
 
 

DDS: The Dynamic Deployment System 

A. Lebedev1 and A. Manafov1 
1GSI, Darmstadt, Germany

The Dynamic Deployment System (DDS) [1] is a tool- 
set that automates and significantly simplifies a 
deployment of user-defined processes and their 
dependencies on any resource management system 
(RMS) using a given topology. 

During 2017 we focused on shared memory channels, 
lobby-based deployment and DDS session feature. 

Shared memory channels 
In the initial implementation DDS agents used to have 

only a network connection transport for communication 
with user tasks. This introduced certain implications, for 
instance, there was no guarantee that all key-value 
updates or custom command messages will be delivered 
to the user. As a fallback solution a shared memory was 
used to cache messages coming from network channels, 
to make sure that all messages are actually delivered to 
the user tasks. In order to improve and simplify this 
algorithm we have implemented a generic shared memory 
channel. The channel has similar API as DDS network 
channel, it supports two way communication, 
asynchronous read and write operations. Its 
implementation is based on the boost::message_queue 
library [2], on the DDS protocol which is used for 
message encoding and decoding and on the boost::asio 
library [2] for thread pooling and implementation of the 
proactor design pattern. The shared memory channel is 
used for communication between DDS agents from the 
same lobby and between DDS agents and user tasks, 
which significantly simplifies and secures the 
implementation. There is no need to cache messages any 
more as we now can guarantee the delivery. All messages 
are stored directly in the shared memory and managed by 
the message queue. 

Lobby-based deployment 
The main goal of the DDS is to be able to handle 

hundreds of thousands user processes. In DDS world each 
user process is controlled by a DDS agent (watchdog). 
Having all agents connecting back to a central DDS 
server (commander) is extremely resource consuming. 
We therefore implemented a so-called lobby-based 
deployment feature.  

DDS agents of a given user on one host represent a 
lobby. A lobby leader is the only agent, which has a direct 
network connection to commander. A lobby leader is 
elected locally on each host. The election process is a 
local negotiation between agents and no connection to the 
commander is required. All other agents are lobby 
members communicating with the commander via the 
leader. Agents of a given lobby communicate with each 
other via shared memory channels. 

Figure 1: Schematic view of a DDS lobby-based 
deployment. 

DDS session 
We used to have only one main use case, which is Alice 

Online. For such a case it was enough to run one DDS 
session per user per host. Now other uses cases coming 
into the game. In offline analysis there are use cases, 
when a single user needs to run multiple different 
topologies hosting DDS commander on the same host. 
For the Grid and different RMS it might be useful to run 
DDS in a batch mode. For all these new use cases it is 
necessary to support multiple runtime topologies per user 
per host. 

In order to cover these use cases a DDS session feature 
has been introduced. This new feature offers users a 
possibility to run multiple commanders on the same host. 
Each new commander instance creates a DDS session. 
Sessions are sandboxed and isolated, therefore can’t 
disturb each other. Sessions can be operated (listed, 
cleaned, sorted, etc) using the new dds-session command. 
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New release v6.3 of data acquisition framework MBS 
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Since November 1, 2017, the MBS version 6.3 has be-
come the new production version [1]. MBS version 6.3 
replaces the old production version 6.2. The new MBS 
and its commands can be used as before.  

New features 
MBS version 6.3 provides several new features and im-

provements at the GSI installations. These are described 
in the following. 

New GSI servers for MBS with dedicated VLAN 
At GSI a pair of new servers for the MBS systems is in 

operation since May 2017. It will provide the DHCP, 
TFTP and NFS services for the diskless MBS nodes. In 
addition to the NFS mount point of the MBS installation 
("/mbs") and various user partitions, the server will also 
provide NFS nodes with software installations of dabc 
("/dabc"), Go4 ("/analysis"), and of EPICS ("/epics") 
frameworks for suitable platforms. Together with the new 
server, all MBS nodes moved from GSI LAN into the 
Virtual Local Area Networks (VLAN) MBS-NETZ (mbs 
nodes for experiments) or MBS-NETZ-ACC (nodes for 
accelerator tasks).  

Support of 64 bit Linux 
The complete source code of the MBS framework has 

been remanufactured to work also on 64 bit Linux sys-
tems. This has been tested on several X86 PC nodes run-
ning with Debian 7 and Debian 9. As a benefit from the 
enhanced address space, a larger pipe memory can be set 
up on such systems. 

Linux device driver software 
The driver software for the PCIe optical receiver boards 

PEXOR and KINPEX has been newly implemented for 
x86 Linux platforms [2]. This consists in a new kernel 
module "mbspex" with corresponding C library. Addi-
tionally, a command line tool" gosipcmd"  allows front-
end configuration  and controls from the system shell.  

Front-end control GUIs 
Several Graphical User Interfaces (GUI) applications 

have been developed to monitor and control the properties 
of different kinds of front-end boards at the GOSIP read-
out chain. They are based on the Qt graphical library and 
are executed locally on the MBS readout nodes hosting 

the KINPEX board. Communication between such GUIs 
and the read-out slaves is provided by the mbspex device 
driver library safely concurrent to the MBS read-out. Cur-
rently GUIs are available for the proprietary GSI front-
ends POLAND, NYXOR, FEBEX2 (TUM-addon), AP-
FEL, and TAMEX2 (with PADI). 

Remote control via DABC 
In addition to the existing MBS status server socket, 

two new socket channels have been introduced to MBS 
for control with the software framework DABC [3]. They 
can be started optionally. Firstly they allow a remote 
steering of the MBS console from external scripts using 
the DABC "mbscmd" executable. Moreover, a DABC 
session connected to MBS in this way offers an HTTP 
server with a web browser GUI designed for generic MBS 
monitoring and control. Such DABC web server for MBS 
has been installed at all GSI MBS Linux nodes, and can 
be started by alias command "webmbs" [1].  

White Rabbit support 
The future FAIR general machine timing distribution 

will be based on the White Rabbit system [4]. The White 
Rabbit timing receiver (WRT) hardware PEXARIA 
(PCIe), EXPLODER5A (PCIe, USB), and VETAR2A 
(VME) is supported by MBS. WRTs provide a special 
"Time Latch Unit" (TLU) that can record the time stamp 
when an input signal changes, e.g. by the trigger signal. 
Driver software release "Cherry v4" of GSI-CSCO has 
been deployed on all MBS Linux platforms. Additionally, 
dedicated drivers for VMEbus on RIO4 and IPV systems 
have been developed. Especially for MBS, a "direct TLU 
access" mode is being tested to speed up the timestamp 
read-out compared with regular etherbone cycles. 

New mass storage interface LTSM 
A new API Lightweight Tivoli Storage Manager 

(LTSM) [5] is going to replace the RFIO interface to di-
rectly write DAQ data into the tape robot at GSI. MBS 
v6.3 still supports the RFIO protocol for local disk servers 
and for any existing GSI RFIO tape servers.  Additional-
ly, a special local RFIO server has been developed as a 
gateway to the LTSM archive [1]. This gateway applica-
tion will be further tested and deployed at GSI in 2018. 
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Introduction 
FairDB[1] is a ROOT[2] based virtual database which 

allows to communicate and store data in different data-
base management systems, such as PostgresSQL, 
MySQL, SQLite, based on the configuration. One of the 
primary use for it is FairROOT[3][ parameter storage. 
FairDb is an insert only database, meaning there is no 
need to update the single entries and the whole history of 
the entries is available. 

 
 

Data serialization 
 
The base FairDb parameter classes have been expanded 

to support the data serialization in the JSON format. This 
allows the data exchange with non-ROOT environments 
such as LabVIEW[7] and web services. In addition to the 
existing data aggregation mechanism the introduction of 
the relational mechanism allows to establish one-to-one 
and one-to-many links between stored entries. 

 
 

Database ROOT class generation 
To improve the user experience, reduce the number of 

errors and further enhance the feature set of the FairDB 
the database class generation mechanism have been added 
[5]. It provides a web application based user interface to 
define the data format, which needs to be stored. Here, the 
user defines the classes, their properties and relations be-
tween classes. The classes are organized in projects, 
which can be loaded to and from the disk (Fig. 1). 

 

 
Figure 1: Graphical user interface to define the database 
classes organized together in projects.  

Precise configuration of the properties such as their 
C++ type, database type, JSON type, default value etc. is 
available (Fig.2). 

 

 

 
Figure 2: Graphical user interface to define the database 
class properties and relations. 

After defining the class data, the user is offered to gen-
erate the class library, which is ready to be included into 
the FairROOT framework. Additionally the database con-
figuration file and a template database data priming mac-
ro are included into the generated library. 

 
For the detector groups using LabVIEW in their work, 

the generation of the LabVIEW class library is available. 
 
 

Database content management system 
Based on the user input for the class generation the con-

tent management system for the user data can be generat-
ed. This includes the RESTful web service, which com-
municates to the FairDB and serves the data in the JSON 
format for the consuming web application. The service 
provides the role-based data access control, requiring the 
user to authenticate before accessing the data. The secure 
HTTPS protocol is enforced for the data exchange be-
tween web service and web application. The web applica-
tion itself allows the user to view, edit and add data to the 
database. The administrator's workplace allows managing 
users, who have access to the database, define their role 
and permissions to view and edit data. The content man-
agement system is generated based on the template and 
can be further expanded for functionality such as plotting 
the graphs based on the stored data. Visualization of the 
ROOT-native data such as TGeoVolume is available with 
JSROOT [6] framework. 
  

Using FairDB: QA Data Scheme 
The usage of the FairDB was covered in [4] and since 

then has been expanded to support the recent develop-
ments. 
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In a framework of the STS sensor optical inspection 
project the relational database schema have been devel-
oped and used for the data export (Fig. 3). The data gath-
ered for 25 sensors inspected have been exported into 
FairDB which resulted in more than 49000 records insert-
ed and the SQLite database file size of 18,9 MB. 

 

 
 

Figure 3: The database schema for the optical QA of the 
STS silicon sensors 

 
The class generation described above was used to cre-

ate the ROOT classes for data storage. The primary 
measurement data is obtained from LabVIEW program 
and stored in JSON format. A ROOT export macro was 
used to read the JSON data, deserialize it and store in the 
FairDB. 

 
Using the generation of the database content manage-

ment system the exported data was made available for the 

external users to be visualized and edited if allowed. The 
figure 4 (Fig. 4) shows the user workspace to view and 
edit the information about the sensor vendor. 

 

 
Figure 4: The generated graphical user interface to view 
the data of a data  

 

Conclusion 
FairDB virtual database provides flexible way to store 

and access detector specific data. The recent develop-
ments were targeted to enhance the user experience when 
defining the data to be stored. The generation of ROOT 
classes in a standard way not only simplifies the process 
but further improves the stability of the code as well.  

The generation of the content management systems al-
lows the ease of visualization and manipulation.
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   Status of the ALICE Tier2 Centre at GSI and first prototype of an ALICE 
Analysis Facility 
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This article describes the improvements implemented in 

2017 in order to increase the reliability and performance 
of the ALICE Tier2 Centre at GSI as well as the setup of 
a first prototype of an ALICE Analysis Facility. 

ALICE Tier2 centre at GSI and ALICE Grid 
in Germany 

The ALICE Tier2 centre and the National Analysis Fa-
cility at GSI provide a computing infrastructure for the 
ALICE Grid and for the local usage of the German AL-
ICE groups. The storage resources pledged to the global 
ALICE community (2300 TB) are provided via a Grid 
Storage Element which consists of a set of xrootd dae-
mons in a redundant setup mode running on top of the 
Lustre file system. The main elements are two xrootd 
redirectors with a DNS alias as single point of entry  in 
combination with three xrootd data servers as well as two 
xrootd forward proxy servers. The redirector of the GSI 
storage element is using the split directive of xrootd and 
redirects external clients to the external interfaces of the 
xrootd data server machines and internal clients to the 
internal interfaces which are directly connected to the 
local Infiniband Cluster. The xrootd forward proxy serv-
ers provide the possibility to Grid jobs running inside the 
protected HPC environment to read and write data from 
and to external data sources using the proxy interface. All 
ALICE Grid jobs running at GSI make use of the contain-
er technology Singularity. In this way the jobs can run 
smoothly in their standard Scientific Linux environment 
on top of the Debian based host system of the GSI HPC 
cluster. The complete setup is shown in fig. 1.  

Throughout the year GSI participates in centrally man-
aged ALICE Grid productions and data analysis activities, 
but also analysis jobs of individual users are running on 
the ALICE Tier2 centre. The overall share of successfully 
computed jobs in 2017 contributed by the German Grid 
sites, the GSI Tier2 centre and Forschungszentrum Karls-
ruhe (ALICE Tier1 centre) has been 10% of all ALICE 
Grid jobs worldwide. This corresponds well with the 
promised CPU resources for 2017: 28000 HEP-SPEC06 
for GSI Tier2 (7% of the global Tier2 requirements) and 
60500 HEP-SPEC06 for FZK (25% of the global Tier1 
requirements).  
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Figure 1: Setup of the ALICE tier centre at GSI 

 
Prototype of an ALICE Analysis Facility 

In LHC Run 3 ALICE data analysis will take place on a 
few dedicated Analysis Facilities of which GSI will be-
come one of the first. On the storage element only analy-
sis data sets (AODs) will be stored. A first prototype of an 
ALICE Analysis Facility has been set up at GSI based on 
the design of the current ALICE Tier2 centre, but opti-
mised for I/O performance. Initial resources are 600 TB 
disk space and 1000 concurrent job slots taken from the 
Tier2 allocation. A first complete data set has been trans-
ferred and a first analysis train ran successfully. 

 
XRootD Plugins  
 

In order to optimise the current storage infrastructure, 
namely the access to Lustre through XRootD data servers, 
several XRootD Plugins have been developed. One solu-
tion provided is a server based Plugin which is able to 
redirect XRootD file operations directly to Lustre thus 
bypassing the need for Grid jobs running at GSI to double 
the network traffic by first communicating with the 
XrootD data servers. A second Plugin creates symlinks 
for data stored on Lustre providing logical file names as 
they are used in the ALICE Grid File Catalogue. A third 
solution provided is a Plugin which reports to the central 
ALICE Grid Monitoring the ALICE Grid quota on Lustre 
instead of the full Lustre capacity at GSI as it did before. 
All three Plugins described above are in operational mode 
at the ALICE Analysis Facility prototype at GSI.
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Status of the R3BRoot framework
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Reactions with Relativistic Radioactive Beams (R3B) is
an international collaboration [1] which will perform nuc-
lear physics experiments at the future FAIR facility. The
focus  of  these  experimental  studies  is  put  on  nuclear
structure and dynamics of exotic nuclei far off stability, as
well  as astrophysical  aspects and technical  applications.
Combination  of  different  detection  sub-systems  and  a
sophisticated data acquisition require a dedicated software
package to allow physicists both to simulate an experi-
ment  and  to  analyze  experimental  data.  The  R3BRoot
software framework [2] was created for this purpose. It is
based on FairRoot [3] – common software for FAIR ex-
periments. A group of 17 developers is currently working
on extending features of R3BRoot and including support
for all planned R3B detectors. The framework is written in
C++, is ROOT based, compiled of approximately 35000
lines of code and can be deployed on Linux and macOS.
The C++11 standard is supported. The code is stored and
distributed  via  GitHub  [4]  with  continuous  integration
workflow. Close to 40% code coverage with quantitative
automatic tests allow to immediately detect possible viol-
ations of the program functionality and to results of nu-
meric algorithms.

Data analysis
Several experiments, including the commissioning run

of R3B, will be performed fall of 2018 using beam from
SIS18 at GSI. The largest effort is put into the develop-
ment of algorithms for detector calibration up to so-called
HIT-level:  measurement  of  coordinates  in  cm  (local
frame), energy-loss in MeV and time in ns. Following de-
tectors are currently calibrated in R3BRoot: start detector
LOS,  proton  and  gamma calorimeter  CALIFA,  neutron
detector  NeuLAND,  heavy fragment  tracker arm PSPx,
TOFd,  and  proton  ToF  wall.  The  later  analysis  stage,
which  is  called  fragment  tracker,  should  combine  the
single measurements and fit an ion trajectory in a non-ho-
mogeneous dipole field in order to determine mass and
momentum of a reaction fragment. This measurement in
combination with data from proton ToF wall  and Neu-
LAND will give the possibility to calculate properties of
incident reaction.

Another important tool, which is also being developed,
is  an  online  event-display  to  support  near-line  analysis
during data taking. The online event display of R3BRoot
will be a tool for monitoring of the detectors and for an
immediate decision about the quality of the data. Several
successful tests were already performed with cosmic rays.

Simulation
Simulation  of  the  upcoming  R3B  experiments  is  re-

quired for:
• detailed design of a setup,

• feasibility study of a measurement of an observ-
able,

• development and testing of physics analysis al-
gorithms,

• a  better  understanding  of  background  effects,
present in experimental data.

In order to develop an algorithm for fragment tracking
and to compare simulated and experimental data on the
HIT  level,  digitizer  tasks  have  been  implemented  for
TOFd and 3 tracking fiber detectors. A digitizer is an al-
gorithm, which simulates the response of a detector and
converts  Monte  Carlo  results  into  detector-like  signals.
Mainly  effects  from  geometry  granularity,  read-out
scheme, and non-perfect resolution were included.

Figure 1: Visualisation of the R3B detector geometry and
particle trajectories using the simulation event display of
FairRoot. Large volume in the middle – GLAD magnet.
Beam direction from the bottom left corner.

Concerning the neutron measurement, a new algorithm
based on statistical scoring is being developed and tested
with simulated data. This new technique should have bet-
ter  performance  with  respect  to  separating  classes  of
multi-neutron events.

The simulation code for CALIFA spectrometer is under
construction to match detector  response of the real-size
prototype, which will be also tested during experiments
end of 2018.

The development  of  the fragment tracker is  ongoing.
Currently,  we  have  the  tool  for  propagating  a  charged
particle in the magnetic field of GLAD through the de-
tector geometry and a machinery for the fitting of ideal
measurements without taking into account energy-loss in
a material. The first realistic version of the algorithm is
expected mid of 2018.

Summary
Current status of software development in R3B, presen-

ted in this report, is the result of coordination of activities
within the international community, representing different
detector working groups. R3BRoot is on a good track to-
wards supporting experimental runs fall of 2018 / 2019
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and towards performing high-level physics analysis of ac-
cumulated data. Preliminary tests of the fragment tracker
show feasibility of momentum reconstruction with resolu-
tion in the order of 10-3.
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1.1 Abstract 
Operating an XRootD service, the established software 

standard for WAN data access in HEP and HENP. Ac-
cessing the scientific data, stored on-top of the HPC infra-
structure at the ALICE Tier 2 centre and the ALICE 
Analysis Facility prototype at GSI, revealed multiple 
challenges and requirements. This article describes the 
current state of development for XRootD based solutions, 
especially XRootD client & server plug-ins. 

1.2 ALICE Analysis Facility & XRootD 
GSI is operating the only German ALICE Tier 2 centre 

and will operate one of the first ALICE Analysis Facili-
ties(ALICE AF) for which a prototype is currently being 
set up. In this context, GSI will provide  computing and 
storage resources to the ALICE community. In ALICE’s 
AliEn Grid framework data is accessed through the 
XRootD protocol. XRootD enables the use of this data 
through a scalable federated storage system. At GSI, in-
stead of operating XRootD servers with local storage, the 
shared HPC Lustre filesystem is used as storage backend 
of the XRootD servers. In AliEn, Grid jobs requiring the 
same data are preferably scheduled on the same site to 
lower the need for traffic between sites. This means, that 
local data is reused many times and therefore it is essen-
tial to optimize the I/O performance. 

1.2.1 Improving the I/O performance at GSI us-
ing XRootD plug-ins 

With the current storage infrastructure at GSI, namely 
the access to Lustre through the XRootD data servers, the 
following room for improvement has been identified: The 
three XRootD dataservers can provide limited I/O band-
width and all data read locally via XRootD from Lustre 
needs to be sent over the network twice (Lustre to XrootD 
server & XrootD server to client), effectively doubling the 
network traffic for an I/O operation. 

In addition, the need for additional XRootD dataservers 
to handle data is eliminated. 

As an improvement to last years solution1, an XRootD 
client plug-in, which had to be loaded by all clients run-
ning on the GSI hpc cluster, an XRootD redirector plug-in 
was developed. 

A redirector server may load this plug-in in order to re-
direct clients to locally available files, if both client and 
redirection target are inside a private network, as this 
guarantees local availability of the required file at the 
Lustre filesystem. In order to allow redirection to a local 
file, additional changes needed to be implemented into the 
XRootD base code. 

The cooperation with the XRootD core development 
team resulted in the integration  of necessary client 
and server side changes in the XRootD base code. Since 

XRootD Version 4.8.0, a local redirection of a client by a 
redirector is possible with the use of the cms plug-in we 
developed. In addition, the plug-in is able to distinguish 
between new and old clients and will only redirect newer 
clients that have the capability to handle such a redirec-
tion to a local file. 

1.3 XRootD Disk Caching Proxy for oppor-
tunistic resources 

In cooperation with KIT, an infrastructure for the utili-
zation of opportunistic resources such as clouds, has been 
developed for CMS. The idea is to build a virtual site in-
side the opportunistic resource. In order to minimize ex-
ternal I/O and to provide high data locality, an XRootD 
disk-caching-proxy is used.  
In this setup, all clients access data through a redirector, 
which tells the client the location of the desired data. The 
redirector either directs the client towards the locally 
available shared filesystem, in case the data exists on it, 
or  to the disk-caching-proxy. The disk-caching-proxy 
forwards the request to external sites and retrieves the 
data. In the meantime, the data is being cached on the 
shared filesystem for later use.  
In case jobs working with the same data are bundled to-
gether, this infrastructure minimizes I/O and speeds up 
data accesses inside the virtual site. 
This infrastructure relies on XRootD-plug-ins developed 
at GSI. One plug-in handles the referral to the redirector2 
while the second plug-in handles the redirection to the 
proxy or shared file system3. A test setup has been de-
ployed on the bwhpc4 cluster NEMO at Freiburg 

1.4 Conclusion 
In conclusion we have implemented XRootD plug-ins 

redirecting clients to data on Lustre which significantly 
improves the I/O performance. Last years proposed 
changes have been integrated into the XRootD main base 
by the XRootD development team. In addition, an 
XRootD infrastructure to utilize opportunistic resources 
has been developed. 
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Introduction
Avalanche  PhotoDiodes  (APDs)  used  in  High  Energy
Physics  (HEP)  experiments  are  supposed  to  operate  at
very  hard  environmental  conditions  like  high  magnetic
fields and high radiation doses for a long period of time.
Hence  the  long  term  annealing  behavior  needs  to  be
investigated. Preliminary results of an annealing period of
~7 days under applied bias voltage are presented in this
report.

Annealing studies of APDs
Sixteen APDs were irradiated with different γ-doses of

37 Gy, 100 Gy, 200 Gy, 500 Gy, 1000 Gy, 1500 Gy, 2200
Gy and 2680 Gy. Eight of them were operated with bias
voltage applied during irradiation and the others had no
electrical contacts during irradiation. After irradiation, the
APDs were annealed with a reverse bias voltage of 100 V
applied for ~7 days at the Photo Sensor Laboratory (PSL),
GSI. During annealing, the temperature was raised from
room temperature to 80o  C and was then kept constant.
The current values for biased and unbiased APDs during
irradiation  were  monitored  during  the  whole  annealing
period  and  are  shown  in  Figure  1  and  Figure  2
respectively. The applied  γ-dose values are stated in the
included legends.

   In order to investigate the long term annealing behaviour
of the APD current, the tail parts of the curves shown in
Figure 1 and Figure 2 (in the time interval of 200*103 s –
620*103 s)  were  fitted  with  a  linear  function.  A
comparison of the decrease in the rate of change of the
leakage current values for all sixteen APDs is shown in
Figure 3.

Results and conclusion
A  set  of  16  APDs  was  annealed  with  a  reverse  bias
voltage of 100 V after irradiation with different  γ-doses.
The  annealing  temperature  was  increased  from  room
temperature  to  80o  C and  was  then  kept  constant.  The
decrease  of  the  APD  leakage  current  was  studied,
regarding  the  influence  of  long  term annealing  effects.
The higher the γ-radiation dose was, the faster the leakage
current decreases. This is consistent with the assumption
of an exponential time dependence of trap recovery with a
large time constant (~105 s). The unbiased APDs showed
higher rate of decrease in current with respect to biased
APDs except for a γ-dose of 1500 Gy which needs to be
tested in more detail.
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Figure 2:  Annealing curves of eight different APDs
irradiated  with  different  γ-doses  with  no  electrical
connections during irradiation.

  

 Figure  3:  Comparison  of  the  decrease  in  the  rate  of
change of the leakage current for APDs irradiated under
biased  and  unbiased  conditions.  The  error  bars  are
within the marker size.

Figure  1:  Annealing  curves  of  eight  different  APDs
irradiated with different  γ-dose  under the condition of
applied bias voltage during irradiation.
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Introduction
The precise measurement of time has become one of if

not the most important tool in particle identification ex-
periments which usually rely on time-of-flight, drift time
and/or pulse-width measurements.  Most of the in-house
time-to-digital  converter  (TDC) developments  of  recent
years were aimed at achieving highest precision (down to
7 ps) [1,2]. However, there are many applications that do
not require such high precision and which would benefit
from a system with moderate precision but higher channel
density and lower channel price. Here we report on the
development of a TDC system with 128 channels and a
precision better than 500 ps for the MBS (Multi Branch
System) data acquisition framework [3,4,5].

Prototype hardware
The prototype hardware (see figure 1) features 128 dif-

ferential input channels for LVDS signals. The channels
are distributed over 8 board-to-cable connectors to allow
the connection of 16-channel front-end cards via flexible
flat cables. A first 16-channel analog front-end based on
the PADI (preamplifier-discriminator) ASIC [6] has also
been developed (see figure 1).  The front-end features a
standard 2.54 mm square socket for signal input making it
easy  to  adapt  to  various  detector  systems.  The  PADI
front-end is designed for input signals between a few mV
and ~200 mV. Larger  signals can be accommodated by
equipping an attenuator network at every input.

Results & Outlook
Laboratory  tests  with the  described  prototype  system

already  yield  an  average  precision  well  below  400  ps
RMS for both, channel-to-channel and pulse-width meas-
urements. The TDC is dead-time free and currently has a
double-pulse resolution of ~10 ns. However, development
of the FPGA circuit  implementation is still  ongoing [7]
and these figures are not final yet.

The prototype system has also just been deployed in a
first beam time at KVI-CART, reading out a total of 1024
channels of multi-anode photomultiplier tubes to test vari-
ous fibre detector prototypes for the NUSTAR-R3B ex-
periment. The tests were very successful for both, detect-
ors and electronics and preparations have been started to
equip the R3B experiment with 2048 readout channels for
the 2018 beam time.

For the coming years, more than 6000 readout channels
are foreseen at the R3B experiment and the development
of  dedicated  hardware  has  been  started.  Various  other
NUSTAR experiments and Super-FRS particle identifica-
tion are also considering the use of this new TDC system,
potentially adding up to another 25 000 channels in the
long-term.
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Figure  1:  The prototype hardware consists of the CLK-
TDC-128 motherboard with 128 channels (LVDS inputs)
tailored to read out up to eight 16-channel analog front-
ends based on the PADI ASIC [3].
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There has been demand for the development of a time-
to-digital  converter  (TDC)  which  has  moderate  time 
resolution,  better  than  500  ps,  but  has  high  channel 
density to be cost effective. The technique to realize field 
programmable gate array (FPGA) based TDCs have long 
been studied by many former works [1-3]. The easiest way 
to implement  a  TDC in a FPGA is  to  sample an input 
signal with a flip-flop  operated by a clock with period 
Tclk.,  resulting in  a  TDC bin width  of  Tclk.  In  order  to 
achieve  better  precision  than  the  method  limited  by 
maximum  clock  frequency  of  FPGAs  typically  around 
500 MHz, we have adopted a method sampling the input 
signal  with a set  of  several  phase-shifted clocks of  the 
same  frequency.  In  the  ideal  case  that  all  clocks  are 
distributed without delay and skew, this results in a TDC 
bin width of Tclk/Nclk  where Nclk  is the number of shifted 
clocks.  The  method  consumes  low  amount  of  logic 
resources, allowing the integration of more channels per 
FPGA [3].

In  recent  years,  various  front-end  electronics  with 
FPGAs  and  the  small  form-factor  pluggable  (SFP) 
transceivers have been developed to coop with our data 
acquisition  (DAQ)  framework,  the  multi-branch-system 
(MBS),  supporting  readout  by a  standard  PC equipped 
with a PCIe  card via our custom data  transfer  protocol 
GOSIP [4]. We started the implementation of a TDC on 
one  of  those  existing  devices  with  an  XC7K160T,  the 
second smallest  FPGA in Kintex-7 family, classified as 
the best price/performance/watt at 28 nm[5].

The  maximum frequency  of  the  FPGA is  400 MHz, 
however we started with a clock frequency of 250 MHz 
and 8 phase-shifted clocks created by one Mixed-Mode 
Clock  Manager  (MMCM)  module  just  to  achieve  the 
targeted precision of  ≤500 ps [5]. As to the number of 
input  channels,  128  differential  channels  were 
implemented since that is close to the limitation imposed 
by the number of IOs of the FPGA. A 12-bit coarse time 
counter operated by 250 MHz clock enables a maximum 
trigger window of 16 µs. Ones among the 8 flip-flops for 
fine time determination are summed and converted into 4-
bit-wide data. A fine time and a coarse time for leading 
edges and trailing edges of a single input are combined 
and stored in a ring-buffer with a depth of 1024. At the 
very moment a pre-set trigger delay time has passed after 
accepting a trigger signal, the data in the ring-buffer are 
examined  on  whether  they  are  within  a  pre-set  time 
window relative to the trigger time.  Only valid data are 
recorded  in  the  second  buffer  of  the  same  size.  After 
parallel processing of 129 channels including the trigger 
signal, the data are merged into one of two output buffers 
with a size of 16 Kbytes connected to the GOSIP readout 

module.  The implemented TDC utilized only 24 % of the 
FPGA logic resources as listed in Table 1. 

Resource Used Available Utilization 

Slice LUT 24324 101400 24 %

Slice Flip-Flop 46664 202800 23 %

Block RAM 275 325 85 %

MMCM 2 8 25 %

IO 384 400 96 %

Table 1: Resource utilization of the FPGA TDC[5]

A new electronics dedicated TDC applications, CLK-
TDC-128,  has  been  designed  and  produced  [6].  The 
precision of the FPGA TDC on the new electronics was 
evaluated  by  measuring  time  differences  between  2 
channels using a LVDS fan-out board. The single channel 
RMS resolutions were demonstrated to be better than 400 
ps for all the channels.
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The  FairMQ  framework  developed  currently  by  the
FairRoot group allows users reliable and transparent data
exchange between devices – computer processes created
by the user. The following paper summarizes our effort to
run Monte Carlo simulations in separate devices parallelly
and store or analyse created data.

Simulation parallelization
The Monte Carlo simulations are arguably one of the

most time and resource consuming parts of the computing
aspects of the modern experiments. Many efforts are com-
mitted to facilitate the costly simulations, and these can
be grouped by the  level  of  parallelization applied.  The
most  general  strategy  uses  multi-processor  computer
farms to run individual simulations that store output data
in separate output files. Similar approach was adopted by
the GEANT4 group, that uses multithreading to delegate
simulation of individual events to different threads. An-
other level of parallelism is to assign transport of single
particles to separate threads within one process. In this re-
port  the first  of  the  described  approaches  has  been  ap-
plied.

FairMQ simulation example
As a base for this work a running FairMQ example de-

scribed in [1] has been used. There,  a set of devices to
read, analyse and store FairRoot compliant data has been
described. Two of these devices could be reused in the
simulation  example,  namely  the  FairMQEx9TaskPro-
cessor to process data, and the FairMQEx9Sink to store
the output data in a ROOT file. The ParameterMQServer
had to be greatly extended, its purpose to read parameter
files and to provide parameters needed to reconstruct the
data has been extended by the ability to receive paramet-
ers and to store them in output files. A completely new
device has been introduced, a FairMQSimDevice, to per-
form Monte Carlo simulations using standard FairRunSim
class, with user’s set of detectors specified in the running
executable.

The  example  topology  is  presented  in  the  Figure  1.
Each box in the figure represents a running device. The
data flows from left to right through channels, drawn as
lines. The leftmost devices, the FairMQSimDevices, run
separate simulations of the same detector set. It should be
stressed that it is possible to start any number (limited by
the available resources) of these devices, thus increasing
the simulation event rate. In the shown example, the data
is sent straight to one of the FairMQEx9Sinks, where it is
stored directly in the ROOT file. Furthermore, the same
data is sent over to FairMQEx9TaskProcessor, which pro-
cesses the data in the way specified by the user task at-
tached  to  the  processor.  Such  processed  data  is  sub-
sequently stored in the ROOT file by the second FairM-

QEx9Sink. To perform more complicated tasks, the user
may create any other path for the data to be processed,
implementing layers of desired TaskProcessors.

Figure 1: Schematic view of the running topology.

In  the  bottom  of  the  figure  the  ParameterMQServer
device is presented. It connects to the simulation devices,
which use the server to store the simulation parameters.
After receiving any of the parameters, the server automat-
ically saves them in a file specified by the user. The other
connection is reserved for the processing devices, which
need simulation parameters to process data. Besides, the
ParameterMQServer may read and distribute parameters
stored in ASCII or ROOT files.

FairSink
It  is  worthwhile  to  mention,  that  the  FairMQSim-

Devices do not themselves write any data to disk. To al-
low this, the FairRootManager has been redesigned in a
way similar to that presented in [2]. Namely, the data stor-
ing functionality has been moved to a separate abstract
class, called FairSink. The default FairRoot macros store
data in the output ROOT files using FairRootFileSink im-
plementation. In the case of FairMQ, the produced date is
sent via FairMQSimDevice, which as well derives from
FairSink.

Summary
This paper presents the example of running the Monte

Carlo  simulations  in  the  FairMQ  framework.  The  data
from simulations running parallelly on different processes
(even on different  computers)  may be sent  to  a  device
capable of either storing the data or processing it. These
building blocks may be used by users as a base for creat-
ing more sophisticated topologies.
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Advancing shared memory transport in ALFA 
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The ALFA framework [1] is a common ALICE/FAIR 
software layer that offers a platform for simulation, re-
construction and analysis for particle physics experi-
ments. In addition to standard services provided for simu-
lation and reconstruction, such as event generation, mag-
netic field and so on, ALFA also provides tools for inter-
node and inter-process data transport, configuration and 
deployment. The FairMQ component of ALFA [2] pro-
vides building blocks for creating processes that com-
municate between each other via message passing. It of-
fers an abstract interface with different implementations 
of different transport technologies. This report presents 
the most recent developments and improvements to the 
FairMQ transport layer with the focus on the shared 
memory transport.  

Shared memory transport in FairMQ 
The original implementation of FairMQ used ZeroMQ 

library [3] for transport of the data via network or inter-
process communication. It was quickly realized that in 
order to stay future-proof, the transport details need to be 
hidden from the user behind an abstract interface. Since 
then two new transports have been introduced (and fourth 
is under development) that the user can switch to via a 
simple configuration change, without having to modify 
any code. The new shared memory transport [4] builds 
upon Boost.Interprocess library [5] in connection with 
ZeroMQ to offer an efficient and zero-copy transport im-
plementation between processes on the same node. 

Unmanaged region 
The shared memory transport, as all other transports in 

FairMQ, hides all memory allocation details from the 
user, with the aim of ease of use. The user can simply 
request memory of certain size, which, after filling, will 
be transferred to further processes. However, in some 
special cases the user needs to control the memory layout 
and allocation in much greater detail. Example for this is 
a detector readout that requires certain memory layout 
restrictions and optimizations. Ideally, in such a use case 
the data from this carefully controlled memory should 
reach all of its receivers with no or minimal copies. This 
becomes particularly important for shared memory, where 
no copy is the main goal of the transport. 

To support this a feature called Unmanaged Region has 
been introduced to FairMQ. It allows to define a custom 
memory region, which is under full control of the user. 
The region is created using the transport methods provid-
ed by FairMQ, therefore ensuring maximum efficiency 
and no unnecessary copies. The user can then give 
FairMQ subsets of this region, which will be sent as mes-
sages to interested processes. In case of shared memory, 
no copy of the data is involved. The receiver will see the 
message as a regular message and does not need any spe-
cial knowledge of the region layout. Furthermore, the 
sender is notified whenever a message has been processed 

by the receivers and the transport, so that it can then 
cleanup and reuse the parts of the region. 

Automated cleanup 
All the shared memory creation and destruction in 

FairMQ is done behind the scenes. Because shared 
memory can outlive the process, a proper cleanup needs 
to be done to avoid polluting the system with unused 
memory. This is done automatically by the transport im-
plementation by monitoring shared memory usage and 
cleaning up when all users have finished their work. Even 
for the cases when processes crash, the memory will be 
cleaned up by an automated and independent monitor 
process. The cleanup tools also offer monitoring infor-
mation on the shared memory. 

Flexible message creation 
The most efficient way to prepare messages for transfer 

in FairMQ is by requesting messages of certain size and 
filling them with data. This avoid unnecessary copies of 
user buffers to transport buffers. However, certain algo-
rithms, such as compression or reconstruction may not 
know the size of their data in advance. To make sure they 
also can be handled in an efficient way, FairMQ now pro-
vides a mechanism to request an upper bound size buffer 
from the transport, which can be efficiently shrinked after 
filling by giving the framework the used size. For shared 
memory this allows rapid reuse of unused memory, and 
for other transports this reduces the size of the transfers 
and reduces the amount of meta information to include 
with each message. 
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