time distribution of the fission events relative to the second de-
cay members is shown in Fig. 3(d). Taking into account the similar 
time distributions and full-energy detection efficiency of the α par-

ticles of the DSSDs, these eight events were attributed to originate 
from one activity with a half-life of 22+13

−6 s (Fig. 3(d)). As men-

tioned above, only α decay of known 236Cm, but not of 236Bk, was 
followed after the α decay of 240Es, indicating a high EC-decay 
branch in 236Bk. Therefore, the eight fission members from those 
chains were attributed to the ECDF decay branch of 236Bk.

4. Discussion and summary

The proposed decay schemes for the new 240Es and 236Bk iso-
topes are shown in Fig. 5. Branching ratios of bα = 0.7(1) and 
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Fig. 6. Electron-capture delayed fission (ECDF) probability (PECDF) as a function of 
Q EC − Bsf of neutron-deficient Es and Bk isotopes. The data points for 240Es and 
236Bk are from this work (open symbols). The other PECDF values (closed symbols) 
are from [4], Q EC from [19] and Bsf from [21].

bEC = 0.3(1) and a half-life of 6(2) s were deduced for 240Es. 
The α decays were attributed to feed either the ground state or 
the excited states in 236Bk. The highest α-particle energy gives 
Qα = 8.33(3) MeV that is close to predictions from [19] (Qα =

8.17 MeV), however, due to the often complicated structure of 
odd–odd nuclei the present data did not allow further assignments 
of the properties of the states like spins and parities. As mentioned 
in Section 3, the observed fission events from ER–fission analysis 
and the ER–α(240Cf) correlations were used to estimate a PECDF of 
0.16(6).

Only an EC-decay branch was identified for 236Bk and a half-life 
of 22+13

−6 s was deduced from its ECDF decay branch having a PECDF

of 0.04(2).
The known ECDF probabilities in Es and Bk isotopes together 

with present new findings are shown in Fig. 6 as a function of the 
difference of the theoretical Q EC of the mother nucleus [19] and 
the theoretical fission barrier height Bsf of the EC-decay daughter 
nucleus [21]. Empirical estimates on PECDF of lighter Es (A < 242) 
and Bk (A < 238) isotopes can be given from exponential fit of 
previously known data for 242–248Es and 238,240Bk as function of 
Q EC − Bsf . Both PECDF values for 240Es and 236Bk agree well with 
the trends and confirm a continuation of exponential increase. Pos-
itive Q EC − Bsf values for 240Es and 236Bk would correspond to 
fission from excited states with energies above barrier heights. 
However, fission occurs most probably from excited states below 
the barrier due to the population probabilities of the different ex-
cited states in the EC decay. In addition, the absolute values of 
Q EC − Bsf are strongly dependent on the particular theoretical cal-
culations and thus their use in detailed discussion is limited.

Nevertheless, the well pronounced systematics of PECDF as a 
function of the simple macroscopic variable Q EC − Bsf are associ-
ated with competition between the electromagnetic de-excitation 
and the penetrability through a fission barrier of the excited nu-
cleus [4]. However, further exponential increase in PECDF in yet 
lighter Es and Bk isotopes is not possible because the probability 
saturates, i.e., PECDF → 1. In such cases the fission will dominate 
over de-excitation of the excited nucleus and the fission barrier 
may not play a major role anymore. We note that recently, the 
α-decaying isotope 234Bk was discovered [22] wherein saturated 
PECDF is expected according to the exponential fit (see Fig. 6). 
An evaluation of its PECDF value has not been possible despite 

observed fissions [22]. Thus, to date no information on these in-
triguing PECDF values exists.

Another important factor in the ECDF process is the fission 
barrier shape whose influence is not represented explicitly in 
Q EC − Bsf . The heavy nuclei are known to have multi-humped fis-
sion barriers whose heights and shapes strongly affect the pen-
etrability through a total barrier and thus PECDF . Therefore, the 
exponential dependence of PECDF as a function of Q EC − Bsf should 
contain information about the shape of the total fission barrier [4,

23]. For instance, a relative decrease in PECDF systematics of Bk iso-
topes compared to Es can be associated with penetrability through 
wider barriers in Cm compared to Cf [23].

Experimental cross sections of around a few nanobarns were 
determined in agreement with calculated ones from the HIVAP 
code [8]. Despite the reasonably high cross section, identification 
of the new 240Es and 236Bk isotopes was challenging because of 
the tail of the random background contributions.

In conclusion, two new neutron-deficient isotopes 240Es and 
236Bk isotopes with half-lives of 6(2) s and 22+13

−6 s, respectively, 
were identified. The observed α particles with energies of Eα =

8.19(3) MeV and 8.09(3) MeV were unambiguously assigned to the 
α decay of 240Es. EC decay and ECDF branches were assigned 
to both isotopes and PECDF were estimated to be 0.16(6) and 
0.04(2) for 240Es and 236Bk, respectively. Our findings extend the 
systematics of the Es and Bk isotopes where the ECDF probabil-
ities depend exponentially on Q EC − Bsf . No deviations from this 
trend are observed. This simple dependence that has not yet been 
fully understood may strongly be affected by the shape of the fis-
sion barrier [23]. The experimental data on PECDF values in more 
neutron-deficient isotopes of these elements will shed a light on 
this complex decay process.
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