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Using a data set of 2.93 fb−1 taken at a center-of-mass energy 
√
s = 3.773 GeV with the BESIII detector 

at the BEPCII collider, we perform a search for an extra U(1) gauge boson, also denoted as a dark 
photon. We examine the initial state radiation reactions e+e− → e+e−γISR and e+e− → µ+µ−γISR for 
this search, where the dark photon would appear as an enhancement in the invariant mass distribution 
of the leptonic pairs. We observe no obvious enhancement in the mass range between 1.5 and 3.4 GeV/c2

and set a 90% confidence level upper limit on the mixing strength of the dark photon and the Standard 
Model photon. We obtain a competitive limit in the tested mass range.

 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Several astrophysical anomalies, which cannot be easily under-
stood in the context of the Standard Model (SM) of particle physics 
or astrophysics, have been discussed in relation to a dark, so far 
unobserved sector [1], which couples very weakly with SM par-
ticles. The most straightforward model consists of an extra U(1) 
force carrier, also denoted as a dark photon, γ ′ , which couples to 
the SM via kinetic mixing [2]. It has been shown in Ref. [1] that 
the dark photon has to be relatively light, on the MeV/c2 to GeV/c2

mass scale, to explain the astrophysical observations. Furthermore, 
it was realized, that a dark photon of similar mass could also ex-
plain the presently observed deviation on the level of 3 to 4σ
between the measurement and the SM prediction of (g − 2)µ [3]. 
These facts and the work by Bjorken and collaborators [4] trig-

gered searches for the dark photon at particle accelerators in a 
world wide effort [5,6]. Different experimental setups can be used, 
like fixed-target (e.g. Refs. [7,8]), beam dump (e.g. Refs. [9,10]), 
or low-energy collider experiments (e.g. Refs. [11,12]). The mixing 
strength ε = α′/α, where α′ is the coupling of the dark photon 
to the electromagnetic charge and α the fine structure constant, 
is constrained by previous measurements to be below approxi-
mately 10−2 [4].

In this letter we present a dark photon search, using 2.93 fb−1

[13] of data taken at 
√
s = 3.773 GeV obtained with the Beijing 

Spectrometer III (BESIII). The measurement exploits the process of 
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initial state radiation (ISR), in which one of the beam particles 
radiates a photon. In this way, the available energy to produce 
final states is reduced, and the di-lepton invariant masses below 
the center-of-mass energy of the e+e− collider become available. 
The same method has been used by the BaBar experiment [11,

12], where a dark photon mass mγ ′ between 0.02 and 10.2 GeV/c2

and ε values in the order of 10−3–10−4 have been excluded. We 
search for the processes e+e− → γ ′γISR → l+l−γISR (l = µ, e) with 
leptonic invariant masses ml+l− between 1.5 and 3.4 GeV/c2 . The 
ISR QED processes e+e− → µ+µ−γISR and e+e− → e+e−γISR are 
irreducible background channels. However, the dark photon width 
is expected to be smaller than the resolution of the experiment [4]

and, thus, a γ ′ signal would lead to a narrow structure at the mass 
of the dark photon in the ml+l− mass spectrum on top of the con-
tinuum QED background.

The BESIII detector is located at the double-ring e+e− Beijing 
Electron Positron Collider (BEPCII) [14]. The cylindrical BESIII de-
tector covers 93% of the full solid angle. It consists of the following 
detector systems. (1) A Multilayer Drift Chamber (MDC) filled with 
a helium-gas mixture, composed of 43 layers, which provides a 
spatial resolution of 135 µm and a momentum resolution of 0.5% 
for charged tracks at 1 GeV/c in a magnetic field of 1 T. (2) A Time-

of-Flight system (TOF), built with 176 plastic scintillator counters 
in the barrel part, and 96 counters in the end caps. The time res-
olution in the barrel (end caps) is 80 ps (110 ps). For momenta 
up to 1 GeV/c, this provides a 2σ K/π separation. (3) A CsI(Tl) 
Electro-Magnetic Calorimeter (EMC) with an energy resolution of 
2.5% in the barrel and 5% in the end caps at an energy of 1 GeV. 
(4) A Muon Counter (MUC) consisting of nine barrel and eight end-
cap resistive plate chamber layers with a 2 cm position resolution.

For the simulation of ISR processes e+e− → µ+µ−γISR and 
π+π−γISR , the phokhara event generator [15,16], which in-

cludes ISR and final state radiation (FSR) corrections up to next-
to-leading order, is used. Bhabha scattering is simulated with

babayaga 3.5 [17]. Continuum Monte Carlo (MC) events, as well 
as the resonant ψ(3770) decays to DD̄ , non-DD̄ , and the ISR 
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Fig. 1. Leptonic invariant mass distributions mµ+µ− and me+e− after applying the selection requirements. Shown is data (points) and MC simulation (shaded area), which is 
scaled to the luminosity of the data set. The marked area around the J/ψ resonance is excluded in the analysis. The lower panel shows the ratio of data and MC simulation 
(points) and the ratio of fit curve and MC simulation (histogram).

production of ψ ′ and J/ψ , are simulated with the kkmc gen-

erator [18]. All MC generators, which are the most appropriate 
choices for the processes studied, have been interfaced with the
geant4-based [19,20] detector simulation.

The selection of µ+µ−γISR and e+e−γISR events is straightfor-
ward. We require the presence of two charged tracks in the MDC 
with net charge zero. The points of closest approach from the in-
teraction point (IP) for these two tracks are required to be within 
a cylinder of 1 cm radius in the transverse direction and ±10 cm 
of length along the beam axis. The polar angle with respect to the 
beam axis θ of the tracks is required to be in the fiducial volume 
of the MDC: 0.4 < θ < π − 0.4 radians. In order to suppress spi-
raling tracks, we require the transverse momentum pt to be above 
300 MeV/c for both tracks.

Muon particle identification is used [21]. The probabilities for 
being a muon P (µ) and being an electron P (e) are calculated us-
ing information from MDC, TOF, EMC, and MUC. For both charged 
tracks, P (µ) > P (e) is required. To select electrons, the ratio of 
the measured energy in the EMC, E , to the momentum p obtained 
from the MDC is used. Both charged tracks must satisfy E/p >

0.8 c.

The radiator function [22], which describes the radiation of an 
ISR photon, is peaked at small θ values with respect to the beam 
axis. Different from BaBar, we use untagged ISR events, where the 
ISR photon is emitted at a small angle θγ and is not detected 
within the angular acceptance of the EMC, to increase statistics. 
A one constraint (1C) kinematic fit, applying energy and mo-

mentum conservation, is performed with the hypothesis e+e− →
µ+µ−γISR or e+e− → e+e−γISR , using as input the two selected 
charged track candidates, as well as the four momentum of the 
initial e+e− system. The constraint is the mass of a missing pho-
ton. The fit quality condition χ2

1C/(dof = 1) < 20 is applied in the 
µ+µ−γISR case, where dof is the degree of freedom. To suppress 
non-ISR background, the angle of the missing photon, θγ , predicted 
by the 1C kinematic fit, is required to be smaller than 0.1 radians 
or greater than π − 0.1 radians. We apply stronger requirements 
for the e+e−γISR final state, to provide a better suppression of the 
non-ISR background which is higher in the e+e− channel com-

pared to the µ+µ− channel. In this case, χ2
1C/(dof = 1) < 5, and 

θγ < 0.05 radians, or θγ > π − 0.05 radians.

Background in addition to the radiative QED processes

µ+µ−γISR and e+e−γISR , which is irreducible, is studied with MC 
simulations and is negligible for the e+e−γISR final state, and on 
the order of 3% for µ+µ− invariant masses below 2 GeV/c2 due to 
muon misidentification, and negligible above. This remaining back-

ground comes mostly from π+π−γISR events. We subtract their 
contribution using a MC sample, produced with the phokhara

generator. The subtraction of this background leads to a system-

atic uncertainty due to the generator precision smaller than 0.5%.
The µ+µ− and e+e− invariant mass distributions, mµ+µ− and 

me+e− , which are shown separately in Fig. 1, are mainly dominated 
by the QED background but could contain the signal sitting on top 
of these irreducible events. For comparison with data, MC simula-

tion, scaled to the luminosity of data, is shown, although it is not 
used in the search for the dark photon. In this analysis, the dark 
photon mass range mγ ′ between 1.5 and 3.4 GeV/c2 is studied. 
Below 1.5 GeV/c2 the π+π−γISR cross section with muon misiden-

tification dominates the mµ+µ− spectrum. Above 3.4 GeV/c2 the 
hadronic qq̄ process can not be suppressed sufficiently by the χ2

1C
requirement. In order to search for narrow structures on top of the 
QED background, 4th order polynomial functions to describe the 
continuum QED are fitted to the data distributions shown in Fig. 1. 
The mass range around the narrow J/ψ resonance between 2.95 
and 3.2 GeV/c2 is excluded.

The differences between the µ+µ−γISR and e+e−γISR event 
yields and their respective 4th order polynomials are added. The 
combined differences are represented by the black dots in Fig. 2. 
A dark photon candidate would appear as a peak in this plot. The 
observed statistical significances are less than 3σ everywhere in 
the explored region. The significance in each invariant mass bin 
is defined as the combined differences between data and the 4th 
order polynomials, divided by the combined statistical errors of 
both final states. In conclusion, we observe no dark photon sig-
nal for 1.5 GeV/c2 < mγ ′ < 3.4 GeV/c2 , where mγ ′ is equal to the 
leptonic invariant mass ml+l− . The exclusion limit at the 90% con-
fidence level is determined with a profile likelihood approach [23]. 
Also shown in Fig. 2 as a function of ml+l− is the bin-by-bin cal-
culated exclusion limit, including the systematic uncertainties as 
explained below.

To calculate the exclusion limit on the mixing parameter ε2 , the 
formula from Ref. [4] is used

σi(e
+e− → γ ′ γISR → l+l−γISR)

σi(e+e− → γ ∗ γISR → l+l−γISR)
=

N
up
i

(e+e− → γ ′ γISR → l+l−γISR)

NB
i
(e+e− → γ ∗ γISR → l+l−γISR)

·
1

ǫ
=

3π · ε2 ·mγ ′

2Nl+l−
f

α · δl+l−
m

, (1)
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Fig. 2. The sum of the differences between the µ+µ−γISR and e+e−γISR event yields 
and their respective 4th order polynomials (dots with error bars). The solid his-
togram represents the exclusion limit with the 90% confidence, calculated with a 
profile likelihood approach and including the systematic uncertainty. The region 
around the J/ψ resonance between 2.95 and 3.2 GeV/c2 is excluded.

where i represents the i-th mass bin, α is the electromagnetic 
fine structure constant, mγ ′ the dark photon mass, γ ∗ the SM 

photon, and δl
+l−
m (l = µ, e) the bin width of the lepton pair invari-

ant mass spectrum, 10 MeV/c2 . The mass resolution of the lepton 
pairs determined with MC for e+e− and µ+µ− is between 5 and 
12 MeV/c2 . The cross section ratio upper limit in Eq. (1) is de-
termined from the exclusion upper limit (Nup) corrected by the 
efficiency loss (ǫ) due to the bin width divided by the number of 
µ+µ−γISR and e+e−γISR events (NB) corrected as described below. 
The efficiency loss caused by the incompleteness of signal events in 

one bin is calculated with 
∫ 5 MeV/c2

−5 MeV/c2
G(0, σ ) dm/ 

∫ ∞
−∞ G(0, σ ) dm, 

where G(0, σ ) is the Gaussian function used to describe the mass 
resolution.

The QED cross section σi(e
+e− → γ ∗ γISR → l+l−γISR) must 

only take into account annihilation processes of the initial e+e−

beam particles, where a dark photon could be produced. Thus, the 
event yield of the e+e−γ final state has to be corrected due to the 
existence of SM Bhabha scattering. This correction is obtained in 
bins of me+e− by dividing the e+e− annihilation events only by the 
sum of events of the annihilation and Bhabha scattering processes. 
The first is generated with the phokhara event generator by gen-
erating the µ+µ−γ final state and replacing the muon mass with 
the electron mass. The latter is generated with the babayaga@nlo

generator [24]. The correction factor varies between 2% and 8% de-
pending on me+e− .

The number of final states for the dark photon Nl+l−

f
includes 

the phase space above the l+l− production threshold of the leptons 
l = µ, e, and is given by Nl+l−

f
= Ŵtot/Ŵll [25], where Ŵll ≡ Ŵ(γ ′ →

l+l−) is the leptonic γ ′ width and Ŵtot is the total γ ′ width. These 
widths are taken from Ref. [25]

Ŵll =
αε2

3m2
γ ′

(m2
γ ′ + 2m2

l )

√

m2
γ ′ − 4m2

l
(2)

Ŵtot = Ŵee + Ŵµµ · (1 + R(
√
s)) , (3)

where Ŵee ≡ Ŵ(γ ′ → e+e−), Ŵµµ ≡ Ŵ(γ ′ → µ+µ−), and R(
√
s) is 

the total hadronic cross section R value [26] as a function of 
√
s.

The systematic uncertainties are included in the calculation of 
the exclusion limit. The main source is the uncertainty of the R
value taken from Ref. [26], which enters the calculation of the 
Nl+l−

f
and leads to a mass dependent systematic uncertainty be-

tween 3.0 and 6.0%. Other sources are background subtraction as 
described above (<0.5%), the fitting error of the polynomial fit 
to data (<1%), the Bhabha scattering correction factor using the
phokhara and babayaga@nlo event generator (<1%), and data-MC 
differences of the leptonic mass resolution. To quantify the latter 
one, we study the data-MC resolution difference of the J/ψ reso-

nance for the µ+µ− and e+e− decays, separately. The resonance is 
fitted with a double Gaussian function in data and MC simulation, 
and the width difference is (3.7 ±1.8)% for µ+µ− and (0.7 ±5.3)% 
for e+e− . The differences are taken into consideration in the cal-
culations, and the uncertainty in the differences (1%) is taken as 
the systematic uncertainty of the data-MC differences. The mass 
dependent total systematic uncertainty, which varies from 3.5 to 
6.5% depending on mass, is used bin-by-bin in the upper limit.

The final result, the mixing strength ε as a function of the dark 
photon mass, is shown in Fig. 3, including the systematic uncer-
tainties. It provides a comparable upper limit to BaBar [11,12] in 
the studied mγ ′ mass range. Also shown are the exclusion limits 
from KLOE [27–30], WASA-at-COSY [31], HADES [32], PHENIX [33], 
A1 at MAMI [7,8], NA48/2 [34], APEX [35], and the beam-dump 
experiments E774 [9], and E141 [10]. The ε values, which would 
explain the discrepancy between the measurement and the SM cal-
culation of the anomalous magnetic moment of the muon [3] are 
displayed in Fig. 3 as the bold solid line with a 2σ band.

In conclusion, we perform a search for a dark photon in the 
mass range between 1.5 and 3.4 GeV/c2 , where we do not observe 

Fig. 3. Exclusion limit at the 90% confidence level on the mixing parameter ε as a function of the dark photon mass. The bold solid line represents the ε values, which would 
explain the discrepancy between the measurement and the SM calculation of the anomalous magnetic moment of the muon [3], together with its 2σ band.
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a significant signal. We set upper limits on the mixing parameter 
ε between 10−3 and 10−4 as a function of the dark photon mass 
with a confidence level of 90%. This is a competitive limit in this 
dark photon mass range. The BESIII results, which are based on 
two years of data taking, are already competitive to the large BaBar 
data samples, based on 9 years of running. This is possible due to 
the use of untagged ISR events for the dark photon search as well 
as the fact that the center-of-mass energy of the BEPCII collider is 
closer to the mass region tested. We also use a different analysis 
approach, which has no dependence on the radiator function.
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[15] G. Rodrigo, H. Czyż, J.H. Kuhn, M. Szopa, Eur. Phys. J. C 24 (2002) 71.
[16] H. Czyz, J.H. Kuhn, A. Wapienik, Phys. Rev. D 77 (2008) 114005.
[17] G. Balossini, C.M.C. Calame, G. Montagna, O. Nicrosini, F. Piccinini, Nucl. Phys. 

B 758 (2006) 227–253.
[18] S. Jadach, B.F.L. Ward, Z. Was, Comput. Phys. Commun. 130 (2000) 260–325.
[19] J. Allison, et al., GEANT4 Collaboration, IEEE Trans. Nucl. Sci. 53 (2006) 

270–278.

[20] S. Agostinelli, et al., GEANT4 Collaboration, Nucl. Instr. Meth. A 506 (2003) 
250–303.

[21] D.M. Asner, et al., Int. J. Mod. Phys. A 24 (S1) (2009) 794.
[22] V.P. Druzhinin, S.I. Eidelman, S.I. Serednyakov, E.P. Solodov, Rev. Mod. Phys. 83 

(2011) 1545.
[23] W.A. Rolke, A.M. Lopez, J. Conrad, Nucl. Instrum. Methods Phys. Res., Sect. A 

551 (2005) 493–503.
[24] G. Balossini, C. Bignamini, C.M.C. Calame, G. Montagna, O. Nicrosini, F. Piccinini, 

Phys. Lett. B 663 (2008) 209–213.
[25] T. Beranek, H. Merkel, M. Vanderhaeghen, Phys. Rev. D 88 (2013) 015032.
[26] C. Patrignani, et al., Particle Data Group, Chin. Phys. C 40 (2016) 100001.
[27] F. Archilli, et al., KLOE-2 Collaboration, Phys. Lett. B 706 (2012) 251–255.
[28] D. Babuski, et al., KLOE-2 Collaboration, Phys. Lett. B 736 (2014) 459–464.
[29] A. Anastasi, et al., KLOE-2 Collaboration, Phys. Lett. B 750 (2015) 633–637.
[30] A. Anastasi, et al., KLOE-2 Collaboration, Phys. Lett. B 757 (2016) 356–361.
[31] P. Adlarson, et al., WASA-at-COSY Collaboration, Phys. Lett. B 726 (2013) 

187–193.

[32] G. Agakishiev, et al., HADES Collaboration, Phys. Lett. B 731 (2014) 265–271.
[33] A. Adare, et al., PHENIX Collaboration, Phys. Rev. C 91 (2015) 031901.
[34] J.R. Batley, et al., NA48/2 Collaboration, Phys. Lett. B 746 (2015) 178–185.
[35] S. Abrahamyan, et al., APEX Collaboration, Phys. Rev. Lett. 107 (2011) 191804.


