GSI-FAIR SCIENTIFIC REPORT 2017

RESEARCH-WTA-1

DDS: The Dynamic Deployment System

A. Lebedev' and A. Manafov'
IGSI, Darmstadt, Germany

The Dynamic Deployment System (DDS) [1] is a tool-
set that automates and significantly simplifies a
deployment of user-defined processes and their
dependencies on any resource management system
(RMS) using a given topology.

During 2017 we focused on shared memory channels,
lobby-based deployment and DDS session feature.

Shared memory channels

In the initial implementation DDS agents used to have
only a network connection transport for communication
with user tasks. This introduced certain implications, for
instance, there was no guarantee that all key-value
updates or custom command messages will be delivered
to the user. As a fallback solution a shared memory was
used to cache messages coming from network channels,
to make sure that all messages are actually delivered to
the user tasks. In order to improve and simplify this
algorithm we have implemented a generic shared memory
channel. The channel has similar API as DDS network
channel, it supports two way communication,
asynchronous read and write operations. Its
implementation is based on the boost::message_queue
library [2], on the DDS protocol which is used for
message encoding and decoding and on the boost::asio
library [2] for thread pooling and implementation of the
proactor design pattern. The shared memory channel is
used for communication between DDS agents from the
same lobby and between DDS agents and user tasks,
which significantly simplifies and secures the
implementation. There is no need to cache messages any
more as we now can guarantee the delivery. All messages
are stored directly in the shared memory and managed by
the message queue.

Lobby-based deployment

The main goal of the DDS is to be able to handle
hundreds of thousands user processes. In DDS world each
user process is controlled by a DDS agent (watchdog).
Having all agents connecting back to a central DDS
server (commander) is extremely resource consuming.
We therefore implemented a so-called lobby-based
deployment feature.

DDS agents of a given user on one host represent a
lobby. A lobby leader is the only agent, which has a direct
network connection to commander. A lobby leader is
elected locally on each host. The election process is a
local negotiation between agents and no connection to the
commander is required. All other agents are lobby
members communicating with the commander via the
leader. Agents of a given lobby communicate with each
other via shared memory channels.

DOI:10.15120/GR-2018-1

B Nework i SM €t et -

] commander g, Forwarder e 3 ==

/i'{v;: I e
..... A
DDS :
'server_‘
Figure 1: Schematic view of a DDS lobby-based
deployment.

DDS session

We used to have only one main use case, which is Alice
Online. For such a case it was enough to run one DDS
session per user per host. Now other uses cases coming
into the game. In offline analysis there are use cases,
when a single user needs to run multiple different
topologies hosting DDS commander on the same host.
For the Grid and different RMS it might be useful to run
DDS in a batch mode. For all these new use cases it is
necessary to support multiple runtime topologies per user
per host.

In order to cover these use cases a DDS session feature
has been introduced. This new feature offers users a
possibility to run multiple commanders on the same host.
Each new commander instance creates a DDS session.
Sessions are sandboxed and isolated, therefore can’t
disturb each other. Sessions can be operated (listed,
cleaned, sorted, etc) using the new dds-session command.

References
[11 The Dynamic Deployment System (DDS),
http://dds.gsi.de
[2] The BOOST C++ Libraries, http://boost.org
323

RESEARCH-WTA-2

GSI-FAIR SCIENTIFIC REPORT 2017

New release v6.3 of data acquisition framework MBS

J. Adamczewski-Musch®, Nikolaus Kurz', Sergei Linev"

'GSI, Darmstadt, Germany.

Since November 1, 2017, the MBS version 6.3 has be-
come the new production version [1]. MBS version 6.3
replaces the old production version 6.2. The new MBS
and its commands can be used as before.

New features

MBS version 6.3 provides several new features and im-
provements at the GSI installations. These are described
in the following.

New GSI servers for MBS with dedicated VLAN

At GSI a pair of new servers for the MBS systems is in
operation since May 2017. It will provide the DHCP,
TFTP and NFS services for the diskless MBS nodes. In
addition to the NFS mount point of the MBS installation
("/mbs") and various user partitions, the server will also
provide NFS nodes with software installations of dabc
("/dabc"), Go4 (“/analysis"), and of EPICS ("/epics")
frameworks for suitable platforms. Together with the new
server, all MBS nodes moved from GSI LAN into the
Virtual Local Area Networks (VLAN) MBS-NETZ (mbs
nodes for experiments) or MBS-NETZ-ACC (nodes for
accelerator tasks).

Support of 64 bit Linux

The complete source code of the MBS framework has
been remanufactured to work also on 64 bit Linux sys-
tems. This has been tested on several X86 PC nodes run-
ning with Debian 7 and Debian 9. As a benefit from the
enhanced address space, a larger pipe memory can be set
up on such systems.

Linux device driver software

The driver software for the PCle optical receiver boards
PEXOR and KINPEX has been newly implemented for
x86 Linux platforms [2]. This consists in a new kernel
module "mbspex" with corresponding C library. Addi-
tionally, a command line tool" gosipcmd" allows front-
end configuration and controls from the system shell.

Front-end control GUIs

Several Graphical User Interfaces (GUI) applications
have been developed to monitor and control the properties
of different kinds of front-end boards at the GOSIP read-
out chain. They are based on the Qt graphical library and
are executed locally on the MBS readout nodes hosting

References

[1] J. Adamczewski-Musch, N. Kurz, S. Linev: “GSI
Data Acquisition System MBS Release Notes V6.3”,
GSI, November 2017, https://www.gsi.de/mbs

[2] J.Adamczewski-Musch, N.Kurz, S.Linev:
"MBSPEX and PEXORNET - Linux device drivers

324

the KINPEX board. Communication between such GUIs
and the read-out slaves is provided by the mbspex device
driver library safely concurrent to the MBS read-out. Cur-
rently GUIs are available for the proprietary GSI front-
ends POLAND, NYXOR, FEBEX2 (TUM-addon), AP-
FEL, and TAMEX2 (with PADI).

Remote control via DABC

In addition to the existing MBS status server socket,
two new socket channels have been introduced to MBS
for control with the software framework DABC [3]. They
can be started optionally. Firstly they allow a remote
steering of the MBS console from external scripts using
the DABC "mbscmd" executable. Moreover, a DABC
session connected to MBS in this way offers an HTTP
server with a web browser GUI designed for generic MBS
monitoring and control. Such DABC web server for MBS
has been installed at all GSI MBS Linux nodes, and can
be started by alias command "webmbs" [1].

White Rabbit support

The future FAIR general machine timing distribution
will be based on the White Rabbit system [4]. The White
Rabbit timing receiver (WRT) hardware PEXARIA
(PCle), EXPLODERSA (PCle, USB), and VETAR2A
(VME) is supported by MBS. WRTSs provide a special
"Time Latch Unit" (TLU) that can record the time stamp
when an input signal changes, e.g. by the trigger signal.
Driver software release "Cherry v4" of GSI-CSCO has
been deployed on all MBS Linux platforms. Additionally,
dedicated drivers for VMEbus on RIO4 and IPV systems
have been developed. Especially for MBS, a "direct TLU
access" mode is being tested to speed up the timestamp
read-out compared with regular etherbone cycles.

New mass storage interface LTSM

A new API Lightweight Tivoli Storage Manager
(LTSM) [5] is going to replace the RFIO interface to di-
rectly write DAQ data into the tape robot at GSI. MBS
v6.3 still supports the RFIO protocol for local disk servers
and for any existing GSI RFIO tape servers. Additional-
ly, a special local RFIO server has been developed as a
gateway to the LTSM archive [1]. This gateway applica-
tion will be further tested and deployed at GSI in 2018.

for PCle Optical Receiver DAQ and control”,
IEEE TNS Vol 6-2 (February 2018),
https://doi.org/10.1109/TNS.2017.2783043

[3] The DABC framework, http://dabc.gsi.de

[4] General Machine Timing System at FAIR wiki,
https://www-acc.gsi.de/wiki/Timing/WebHome

[5] T. Stibor et al, LTSM source code, available:
https://github.com/tstibor/ltsm/

DOI:10.15120/GR-2018-1

GSI-FAIR SCIENTIFIC REPORT 2017

RESEARCH-WTA-3

Progress in FairDB development

D.Bertini® and Evgeny Lavrik?®

'GSI, Darmstadt, Germany; Universitat Tubingen, Germany.

Introduction

FairDB[1] is a ROOT[2] based virtual database which
allows to communicate and store data in different data-
base management systems, such as PostgresSQL,
MySQL, SQL.ite, based on the configuration. One of the
primary use for it is FairROOT[3][parameter storage.
FairDb is an insert only database, meaning there is no
need to update the single entries and the whole history of
the entries is available.

Data serialization

The base FairDb parameter classes have been expanded
to support the data serialization in the JSON format. This
allows the data exchange with non-ROOT environments
such as LabVIEW][7] and web services. In addition to the
existing data aggregation mechanism the introduction of
the relational mechanism allows to establish one-to-one
and one-to-many links between stored entries.

Database ROOT class generation

To improve the user experience, reduce the number of
errors and further enhance the feature set of the FairDB
the database class generation mechanism have been added
[5]. It provides a web application based user interface to
define the data format, which needs to be stored. Here, the
user defines the classes, their properties and relations be-
tween classes. The classes are organized in projects,
which can be loaded to and from the disk (Fig. 1).

Figure 1: Graphical user interface to define the database
classes organized together in projects.

Precise configuration of the properties such as their
C++ type, database type, JSON type, default value etc. is
available (Fig.2).

DOI:10.15120/GR-2018-1

Figure 2: Graphical user interface to define the database
class properties and relations.

After defining the class data, the user is offered to gen-
erate the class library, which is ready to be included into
the FairROOT framework. Additionally the database con-
figuration file and a template database data priming mac-
ro are included into the generated library.

For the detector groups using LabVIEW in their work,
the generation of the LabVIEW class library is available.

Database content management system

Based on the user input for the class generation the con-
tent management system for the user data can be generat-
ed. This includes the RESTful web service, which com-
municates to the FairDB and serves the data in the JSON
format for the consuming web application. The service
provides the role-based data access control, requiring the
user to authenticate before accessing the data. The secure
HTTPS protocol is enforced for the data exchange be-
tween web service and web application. The web applica-
tion itself allows the user to view, edit and add data to the
database. The administrator's workplace allows managing
users, who have access to the database, define their role
and permissions to view and edit data. The content man-
agement system is generated based on the template and
can be further expanded for functionality such as plotting
the graphs based on the stored data. Visualization of the
ROOT-native data such as TGeoVolume is available with
JSROOQT [6] framework.

Using FairDB: QA Data Scheme

The usage of the FairDB was covered in [4] and since
then has been expanded to support the recent develop-
ments.

325

RESEARCH-WTA-3

In a framework of the STS sensor optical inspection
project the relational database schema have been devel-
oped and used for the data export (Fig. 3). The data gath-
ered for 25 sensors inspected have been exported into
FairDB which resulted in more than 49000 records insert-
ed and the SQLite database file size of 18,9 MB.

Figure 3: The database schema for the optical QA of the
STS silicon sensors

The class generation described above was used to cre-
ate the ROOT classes for data storage. The primary
measurement data is obtained from LabVIEW program
and stored in JSON format. A ROOT export macro was
used to read the JSON data, deserialize it and store in the
FairDB.

Using the generation of the database content manage-
ment system the exported data was made available for the

References

[1] D. Bertini. FairRoot Virtual Database (User Manual)

[2] R. Brun, F. Rademakers, P. Canal, I. Antcheva, D.
Buskulic, O. Couet, A. and M. Gheata {\it ROOT
User Guide} CERN, Geneva 2005

[3] The FAIR simulation and analysis framework 2008 J.
Phys.: Conf. Ser. 119 032011

[4] D. Bertini {\em et al.}, CBM Progress Report 2015

[5] https://cbmgsi.githost.io/evgeny.lavrik/dbClassGen

[6] https://github.com/root-project/jsroot

[7]1 http://ni.com/labview

326

GSI-FAIR SCIENTIFIC REPORT 2017

external users to be visualized and edited if allowed. The
figure 4 (Fig. 4) shows the user workspace to view and
edit the information about the sensor vendor.

* b

Figure 4: The generated graphical user interface to view
the data of a data

Conclusion

FairDB virtual database provides flexible way to store
and access detector specific data. The recent develop-
ments were targeted to enhance the user experience when
defining the data to be stored. The generation of ROOT
classes in a standard way not only simplifies the process
but further improves the stability of the code as well.

The generation of the content management systems al-
lows the ease of visualization and manipulation.

DOI:10.15120/GR-2018-1

GSI-FAIR SCIENTIFIC REPORT 2017

RESEARCH-WTA-4

Status of the ALICE Tier2 Centre at GSI and first prototype of an ALICE
Analysis Facility

K. Schwarz', S.Fleischer?, R.Grosso®, J.Knedlik!, P. Kramp®, T.Kollegger™
'GSI, Darmstadt, Germany

This article describes the improvements implemented in
2017 in order to increase the reliability and performance
of the ALICE Tier2 Centre at GSI as well as the setup of
a first prototype of an ALICE Analysis Facility.

ALICE Tier2 centre at GSI and ALICE Grid
in Germany

The ALICE Tier2 centre and the National Analysis Fa-
cility at GSI provide a computing infrastructure for the
ALICE Grid and for the local usage of the German AL-
ICE groups. The storage resources pledged to the global
ALICE community (2300 TB) are provided via a Grid
Storage Element which consists of a set of xrootd dae-
mons in a redundant setup mode running on top of the
Lustre file system. The main elements are two xrootd
redirectors with a DNS alias as single point of entry in
combination with three xrootd data servers as well as two
xrootd forward proxy servers. The redirector of the GSI
storage element is using the split directive of xrootd and
redirects external clients to the external interfaces of the
xrootd data server machines and internal clients to the
internal interfaces which are directly connected to the
local Infiniband Cluster. The xrootd forward proxy serv-
ers provide the possibility to Grid jobs running inside the
protected HPC environment to read and write data from
and to external data sources using the proxy interface. All
ALICE Grid jobs running at GSI make use of the contain-
er technology Singularity. In this way the jobs can run
smoothly in their standard Scientific Linux environment
on top of the Debian based host system of the GSI HPC
cluster. The complete setup is shown in fig. 1.

Throughout the year GSI participates in centrally man-
aged ALICE Grid productions and data analysis activities,
but also analysis jobs of individual users are running on
the ALICE Tier2 centre. The overall share of successfully
computed jobs in 2017 contributed by the German Grid
sites, the GSI Tier2 centre and Forschungszentrum Karls-
ruhe (ALICE Tierl centre) has been 10% of all ALICE
Grid jobs worldwide. This corresponds well with the
promised CPU resources for 2017: 28000 HEP-SPEC06
for GSI Tier2 (7% of the global Tier2 requirements) and
60500 HEP-SPECO06 for FZK (25% of the global Tierl
requirements).

References

[1] K. Schwarz et. al. First Challenges for the ALICE
Tier2 Centre at GSI (PS05-4-466) Journal of Physics:
Conference Series 331 (2011) 052018

[2] J. Knedlik, P. Kramp, Site specific XRootD related
development, this Scientific Report

DOI:10.15120/GR-2018-1

AALICE Central Services Remote ALICE grid centers

performs matching

between
the sites' capabilities

jobs' requirements

read from
and write to

Storage Element

E

wobox Ixalird baliproxy2 | Ixaliproxy3
¥ is @ DNS A record with IPs of |
bxalirdl Ixalird2

R R

Ixalisel Ixalise2 Ixalise4

sends |DL file to

sends job Agents to
the queue of the

mounts
Computing Cluster

Logical Cores:
approx 32000
ALICE T2 (2018):
23000 HEP-SPECO6G
ALICE AF (2018):
1000 concurrent jobs

Lustre Filesystem

Total: approx 14 Pi8
ALICE T2 (2018): 3000 Tig
ALICE AF (2018): 600 TB

requests the actual job from

ALICE T2 center at G5l

4 ecbia. Basipe i deblaiS e o ok €

Figure 1: Setup of the ALICE tier centre at GSI

Prototype of an ALICE Analysis Facility

In LHC Run 3 ALICE data analysis will take place on a
few dedicated Analysis Facilities of which GSI will be-
come one of the first. On the storage element only analy-
sis data sets (AODs) will be stored. A first prototype of an
ALICE Analysis Facility has been set up at GSI based on
the design of the current ALICE Tier2 centre, but opti-
mised for 1/O performance. Initial resources are 600 TB
disk space and 1000 concurrent job slots taken from the
Tier2 allocation. A first complete data set has been trans-
ferred and a first analysis train ran successfully.

XRootD Plugins

In order to optimise the current storage infrastructure,
namely the access to Lustre through XRootD data servers,
several XRootD Plugins have been developed. One solu-
tion provided is a server based Plugin which is able to
redirect XRootD file operations directly to Lustre thus
bypassing the need for Grid jobs running at GSI to double
the network traffic by first communicating with the
XrootD data servers. A second Plugin creates symlinks
for data stored on Lustre providing logical file names as
they are used in the ALICE Grid File Catalogue. A third
solution provided is a Plugin which reports to the central
ALICE Grid Monitoring the ALICE Grid quota on Lustre
instead of the full Lustre capacity at GSI as it did before.
All three Plugins described above are in operational mode
at the ALICE Analysis Facility prototype at GSI.

327

RESEARCH-WTA-5

GSI-FAIR SCIENTIFIC REPORT 2017

Status of the R3BRoot framework

D. Kresan', M. Al-Turany', V. Wagner’, M. Heil', B. Loher'”, the R’B collaboration,
and the FairRoot group

'GSI, Darmstadt, Germany; *“TU, Darmstadt, Germany

Reactions with Relativistic Radioactive Beams (R®B) is
an international collaboration [1] which will perform nuc-
lear physics experiments at the future FAIR facility. The
focus of these experimental studies is put on nuclear
structure and dynamics of exotic nuclei far off stability, as
well as astrophysical aspects and technical applications.
Combination of different detection sub-systems and a
sophisticated data acquisition require a dedicated software
package to allow physicists both to simulate an experi-
ment and to analyze experimental data. The R3BRoot
software framework [2] was created for this purpose. It is
based on FairRoot [3] — common software for FAIR ex-
periments. A group of 17 developers is currently working
on extending features of R3BRoot and including support
for all planned R®B detectors. The framework is written in
C++, is ROOT based, compiled of approximately 35000
lines of code and can be deployed on Linux and macOS.
The C++11 standard is supported. The code is stored and
distributed via GitHub [4] with continuous integration
workflow. Close to 40% code coverage with quantitative
automatic tests allow to immediately detect possible viol-
ations of the program functionality and to results of nu-
meric algorithms.

Data analysis

Several experiments, including the commissioning run
of R’B, will be performed fall of 2018 using beam from
SIS18 at GSI. The largest effort is put into the develop-
ment of algorithms for detector calibration up to so-called
HIT-level: measurement of coordinates in cm (local
frame), energy-loss in MeV and time in ns. Following de-
tectors are currently calibrated in R3BRoot: start detector
LOS, proton and gamma calorimeter CALIFA, neutron
detector NeuLAND, heavy fragment tracker arm PSPx,
TOFd, and proton ToF wall. The later analysis stage,
which is called fragment tracker, should combine the
single measurements and fit an ion trajectory in a non-ho-
mogeneous dipole field in order to determine mass and
momentum of a reaction fragment. This measurement in
combination with data from proton ToF wall and Neu-
LAND will give the possibility to calculate properties of
incident reaction.

Another important tool, which is also being developed,
is an online event-display to support near-line analysis
during data taking. The online event display of R3BRoot
will be a tool for monitoring of the detectors and for an
immediate decision about the quality of the data. Several
successful tests were already performed with cosmic rays.

Simulation

Simulation of the upcoming R’B experiments is re-
quired for:
* detailed design of a setup,

328

» feasibility study of a measurement of an observ-
able,

* development and testing of physics analysis al-
gorithms,

* a better understanding of background effects,
present in experimental data.

In order to develop an algorithm for fragment tracking
and to compare simulated and experimental data on the
HIT level, digitizer tasks have been implemented for
TOFd and 3 tracking fiber detectors. A digitizer is an al-
gorithm, which simulates the response of a detector and
converts Monte Carlo results into detector-like signals.
Mainly effects from geometry granularity, read-out
scheme, and non-perfect resolution were included.

Figure 1: Visualisation of the R’B detector geometry and
particle trajectories using the simulation event display of
FairRoot. Large volume in the middle — GLAD magnet.
Beam direction from the bottom left corner.

Concerning the neutron measurement, a new algorithm
based on statistical scoring is being developed and tested
with simulated data. This new technique should have bet-
ter performance with respect to separating classes of
multi-neutron events.

The simulation code for CALIFA spectrometer is under
construction to match detector response of the real-size
prototype, which will be also tested during experiments
end of 2018.

The development of the fragment tracker is ongoing.
Currently, we have the tool for propagating a charged
particle in the magnetic field of GLAD through the de-
tector geometry and a machinery for the fitting of ideal
measurements without taking into account energy-loss in
a material. The first realistic version of the algorithm is
expected mid of 2018.

Summary

Current status of software development in R*B, presen-
ted in this report, is the result of coordination of activities
within the international community, representing different
detector working groups. R3BRoot is on a good track to-
wards supporting experimental runs fall of 2018 / 2019

DOI:10.15120/GR-2018-1

GSI-FAIR SCIENTIFIC REPORT 2017

and towards performing high-level physics analysis of ac-
cumulated data. Preliminary tests of the fragment tracker
show feasibility of momentum reconstruction with resolu-
tion in the order of 107.

DOI:10.15120/GR-2018-1

RESEARCH-WTA-5

References

R’B, https./www.gsi.de/r3b

R3BRoot, http./www.r3broot.gsi.de

M. Al-Turany et al., J. of Phys. Conf. Ser. 396 (2012)
022001

R3BRoot code repository, https./github.com/R3B-
RootGroup/R3BRoot.git

329

RESEARCH-WTA-6

GSI-FAIR SCIENTIFIC REPORT 2017

Ongoing site specific XRootD related development

J. Knedlik, P. Kramp*
'GSI, Darmstadt, Germany

1.1 Abstract

Operating an XRootD service, the established software
standard for WAN data access in HEP and HENP. Ac-
cessing the scientific data, stored on-top of the HPC infra-
structure at the ALICE Tier 2 centre and the ALICE
Analysis Facility prototype at GSI, revealed multiple
challenges and requirements. This article describes the
current state of development for XRootD based solutions,
especially XRootD client & server plug-ins.

1.2 ALICE Analysis Facility & XRootD

GSI is operating the only German ALICE Tier 2 centre
and will operate one of the first ALICE Analysis Facili-
ties(ALICE AF) for which a prototype is currently being
set up. In this context, GSI will provide computing and
storage resources to the ALICE community. In ALICE’s
AliEn Grid framework data is accessed through the
XRootD protocol. XRootD enables the use of this data
through a scalable federated storage system. At GSI, in-
stead of operating XRootD servers with local storage, the
shared HPC Lustre filesystem is used as storage backend
of the XRootD servers. In AliEn, Grid jobs requiring the
same data are preferably scheduled on the same site to
lower the need for traffic between sites. This means, that
local data is reused many times and therefore it is essen-
tial to optimize the 1/O performance.

1.2.1 Improving the 1/0O performance at GSI us-
ing XRootD plug-ins

With the current storage infrastructure at GSI, namely
the access to Lustre through the XRootD data servers, the
following room for improvement has been identified: The
three XRootD dataservers can provide limited 1/0 band-
width and all data read locally via XRootD from Lustre
needs to be sent over the network twice (Lustre to XrootD
server & XrootD server to client), effectively doubling the
network traffic for an 1/0 operation.

In addition, the need for additional XRootD dataservers
to handle data is eliminated.

As an improvement to last years solution®, an XRootD
client plug-in, which had to be loaded by all clients run-
ning on the GSI hpc cluster, an XRootD redirector plug-in
was developed.

A redirector server may load this plug-in in order to re-
direct clients to locally available files, if both client and
redirection target are inside a private network, as this
guarantees local availability of the required file at the
Lustre filesystem. In order to allow redirection to a local
file, additional changes needed to be implemented into the
XRootD base code.

The cooperation with the XRootD core development
team resulted in the integration of necessary client
and server side changes in the XRootD base code. Since

330

XRootD Version 4.8.0, a local redirection of a client by a
redirector is possible with the use of the cms plug-in we
developed. In addition, the plug-in is able to distinguish
between new and old clients and will only redirect newer
clients that have the capability to handle such a redirec-
tion to a local file.

1.3 XRootD Disk Caching Proxy for oppor-
tunistic resources

In cooperation with KIT, an infrastructure for the utili-
zation of opportunistic resources such as clouds, has been
developed for CMS. The idea is to build a virtual site in-
side the opportunistic resource. In order to minimize ex-
ternal 1/0 and to provide high data locality, an XRootD
disk-caching-proxy is used.
In this setup, all clients access data through a redirector,
which tells the client the location of the desired data. The
redirector either directs the client towards the locally
available shared filesystem, in case the data exists on it,
or to the disk-caching-proxy. The disk-caching-proxy
forwards the request to external sites and retrieves the
data. In the meantime, the data is being cached on the
shared filesystem for later use.
In case jobs working with the same data are bundled to-
gether, this infrastructure minimizes 1/0 and speeds up
data accesses inside the virtual site.
This infrastructure relies on XRootD-plug-ins developed
at GSI. One plug-in handles the referral to the redirector2
while the second plug-in handles the redirection to the
proxy or shared file system3. A test setup has been de-
ployed on the bwhpc4 cluster NEMO at Freiburg

1.4 Conclusion

In conclusion we have implemented XRootD plug-ins
redirecting clients to data on Lustre which significantly
improves the 1/O performance. Last years proposed
changes have been integrated into the XRootD main base
by the XRootD development team. In addition, an
XRootD infrastructure to utilize opportunistic resources
has been developed.

References
[1] "GSI Scientific Report 2016, doi = 10.15120/GR-
2017-1, http://dx.doi.org/10.15120/GR-2017-1
[2] https://github.com/pkramp/RedirPlugin/tree/kit-proj
[3] https://github.com/jknedlik/XrdProxyPrefix/tree/kit-
proj
[4] http://www.bwhpc-c5.de/en/

DOI:10.15120/GR-2018-1

GSI-FAIR SCIENTIFIC REPORT 2017

RESEARCH-WTA-7

Annealing studies of avalanche photodiodes irradiated with different y-doses

R. Ganai', A. Wilms', D. Scharnberg', J. Bailey', A. El Mosleh', P. Wicke', H. Al-Turany', C.
Warneke'.

!GSI, Darmstadt, Germany.

Introduction

Avalanche PhotoDiodes (APDs) used in High Energy
Physics (HEP) experiments are supposed to operate at
very hard environmental conditions like high magnetic

elds and high radiation doses for a long period of time.
Hence the long term annealing behavior needs to be
investigated. Preliminary results of an annealing period of
~7 days under applied bias voltage are presented in this
report.

Annealing studies of APDs

Sixteen APDs were irradiated with di erent y-doses of
37 Gy, 100 Gy, 200 Gy, 500 Gy, 1000 Gy, 1500 Gy, 2200
Gy and 2680 Gy. Eight of them were operated with bias
voltage applied during irradiation and the others had no
electrical contacts during irradiation. After irradiation, the
APDs were annealed with a reverse bias voltage of 100 V
applied for ~7 days at the Photo Sensor Laboratory (PSL),
GSI. During annealing, the temperature was raised from
room temperature to 80° C and was then kept constant.
The current values for biased and unbiased APDs during
irradiation were monitored during the whole annealing
period and are shown in Figure 1 and Figure 2
respectively. The applied y-dose values are stated in the
included legends.

Current (nA)

25001

2000

1500

1000

- 37Gy

- 100 Gy

- 200Gy
500 Gy
1000 Gy

- 1500 Gy

- 2200 Gy

- 2680 Gy

10°

HERERE T o0 : 30‘30 o 20 e
Time (s)
Figure 1: Annealing curves of eight di erent APDs

irradiated with di erent y-dose under the condition of
applied bias voltage during irradiation.

In order to investigate the long term annealing behaviour
of the APD current, the tail parts of the curves shown in
Figure 1 and Figure 2 (in the time interval of 200%10° s —
620%10° s) were tted with a linear function. A
comparison of the decrease in the rate of change of the
leakage current values for all sixteen APDs is shown in
Figure 3.

DOI:10.15120/GR-2018-1

2500/ - 370Gy
- 100 Gy
- 200 Gy
500 Gy
1000 Gy
- 1500 Gy
- 2200 Gy
- 2680 Gy

2000

Current (nA)
@
8

1000

L -
M 100 200 300 400 500 600
Time (s)

Figure 2: Annealing curves of eight di erent APDs
irradiated with di erent y-doses with no electrical
connections during irradiation.

* Biased APDs
* Unbiased APDs

Rate of change in current (nA / hr)
& . R &

306400500800 70001200 140" 76007800 3000 2200 3400 3600 35
Gamma dose (Gy)

Figure 3: Comparison of the decrease in the rate of
change of the leakage current for APDs irradiated under
biased and unbiased conditions. The error bars are
within the marker size.

Results and conclusion

A set of 16 APDs was annealed with a reverse bias
voltage of 100 V after irradiation with di erent y-doses.
The annealing temperature was increased from room
temperature to 80° C and was then kept constant. The
decrease of the APD leakage current was studied,
regarding the in uence of long term annealing e ects.
The higher the y-radiation dose was, the faster the leakage
current decreases. This is consistent with the assumption
of an exponential time dependence of trap recovery with a
large time constant (~10° s). The unbiased APDs showed
higher rate of decrease in current with respect to biased
APDs except for a y-dose of 1500 Gy which needs to be
tested in more detail.
Acknowledgment

We sincerely acknowledge the help rendered by our
colleagues at UGC-DAE Consortium for Scienti ¢
Research, Kolkata Centre and Mr. Vinod Singh Negi, for
their sincere e orts to irradiate the APDs with di erent y-
doses.

331

RESEARCH-WTA-8

GSI-FAIR SCIENTIFIC REPORT 2017

Development of a 128 channel < 500 ps RMS TDC system for MBS DAQ
H. Heggen', S. Minami' and N. Kurz'

'Experimentelektronik — GSI, Darmstadt, Germany

Introduction

The precise measurement of time has become one of if
not the most important tool in particle identification ex-
periments which usually rely on time-of-flight, drift time
and/or pulse-width measurements. Most of the in-house
time-to-digital converter (TDC) developments of recent
years were aimed at achieving highest precision (down to
7 ps) [1,2]. However, there are many applications that do
not require such high precision and which would benefit
from a system with moderate precision but higher channel
density and lower channel price. Here we report on the
development of a TDC system with 128 channels and a
precision better than 500 ps for the MBS (Multi Branch
System) data acquisition framework [3,4,5].

Prototype hardware

The prototype hardware (see figure 1) features 128 dif-
ferential input channels for LVDS signals. The channels
are distributed over 8 board-to-cable connectors to allow
the connection of 16-channel front-end cards via flexible
flat cables. A first 16-channel analog front-end based on
the PADI (preamplifier-discriminator) ASIC [6] has also
been developed (see figure 1). The front-end features a
standard 2.54 mm square socket for signal input making it
easy to adapt to various detector systems. The PADI
front-end is designed for input signals between a few mV
and ~200 mV. Larger signals can be accommodated by
equipping an attenuator network at every input.

Results & Outlook

Laboratory tests with the described prototype system
already yield an average precision well below 400 ps
RMS for both, channel-to-channel and pulse-width meas-
urements. The TDC is dead-time free and currently has a
double-pulse resolution of ~10 ns. However, development
of the FPGA circuit implementation is still ongoing [7]
and these figures are not final yet.

The prototype system has also just been deployed in a
first beam time at KVI-CART, reading out a total of 1024
channels of multi-anode photomultiplier tubes to test vari-
ous fibre detector prototypes for the NUSTAR-R3B ex-
periment. The tests were very successful for both, detect-
ors and electronics and preparations have been started to
equip the R3B experiment with 2048 readout channels for
the 2018 beam time.

For the coming years, more than 6000 readout channels
are foreseen at the R3B experiment and the development
of dedicated hardware has been started. Various other
NUSTAR experiments and Super-FRS particle identifica-
tion are also considering the use of this new TDC system,
potentially adding up to another 25 000 channels in the
long-term.

332

bt

Figure 1: The prototype hardware consists of the CLK-
TDC-128 motherboard with 128 channels (LVDS inputs)
tailored to read out up to eight 16-channel analog front-
ends based on the PADI ASIC [3].

References

[1] C. Ugur et al., "264 Channel TDC Platform applying
65 channel high precision (7.2 psRMS) FPGA based
TDCs", IEEE Nordic Mediterrancan Workshop on
FPGA based TDCs (NoMe TDC), 2013, p. 1-5;

[2] C. Ugur et al., "A novel approach for pulse width
measurements with a high precision (8 ps RMS) TDC
in an FPGA", Topical Workshop on Electronics for
Particle Physics (TWEPP), 2016.

[3] H.G. Essel and N. Kurz, "The General Purpose Data
Acquisition System MBS", IEEE Trans. Nucl. Sci.,
vol. 47, no. 2, 2000, p. 337-339, www.gsi.de/mbs;

[4] J. Adamczewski-Musch et al., "MBSPEX and PEX-
ORNET-Linux Device Drivers for PCle Optical Re-
ceiver DAQ and Control", IEEE Trans. Nucl. Sci.,
vol.65, no. 2, 2018, p. 788-794;

[5] S. Minami et al., "Design and Implementation of a
Data Transfer Protocol Via Optical Fiber", IEEE
Trans. Nucl. Sci., vol. 58, no. 4, 2011, p. 1815-1819.

[6] M. Ciobanu, "PADI, an Ultrafast Preamplifier-Dis-
criminator ASIC for Time-of-Flight Measurements",
IEEE Transactions on Nuclear Science, vol. 61, no. 2,
2014, p. 1015-1023.

[7] S. Minami et al., "An FPGA implementation of a
128-channel sub-nanosecond time-to-digital con-
verter", in this report.

Experiment beamline: FRS / R3B

Experiment collaboration: NUSTAR-R3B / NUSTAR-
SuperFRS-Experiments

Accelerator infrastructure: Super-FRS

DOI:10.15120/GR-2018-1

GSI-FAIR SCIENTIFIC REPORT 2017

RESEARCH-WTA-9

An FPGA implementation of a 128-channel sub-nanosecond
time-to-digital converter

S. Minami', H. Heggen' and N. Kurz!

!GSI, Darmstadt, Germany

There has been demand for the development of a time-
to-digital converter (TDC) which has moderate time
resolution, better than 500 ps, but has high channel
density to be cost effective. The technique to redlize field
programmable gate array (FPGA) based TDCs have long
been studied by many former works[1-3]. The easiest way
to implement a TDC in a FPGA is to sample an input
signal with a flip-flop operated by a clock with period
Tak., resulting in a TDC bin width of Tgk. In order to
achieve better precision than the method limited by
maximum clock frequency of FPGAs typicaly around
500 MHz, we have adopted a method sampling the input
signal with a set of several phase-shifted clocks of the
same frequency. In the ideal case that al clocks are
distributed without delay and skew, this resultsin a TDC
bin width of Tak/Nak where Nk is the number of shifted
clocks. The method consumes low amount of logic
resources, allowing the integration of more channels per
FPGA [3].

In recent years, various front-end electronics with
FPGAs and the small form-factor pluggable (SFP)
transceivers have been developed to coop with our data
acquisition (DAQ) framework, the multi-branch-system
(MBS), supporting readout by a standard PC equipped
with a PCle card via our custom data transfer protocol
GOSIP [4]. We started the implementation of a TDC on
one of those existing devices with an XC7K160T, the
second smallest FPGA in Kintex-7 family, classified as
the best price/performance/wett at 28 nm[5].

The maximum frequency of the FPGA is 400 MHz,
however we started with a clock frequency of 250 MHz
and 8 phase-shifted clocks created by one Mixed-Maode
Clock Manager (MMCM) module just to achieve the
targeted precision of <500 ps [5]. As to the number of
input channels, 128 differential channels were
implemented since that is close to the limitation imposed
by the number of 10s of the FPGA. A 12-bit coarse time
counter operated by 250 MHz clock enables a maximum
trigger window of 16 ps. Ones among the 8 flip-flops for
fine time determination are summed and converted into 4-
bit-wide data. A fine time and a coarse time for leading
edges and trailing edges of a single input are combined
and stored in a ring-buffer with a depth of 1024. At the
very moment a pre-set trigger delay time has passed after
accepting a trigger signal, the data in the ring-buffer are
examined on whether they are within a pre-set time
window relative to the trigger time. Only valid data are
recorded in the second buffer of the same size. After
parallel processing of 129 channels including the trigger
signal, the data are merged into one of two output buffers
with a size of 16 Kbytes connected to the GOSIP readout

DOI:10.15120/GR-2018-1

module. The implemented TDC utilized only 24 % of the
FPGA logic resources as listed in Table 1.

Resource Used Available Utilization
Slice LUT 24324 101400 24 %
SliceFlip-Flop 46664 202800 23%
Block RAM 275 325 85 %
MMCM 2 8 25%
10 384 400 96 %

Table 1. Resource utilization of the FPGA TDC[5]

A new electronics dedicated TDC applications, CLK-
TDC-128, has been designed and produced [6]. The
precision of the FPGA TDC on the new electronics was
evaluated by measuring time differences between 2
channels using a LVDS fan-out board. The single channel
RM S resolutions were demonstrated to be better than 400
psfor al the channels.

References

[1] J. Kalisz, “Review of methods for time interval
measurements ~ with picosecond resolution”,
Metrologia 41, 2004, p.17-32

[2] C. Ugur et al. "264 Channel TDC Platform applying
65 channel high precision (7.2 psRMS) FPGA based
TDCs," IEEE Nordic Mediterranean Workshop on
FPGA based TDCs, (NoMe TDC) 2013 pp.1-5

[3] M. Biichele et al.,, “The GANDALF 128-Channel
Time-to-Digital Converter”, Physics Procedia 37,
2012, p. 1827-1834; A. Balla et al, “The
characterization and application of a low resource
FPGA-based time to digital converter”, Nucl. Instr.
Meth. Phys. Res. A 739, 2014, p. 75-82

[4] H.G. Essel and N. Kurz, “The General Purpose Data
Acquisition System MBS,” IEEE Trans. Nucl. Sci.,
vol. 47, no. 2, 2000, p. 337-339; J. Adamczewski-
Musch et al.,, “MBSPEX and PEXORNET-Linux
Device Drivers for PCle Optical Receiver DAQ and
Control” IEEE Trans. Nucl. Sci., vol.65, no. 2, 2018
p. 788-794; S. Minami et al, “Design and
Implementation of a Data Transfer Protocol Via
Optical Fiber” IEEE Trans. Nucl. Sci., vol. 58, no. 4,
2011, p. 1815-1819

[5] Xlinx Inc. 7-Series FPGAs Data Sheet: Overview
DS180 2018; 7-Series FPGAs Cloking Resources
User Guide UG472 2017

[6] H. Heggen et al., “Development of a 128 channel <
500 ps RMS TDC system for MBS DAQ” in these
reports

333

RESEARCH-WTA-10

GSI-FAIR SCIENTIFIC REPORT 2017

Monte Carlo simulations in FairMQ

R. Karabowicz', M. Al-Turany', D.Klein', T.Kolleger', D.Kresan', A.Lebedev', A. Manafov',
A. Rybalchenko', F. Uhlig’

'GSI, Darmstadt, Germany

The FairMQ framework developed currently by the
FairRoot group allows users reliable and transparent data
exchange between devices — computer processes created
by the user. The following paper summarizes our effort to
run Monte Carlo simulations in separate devices parallelly
and store or analyse created data.

Simulation parallelization

The Monte Carlo simulations are arguably one of the
most time and resource consuming parts of the computing
aspects of the modern experiments. Many efforts are com-
mitted to facilitate the costly simulations, and these can
be grouped by the level of parallelization applied. The
most general strategy uses multi-processor computer
farms to run individual simulations that store output data
in separate output files. Similar approach was adopted by
the GEANT4 group, that uses multithreading to delegate
simulation of individual events to different threads. An-
other level of parallelism is to assign transport of single
particles to separate threads within one process. In this re-
port the first of the described approaches has been ap-
plied.

FairMQ simulation example

As a base for this work a running FairMQ example de-
scribed in [1] has been used. There, a set of devices to
read, analyse and store FairRoot compliant data has been
described. Two of these devices could be reused in the
simulation example, namely the FairMQEx9TaskPro-
cessor to process data, and the FairMQEx9Sink to store
the output data in a ROOT file. The ParameterMQServer
had to be greatly extended, its purpose to read parameter
files and to provide parameters needed to reconstruct the
data has been extended by the ability to receive paramet-
ers and to store them in output files. A completely new
device has been introduced, a FairMQSimDevice, to per-
form Monte Carlo simulations using standard FairRunSim
class, with user’s set of detectors specified in the running
executable.

The example topology is presented in the Figure 1.
Each box in the figure represents a running device. The
data flows from left to right through channels, drawn as
lines. The leftmost devices, the FairMQSimDevices, run
separate simulations of the same detector set. It should be
stressed that it is possible to start any number (limited by
the available resources) of these devices, thus increasing
the simulation event rate. In the shown example, the data
is sent straight to one of the FairMQEx9Sinks, where it is
stored directly in the ROOT file. Furthermore, the same
data is sent over to FairMQEx9TaskProcessor, which pro-
cesses the data in the way specified by the user task at-
tached to the processor. Such processed data is sub-
sequently stored in the ROOT file by the second FairM-

334

QEx9Sink. To perform more complicated tasks, the user
may create any other path for the data to be processed,
implementing layers of desired TaskProcessors.

Wmasmmaux
.

.al
FairMQ FairMQEx9

SimDevice » Task w_
W iy Processor
Ep—

ParameterMQ

FairMQ FairMQ

Ex9Sink

SimDevice
for simulation

FairMQ
Ex9Sink
for analysis

Server

Figure 1: Schematic view of the running topology.

In the bottom of the figure the ParameterMQServer
device is presented. It connects to the simulation devices,
which use the server to store the simulation parameters.
After receiving any of the parameters, the server automat-
ically saves them in a file specified by the user. The other
connection is reserved for the processing devices, which
need simulation parameters to process data. Besides, the
ParameterMQServer may read and distribute parameters
stored in ASCII or ROOT files.

FairSink

It is worthwhile to mention, that the FairMQSim-
Devices do not themselves write any data to disk. To al-
low this, the FairRootManager has been redesigned in a
way similar to that presented in [2]. Namely, the data stor-
ing functionality has been moved to a separate abstract
class, called FairSink. The default FairRoot macros store
data in the output ROOT files using FairRootFileSink im-
plementation. In the case of FairMQ, the produced date is
sent via FairMQSimDevice, which as well derives from
FairSink.

Summary

This paper presents the example of running the Monte
Carlo simulations in the FairMQ framework. The data
from simulations running parallelly on different processes
(even on different computers) may be sent to a device
capable of either storing the data or processing it. These
building blocks may be used by users as a base for creat-
ing more sophisticated topologies.

References

[1] R. Karabowicz et al, “Message based reconstruction
example in FairRoot”, GSI Scientific Report 2016.

[2] R. Karabowicz et al, “Redesign of the FairRootMan-
ager”, GSI Scientific Report 2014.

DOI:10.15120/GR-2018-1

GSI-FAIR SCIENTIFIC REPORT 2017

RESEARCH-WTA-11

Advancing shared memory transport in ALFA

A. Rybalchenko®, M. Al-Turany?, D. Klein®,
'GSI, Darmstadt, Germany;

The ALFA framework [1] is a common ALICE/FAIR
software layer that offers a platform for simulation, re-
construction and analysis for particle physics experi-
ments. In addition to standard services provided for simu-
lation and reconstruction, such as event generation, mag-
netic field and so on, ALFA also provides tools for inter-
node and inter-process data transport, configuration and
deployment. The FairMQ component of ALFA [2] pro-
vides building blocks for creating processes that com-
municate between each other via message passing. It of-
fers an abstract interface with different implementations
of different transport technologies. This report presents
the most recent developments and improvements to the
FairMQ transport layer with the focus on the shared
memory transport.

Shared memory transport in FairMQ

The original implementation of FairMQ used ZeroMQ
library [3] for transport of the data via network or inter-
process communication. It was quickly realized that in
order to stay future-proof, the transport details need to be
hidden from the user behind an abstract interface. Since
then two new transports have been introduced (and fourth
is under development) that the user can switch to via a
simple configuration change, without having to modify
any code. The new shared memory transport [4] builds
upon Boost.Interprocess library [5] in connection with
ZeroMQ to offer an efficient and zero-copy transport im-
plementation between processes on the same node.

Unmanaged region

The shared memory transport, as all other transports in
FairMQ, hides all memory allocation details from the
user, with the aim of ease of use. The user can simply
request memory of certain size, which, after filling, will
be transferred to further processes. However, in some
special cases the user needs to control the memory layout
and allocation in much greater detail. Example for this is
a detector readout that requires certain memory layout
restrictions and optimizations. Ideally, in such a use case
the data from this carefully controlled memory should
reach all of its receivers with no or minimal copies. This
becomes particularly important for shared memory, where
no copy is the main goal of the transport.

To support this a feature called Unmanaged Region has
been introduced to FairMQ. It allows to define a custom
memory region, which is under full control of the user.
The region is created using the transport methods provid-
ed by FairMQ, therefore ensuring maximum efficiency
and no unnecessary copies. The user can then give
FairMQ subsets of this region, which will be sent as mes-
sages to interested processes. In case of shared memory,
no copy of the data is involved. The receiver will see the
message as a regular message and does not need any spe-
cial knowledge of the region layout. Furthermore, the
sender is notified whenever a message has been processed

DOI:10.15120/GR-2018-1

by the receivers and the transport, so that it can then
cleanup and reuse the parts of the region.

Automated cleanup

All the shared memory creation and destruction in
FairMQ is done behind the scenes. Because shared
memory can outlive the process, a proper cleanup needs
to be done to avoid polluting the system with unused
memory. This is done automatically by the transport im-
plementation by monitoring shared memory usage and
cleaning up when all users have finished their work. Even
for the cases when processes crash, the memory will be
cleaned up by an automated and independent monitor
process. The cleanup tools also offer monitoring infor-
mation on the shared memory.

Flexible message creation

The most efficient way to prepare messages for transfer
in FairMQ is by requesting messages of certain size and
filling them with data. This avoid unnecessary copies of
user buffers to transport buffers. However, certain algo-
rithms, such as compression or reconstruction may not
know the size of their data in advance. To make sure they
also can be handled in an efficient way, FairMQ now pro-
vides a mechanism to request an upper bound size buffer
from the transport, which can be efficiently shrinked after
filling by giving the framework the used size. For shared
memory this allows rapid reuse of unused memory, and
for other transports this reduces the size of the transfers
and reduces the amount of meta information to include
with each message.

References

[1] M. Al-Turany et al., “ALFA: A new Framework for
ALICE and FAIR experiments”, GSI Scientific Report
2013

[2] A. Rybalchenko, and M. Al-Turany, “Streaming data
processing with FairMQ”, GSI Scientific Report 2013

[3] ZeroMQ: http://zeromg.org/. Last visit 15.03.2018

[4] A. Rybalchenko, and M. Al-Turany, “FairMQ status”,
GSI Scientific Report 2016

[5] Boost.Interprocess:
http://ww.boost.org/doc/libs/1_66_0/doc/html/interproc
ess.html Last visit 15.03.2018

Experiment beamline: none

Experiment collaboration: none
Experiment proposal: none

Accelerator infrastructure: none

PSP codes: none

Grants: none

Strategic university co-operation with: none

335

RESEARCH-WTA-11 GSI-FAIR SCIENTIFIC REPORT 2017

336 DOI:10.15120/GR-2018-1

