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Abstract. From low metallicity stars and the presence of radioactive isotopes in

deep-sea sediments we know that the main r-process, producing the heaviest elements,

is a rare event. The question remains whether neutron star mergers, via GW170817

the only observed r-process site, are the only contributors or also (a rare class

of) supernovae, hypernovae/collapsars, as well as neutron star - black hole mergers

qualify as candidates. Early galactic evolution as well as variations in nucleosynthesis

signatures, e.g. actinide boost stars, might indicate the need for such other sites.

We discuss and present the possible options (a) with respect to possible differences in

ejecta amount and composition, and (b) in terms of their timing (onset and frequency)

during galactic evolution.

1. Introduction

A number of contributions to this conference (see e.g. Aprahamian, Coté, Eichler,

Holmbeck, Nishimura, Obergaulinger, Piran, Reichert, and others) have summarized

the status of abundance observations of neutron-capture (especially r-process) elements

and discussed the nucleosynthesis working, the possible astrophysical sites, and the

related abundance predictions. Here we address their features, in addition to abundance
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predictions their occurrence frequency and its time evolution throughout galactic history,

with the aim to provide an understanding of the impact of these individual sites on the

evolution of the Galaxy. The goal is to identify the astrophysical site(s) responsible for

(a) the over all total solar r-process abundances as well as (b) their individual features

responsible for the variations in observed abundance patterns during galactic evolution.

2. General Trends in Galactic Evolution and Observations of

Low-Metallicity Stars

Based on the nucleosynthesis predictions for (regular) core-collapse (CCSNe) and for

type Ia supernovae (SNeIa), plus their occurrence rates, one finds that the early phase

of the evolution of galaxies is dominated by the ejecta of (fast evolving) massive stars, i.e.

those leading to CCSNe. While there might exist differences for the ejecta composition of

supernovae from different progenitor masses, average production ratios in the interstellar

gas will be found after some time delay when many such explosions and the mixing of

their ejecta with the interstellar medium have taken place. These averaged abundance

ratios reflect integrated ejecta yields over the initial mass function of stars. SNeIa

originate from exploding white dwarfs in binary systems, i.e. (i) from slowly evolving

stars with initially less than 8 M� in order to become a white dwarf and (ii) requiring

time delaying mass transfer in a binary system before the type Ia supernova explosion.

Thus, such events are delayed in comparison to CCSNe from massive single stars.

Therefore, SNeIa, with large amounts of Fe and Ni ejecta (typically 0.5–0.6 M� per

event), are only important at later phases in galactic evolution. As CCSNe produce

larger amounts of α-elements (from O to Ti) than Fe-group nuclei like Fe and Ni

(the latter only of the order 0.1 M�), their average ratio of α/Fe is larger than the

corresponding solar ratio.

This is reflected in surface abundances of stars, representing the composition of

the interstellar gas out of which they formed. If plotted as a function of metallicity

[Fe/H] for stars in our Galaxy, Mg (a typical α-element) shows a relatively small scatter

around an average value of [Mg/Fe] between 0.3 and 0.5 up to [Fe/H] ≤ -1, decreasing to

solar values [Mg/Fe]=0 at [Fe/H]=0 (1). The reason is the early appearance of CCSNe

from fast evolving massive, single stars, producing on average [Mg/Fe] = 0.4, see e.g.

(2; 3; 4) before SNeIa set in; for their nucleosynthesis patterns see (5; 6; 7). These

basic features of galactic evolution have been understood reasonably well for a majority

of elements (8; 9; 10), while still many open questions exist in stellar evolution and

supernova nucleosynthesis (e.g. 11; 12; 13; 14; 15; 16).

The solar abundance of Eu is to more than 90% dominated by those isotopes

which are produced in the r-process (19; 20), thus playing the role of a major r-process

indicator. The ratio [Eu/Fe], displayed in the recent r-process alliance publication (see

Fig. 1 above from 17), shows a huge scatter by more than two orders of magnitude at

low metallicities, corresponding to very early galactic evolution. While the evolution of

the average ratio resembles that of the alpha elements, being of a CCSN origin, also
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Figure 1. Derived [Eu/Fe] abundances as a function of metallicity (17): r-I stars

(green triangles), r-II stars (blue squares), limited-r (red stars), and non r-process-

enhanced stars (black dots), see classifications defined in the original article; upper

limits are shown with black arrows. Grey dots refer to an earlier overview (18);

reprinted with permission from the Astrophysical Journal.

experiencing a decline to solar ratios for [Fe/H]≥ -1, it is far more complex to understand

Eu than α-elements like Mg.

In this context we want to discuss the suggested origins for the r-process and the

possibility of their discrimination. There are several aspects to consider: In case there is

a single (or at least a dominant contributor), then it has to reproduce the overall solar

r-process abundances (a) in terms of the abundance pattern and (b) in terms of their

total amount. The latter requires a certain combination of occurrence frequency with

the total r-process ejecta from a given site (21). With a typical CCSN frequency of 1/100

yrs about 10−4 to 10−5 M� of r-process matter would need to be produced; for binary

merger ejecta with about 10−2 M� the frequency must be rarer by a factor of 100 to 1000,

and in case about 0.1 M� or more of r-process matter would be ejected in specific events,

the frequency must be again be lower by another factor of 10 or more. If r-process events

are rare (although consistent with overall solar r-abundances), due to the fact that more

frequent supernovae produce Fe, a not yet well mixed (or averaged) interstellar medium

will exist for extended periods of galactic evolution with varying [Eu/Fe] abundances. At

lowest metallicities one might actually see the abundance patterns of individual events,

which would in case of occurring within a pristine ISM (not yet polluted with Fe from

supernovae), have imprinted the Eu/Fe ratio of that event. The amount of observed

scatter will vary from such early extreme ratios down to a very small scatter around

the average ratio [Eu/Fe] observed at [Fe/H]=-1, when SNeIa set in (22). As can be

seen from Fig.1, this happens in observations only in the interval -2≤[Fe/H]≤ -1. For
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[Mg/Fe] (but also other alpha elements and e.g. Zn and Ge), produced by CCSNe, the

approach to average values occurs already at about [Fe/H]=-3 or below. Thus one could

conclude that r-process events occur at a much lower rate than supernovae, possibly by

a factor 100 or more.

The above would be the straight-forward interpretation if there exists only one type

of r-process production site. If there exist variations in the overall abundance patterns

at lowest metallicities, this could also point to a variety of r-process sites. Indications for

the latter are found due to (a) observations with varying Th/Eu ratios (and otherwise

close to solar r-abundance patterns?), mostly found at around [Fe/H]≈-3, see Fig. 2,

utilizing the SAGA Database (1) as well as (b) observations which show a steeper decline

of the r-process pattern towards heavy nuclei (e.g. 23).
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Figure 2. Th/Eu ratios for stars with detected thorium abundances from the SAGA

Database (1). One can see that at low metallicities around [Fe/H]≈-3 (but also

up to [Fe/H]≈-2) quite a number of so-called actinide-boost stars can be found. If

utilizing initial r-process production ratios which would fit solar r-abundances (24),

unreasonable, and even negative, (decay) ages of these stars are obtained (25), not at

all consistent with their metallicity, which would indicate the formation of these stars

in the very early Galaxy.

Thus, the question is whether the solar r-process composition is either dominated

by a single production site or a superposition of ejecta compositions from different sites.

While the discussion above, related to actinide-boost stars and “Honda-type” stars,

points to the latter (but see also 26), the next question is whether all of these events are

rare or could also be frequent. The small scatter for [Eu/Fe] around low values of 0 for

the “limited-r” observations (Honda-type stars) in Fig. 1 could permit an event type as

frequent as supernovae to produce such an abundance pattern.
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A further interesting aspect is related to the question whether r-process elements are

correlated or not correlated with other nucleosynthesis products, in order to determine

whether they were co-produced in the same nucleosynthesis site or require a different

origin. When comparing the abundances of Fe, Ge, Zr, and r-process Eu in low

metallicity stars. a strong correlation of Ge with Fe was found (27), indicating the same

nucleosynthesis origin (CCSNe), a weak correlation of Zr with Fe, indicating that other

sites than CCSNe (without or low Fe-ejection) contribute as well, and no correlation

between Eu and Fe, pointing essentially to a pure r-process origin with (within the

observational uncertainties) negligible Fe-ejection. More recent data from the SAGA

database (1) permit a weak correlation for [Eu/Fe]<0.5, i.e. for stars with lower than

average r-process enrichment. Interpreted in a straight-forward way this would point to

a negligible Fe/Eu ratio in the major r-process sources, while a noticeable co-production

of Fe with Eu is possible in less strong r-process sources, e.g. possibly with a weak r-

process. Such cases could again be identified with the entry limited-r in Fig. 1.

This apparently ”negligible” co-production of Fe with dominant r-process sites is,

however, constrained by observational limits for possibly high [Eu/Fe] ratios which would

result if such sources are frequent and occur early in galactic evolution, i.e. expecting

exactly the Eu/Fe ratios for lowest metallicity stars polluted only by one such event.

This concern has been raised recently (28), pointing out that such events should not

exceed [Eu/Fe]>2 (see Fig.1). However, it only applies for events occurring earliest in

galactic evolution. Events taking place either delayed or that infrequent that regular

supernovae contributed already sufficient amounts of Fe, would not be noticable.

3. Possible r-Process Sites

Combining these considerations, we want to the pass through the possible sites suggested

in the literature:

(a) Electron-capture supernovae can possibly produce a weak r-process (e.g. 29; 30),

not a strong one, and they are probably not rare, if containing stars from the

interval of 8 to 10 M� of the initial mass function. They could be candidates for

“limited-r” observations. But see also recent results related to the final fate of 8 to

10 M� stars (31; 6; 32)

(b) The neutrino-induced processes in He-shells of low-metallicity massive stars (33; 34;

35) would be frequent events at low metallicities, and not lead to a large scatter of

e.g. [Eu/Fe]. In addition, the location of the related peaks would not be consistent

with the solar r-process pattern.

(c) The regular neutrino-driven CCSNe which produce Fe, but at most a weak r-

process (e.g. 29; 36; 37) are excluded as site of a strong r-process, because they

do not produce the correct abundance pattern and would also be too frequent, not

permitting a large scatter in [Eu/Fe] at low metallicities. They could, however, be

candidates for “limited-r” observations.
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(d) The frequency of quark deconfinement supernovae, if existent, is still an open

question. Present predictions display not a full strong r-process, but the production

of elements up to the actinides is possible, however, with the heaviest elements

strongly reduced (38).

(e) Magneto-rotational (MHD jet) supernovae, leading to magnetars (i.e. neutron stars

with magnetic fields of 1015 G) and neutron-rich polar jet ejection, rely still on

parameter studies and depend on assumptions on rotation rates and magnetic

field strengths (with pre-collapse magnetic fields of the order 1012-1013 Gauss

and fast rotation, for which the stellar evolution circumstances have still to be

investigated). Due to these somewhat extreme initial conditions before collapse

(39; 40; 41; 42; 43; 44; 45), such events, displaying a full and strong r-process, will

be rare, possibly as infrequent as 1 in 100 to 1 in 1000 of regular CCSNe. These sites

could produce 10−2 M� of r-process matter and 10−5 M� of Eu, i.e. lead to a large

[Eu/Fe] scatter, with [Eu/Fe] as high as 3.5 in their remnants (28). However, due

to their rareness, earlier supernovae producing Fe, would reduce this ratio (see next

section). Within the occurrence frequency constraints discussed above, their ejecta

would be consistent with the required total r-process production (and possibly the

solar r-process abundance pattern). However, this site still requires observational

confirmation. Less extreme initial magnetic fields can be enhanced via magneto-

rotational MRI instabilities and also lead to explosions (see e.g. 46). Depending on

the delay of the explosion, varying degrees of r-processing will be obtained from no,

over a weak, to a strong r-process.

(f) Collapsars, with large initial masses, resulting in black hole formation after core

collapse, will occur if fast rotation causes strong magnetic fields, black hole accretion

disks, polar jet ejection, and Gamma-ray bursts GRBs (e.g. 47; 48; 49; 50; 51; 52;

53; 54). Their nucleosynthesis has been discussed in a number of publications

(55; 56; 57; 58; 59). r-process ejecta of the order >0.1 M� (59) would be consistent

with the required total amount of solar r-process matter, if they would occur even

rarer than magneto-rotational supernovae by a factor of 10 or more. Until present,

there exists no fully consistent model with respect to the amount and composition

of jet ejecta vs. black hole accretion disk outflows (and thus also whether long-

duration GRBs, hypernovae, and collapsars are a homogeneous class of objects). If

combined with hypernova models (49), the [Eu/Fe] ratio in their remnants would

be higher than 3, i.e. beyond observed values for lowest metallicity stars. It was

concluded that this would speak against collapsars as main r-process sources (28)

, but we want to point again to the above discussion on the uncertain (and not

yet consistently modeled) jet vs. black hole accretion disk outflows. In any case,

such ratios would be consistent with the finding that r-process sites should not be

correlated with Fe (i.e. not co-produce Fe - in comparison to solar ratios within

observational uncertainties, 27).

(g) Compact binary mergers (NS-NS mergers) have been suggested as r-process sites
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since the 1970s (60) with very first ejecta mass (61) and nucleosynthesis (62)

predictions in 1999. Since then (and especially after GW170817 63) research in this

field has been exponentially growing, we just mention here a few recent articles,

mainly reviews (64; 65; 66; 67; 21; 68; 69; 70; 71; 72; 73; 74). Nucleosynthesis ejecta

are composed of dynamic ejecta, consisting of tidal arm (e.g. 75; 76) and prompt

collisional ejecta (e.g. 77; 78; 79; 80), a neutrino wind during the intermediate

phase of a hypermassive neutron star (if the combined mass is permitting such

an intermediate phase,rather than directly leading to black hole formation, e.g.

81), and finally black hole accretion disk outflows (e.g. 82; 83; 84; 85). Light

curve predictions vs. observations measure the impact of radioactive decay (e.g.

86; 87; 88; 89; 90; 91; 92), optical, infrared as well as γ-ray spectra give a clue to

elemental abundance patterns (e.g. 93; 94; 95; 96), with a first direct detection of

element lines (Sr, 97). Based on present observations, a ratio >1 of the accretion

disk outflow to dynamical ejecta is expected in GW170817. This suggests an

overall abundance pattern close to solar r-abundances and a total amount of about

0.01 M� r-process ejecta with an Eu mass of close to 10−5 M�, combined with a

(rare) occurrence frequency, as discussed above. At present there exists one multi-

messenger observation with gravitational waves, a short duration GRB, and an

electromagnetic counterpart (kilonova) for GW170817. Before LIGO/Virgo was

sensitive enough to detect gravitational waves, three kilonova events were observed

associated with an sGRB, pointing also to neutron star mergers. In 2019 during

the LIGO/Virgo O3 run, another five gravitational wave candidate event alerts

have been provided ‡, not yet accompanied by detection of an electromagnetic

counterpart. But they occurred at much larger distances than GW170817 which

was as close as 40 Mpc.

(h) Neutron Star - Black Hole Mergers were actually the first suggested site among

compact binary mergers (60; 98), leading to the disruption of the neutron star by

the black hole. In 2019 it seems that within the gravitational wave candidate events

of the LIGO/Virgo O3 five candidates have been identified, but no electromagnetic

counterpart has been detected, yet. This could depend on sensitivity limits for the

related distances (being all much further away than GW170817) or that the black

hole mass and spin did not permit the ejection of matter after disruption of the

neutron star (99). Similar (or larger) tidal ejecta r-process masses as for neutron

star mergers have been predicted (100; 75; 73), the neutrino wind and black hole

accretion disk outflows depend strongly on the BH/NS mass ratio and BH spin

(101; 102).

Summarizing the sites above, we have three possible sites for a weak r-process

(limited-r of Fig. 1), being (a), (c), possibly (d) and also (e) in the transition to low

magnetic fields which lead to a variation of r-process strength. All of them (might) come

with a high occurrence frequency, permitting already at low metallicities a small scatter

‡ see https://en.wikipedia.org/wiki/List of gravitational wave observations
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as seen for the limited-r sample. (e) would be rare for a full, main r-process but could be

increasingly frequent towards lower magnetic fields, thus possibly covering a whole range

of [Eu/Fe] rations from a strong to a weak r-process. The sites responsible for the main

r-process (i.e. producing also the heaviest elements), which are or can be consistent

with the observational constraints on total r-process ejecta masses for explaining the

solar r-abundance and also reproducing a solar r-process pattern, the following ones are

remaining: (e) MHD jet, magneto-rotational supernovae (in case of strong magnetic

fields, magnetars), (f) collapsars, and compact binary mergers (g, h) . Of these (e) and

(f) would belong to massive stars, i.e. occurring during the earliest instances of galactic

evolution. (g) is related to the coalescence of compact objects, produced via the collapse

of massive stars, and would experience a delay in their occurrence. Such differences could

be recognizable in galactic evolution modeling. (h) includes the formation of one black

hole (with a more massive stellar progenitor than neutron stars and a possibly faster

inspiral). This leads to smaller delay times.

4. Galactic Chemical Evolution of r-Process Events

How can rare or frequent nucleosynthesis events be modeled consistently in galactic

chemical evolution? Which role plays the mixing of ejecta with the local interstellar

medium and how should global or turbulent mixing be treated? In addition, there exist

indications that (ultra-faint) dwarf galaxies are the earliest building blocks of galactic

evolution and their merging will finally lead to the evolution of the early Galaxy as

a whole. Due to different gas densities such galactic substructures might experience

different star formation efficiencies and due to a low gravitational pull they might

lose explosive ejecta more easily. This can have an effect on the point in time (and

metallicity) when the first imprints of explosive ejecta can be observed. But before

discussing such complexities, we start with the simple models, assuming instantaneous

mixing of new nucleosynthesis ejecta throughout the whole galaxy.

4.1. Homogeneous evolution models

Early evolution models go back to (103) and (104). More advanced approaches took

into account that (explosive) stellar ejecta enter the interstellar medium (ISM) delayed

with respect to the birth of a star by the duration of its stellar evolution. The

understanding from light elements up to the Fe-group, based the evolution and death

of single stars as well as SNeIa, came with approaches employing the instantaneous

mixing approximation IMA, i.e. mixing ejecta instantaneously throughout the galaxy

(e.g. 8; 9). Applications towards the enrichment of heavy elements (including r-

process contributions) as a function of time or metallicity [Fe/H] followed (see e.g.

105; 106; 107; 108; 109; 110; 111; 112; 113; 114; 115; 116; 117).

The IMA simplification encounters the problem that all stars at a given time inherit

the same abundance patterns of elements. This means (a) that a unique relation between
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time and [Fe/H] is established, (b) it is also impossible to reproduce a scatter in the

galactic abundances [X/Fe] as a function of [Fe/H], and (c) due to extended mixing

[X/Fe] imprints are already seen at very low metallicities, where they would not be

existent in realistic simulations. Thus, instead of a spread of abundance distributions,

curves with a single value for each [Fe/H], and extending possibly to too low metallicities

are obtained. Nevertheless, when in realistic evolution models sufficient star formation

and stellar deaths occur, to sample a superposition over the IMF or also r-process events,

this approach is applicable. It permits to get a quick overview of the trends in chemical

evolution with a considerably lower computational effort and is probably approximately

valid also in case of rare r-process events for [Fe/H]>-2.

Early investigations utilized coalescence delay times for neutron star mergers after

the formation of the binary neutron star system with a narrow spread. Population

synthesis studies, consistent with the occurrence of short-duration gamma-ray bursts

(sGRBs, related to compact binary mergers) indicate that the possible delay times follow

a distribution with a large spread, ranging over orders of magnitude with a t−1 behavior.
Based on such a behavior, studies with the simpler IMA modeling of chemical evolution

(112; 113; 115) come to the conclusion that mergers would not be able to reproduce

the galactic evolution for metallicities [Fe/H]>-2, including the decline of [Eu/Fe] at

[Fe/H]=-1. This would require either a different delay time distribution (118) or an

additional source for the main, strong, r-process. Another solution was suggested (116):

star formation takes only place in cooled regions of the ISM, i.e. not all recently ejected

matter can already be incorporated and stars contain lower metallicities [Fe/H] than

the overall ISM at the time of their birth. This shifts e.g. [Eu/Fe] ratios to lower [Fe/H]

and has a similar effect as a steeper delay-time distribution.

This subsection has, however, not discussed the behavior and possible problems

at very low metallicities. For a detailed study of especially early chemical evolution,

including the reproduction of spreads in abundance ratios due to local inhomogeneities,

a more complex inhomogeneous chemical evolution treatment is required.

4.2. Inhomogeneous galactic chemical evolution at low metallicities

The above subsection has shown, that homogeneous galactic evolution models,

approximately applicable for metallicities [Fe/H]>-2, indicate some problems for neutron

star mergers as the sole main, strong r-process source, but that these can possibly be

resolved with variations of the time delay distrubution of mergers after the second

neutron star is formed or when introducing that star formation only takes place in

a cold ISM. The present subsection is dedicated to the challenges of explaining the

r/Fe scatter at lower metallicities and which sample of r-process sites are required for

explaining these observations. This task can only be tackled with an inhomogeneous

approach.

Local inhomogeneities can only be produced if only limited amounts of ISM are

polluted by and mixed with the ejecta of each event. The latter effect is of essential
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importance especially at low metallicities, where portions of the ISM are already polluted

by stellar winds and supernovae, and others are not. Inhomogeneous mixing could

produce larger element ratios in strongly polluted areas and smaller values in still less

polluted ones. This means that the scatter in [X/Fe] at low metallicities can be a

helpful asset in hinting to the origin of element X. Inhomogeneous mixing can experience

similar [Fe/H] values in different locations of the Galaxy at different times, or different

[Fe/H] values at the same time. In addition, different portions of the ISM are polluted

by different types of events, leading to a scatter at the same metallicity, which can

in fact be utilized as a constraint for these different stellar ejecta. Therefore, more

advanced chemical evolution studies revoked the instantaneous mixing approximation

(e.g. 119; 120; 121; 122; 123; 124; 125; 126; 127; 128; 129; 130; 131; 132). For the

reasons summarized above, specially for the origin of r-process elements like Eu at lowest

metallicities, only such inhomogeneous chemical evolution models should be utilized. To

explore this approach fully, also a related resolutions is required. A 1051 erg supernova

explosion mixes via a Sedov blast wave only with about 5×104 M� of interstellar medium

(see 28). Although different explosion energies and ejecta geometries are encountered,

detailed simulations (133) come to similar results for neutron star mergers. In order

to follow the evolution of the ISM correctly, equivalent resolutions are required, lower

resolutions lead to an artificial mixing of ejecta with larger amounts of the ISM, altering

results into the direction of the IMA.

Inhomogeneous chem(odynam)ical evolution models for r-process elements, like

Eu, have been provided (121), comparing neutron star mergers and core-collapse

supernovae, (125; 126) comparing MHD jet-SNe and regular core-collapse supernovae,

(124; 127; 128; 129) only utilizing neutron star mergers, (132) comparing neutron star

mergers and neutron star - black hole mergers, and (130; 131) addressing how early,

single star related rare r-process ejecta could complement the shortcomings of neutron

star mergers as the only main, strong r-process site. One of the main questions here is

related to the problem of reproducing [Eu/Fe] at low(est) metallicities. (126) and (132)

treated the galactic chemical evolution of europium (Eu), iron (Fe) and α-elements,

like e.g. oxygen (O), still utilizing a more classical stochastic approach which neglects

large scale turbulent mixing effects (e.g. spiral arm mixing) and includes only those

introduced by stellar explosions and the so initiated mixing with the surrounding ISM

according to a Sedov-Taylor blast wave. This stochastic approach grasps the main

features of the impact of the first stars and their (explosive) ejecta on the evolution of the

heavy element enrichment. On the other hand, more sophisticated SPH models, being

more realistic on galactic infall, outflow, and turbulent mixing, have the disadvantage

that often the size of the SPH particles and/or the smoothing length utilized is too

large, thus automatically mixing ejecta with unrealistically large amounts of ISM. This

leads to results closer to the IMA and thus moves [Eu/Fe] features incorrectly to lower

metallicities, apparently solving the problems NS mergers alone experience at lowest

metallicities. (130) and (131) did probably perform the most extensive simulations of

all these approaches, both coming to the conclusion that at lowest metallicities another
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Figure 3. Evolution of Eu-abundances in galactic chemical evolution models (126)

including both magneto-rotational supernovae and neutron star mergers as r-process

sites. Magenta stars represent observations whereas green dots represent model

stars. The combination of magneto-rotational MHD-jet supernovae - being of strong

importance at low metallicities - early in the evolution of the Galaxy, and neutron star

mergers permits a perfect fit with observations.

r-process site than neutron star mergers is required to remedy these shortcomings.

(126) showed how the inclusion of MHD jet supernovae can avoid the problems at

lowest metallicities. As mergers experience first the local Fe pollution by two supernovae,

producing the later merging neutron stars, the merger event takes place in a medium

already moved to higher metallicities (0.2 M� of Fe mixed with 5 × 104 M� of ISM,

dominated by H, leads to an [Fe/H] ratio of -2.6). An MHD jet supernovae, when

exploding in a pristine ISM, will only result in the [Fe/H] of this event, which can be as

low as -3.9. Fig. 3 shows such a combination of MHD jet supernovae, contributing

already at lowest metallicities, and NS mergers, setting in below [Fe/H]=-2 (both

assumed to take place with similar occurrence frequencies).

Another possible solution, or at least improvement for the lowest metallicities can

be obtained when including NS-BH merger. They experience only the Fe pollution of

one supernova and occur earlier than NS mergers, because black holes are resulting from

failed supernovae, i.e. massive stars which experience a black hole rather than neutron

star formation at the end of their evolution (an important feature at low metallicites).

Fig.4 shows the effect of the lower limit for black hole formation on galactic evolution

modeling. It has, however, to be considered that the full ejecta from NS BH mergers

(taken from 75) is dependent on the size and spin of the black hole, and for the more

massive black holes all of the neutron star matter can be swallowed by the black hole,

rather than resulting in a disruption of the neutron star and ejection of matter.
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Figure 4. Effect of the different choices of the prescriptions for failed SN at low

metallicities on the chemical evolution of [Eu/Fe] from (author?) (132): Magenta

crosses represent observations. Red (green, blue) squares represent GCE models

where all stars > 20 M� ( 25 M�, 30 M�) at metallicites Z ≤ 10−2Z� are forming

failed SNe at the end of their life.

(59) and (117) included also collapsars in a simpler (IMA) chemical evolution

modeling. They could show that, within the assumptions discussed above in item

(f), collapsars could also solve the problems experienced at lowest metallicities. This

involves, however the uncertainties related to the fact that up to now no complete and

consistent modeling of lGRB jet ejecta combined with the black hole accretion disk

outflow and the accompanying nucleosynthesis has taken place, yet.

4.3. Utilizing long-lived radioactive isotopes

A complete list of isotopes with half-lives in the range 107− 1011 yr is given in Table 1.

They cover a time span from a lower limit in excess of the evolution time of massive

stars up to (and beyond) the age of the Universe. Such nuclei can be utilized as

“chronometers” for nucleosynthesis processes in galactic evolution and also serve as

a measure for the age of the Galaxy, if these processes contributed early (see e.g,

134; 135; 136; 137; 24; 138; 139; 140). The list is not long. Two of the nuclei require

predictions for the production of the ground and isomeric states (92Nb, 176Lu). With

the exception of 40K, all of the remaining nuclei are heavier than the “Fe-group” and

can only be made via neutron capture.

The nuclei with half-lives comparable to the age of the Galaxy/Universe, 232Th

and 238U, are made in a single nucleosynthesis process, the main, strong r-process (as

well as all other actinide isotopes listed here). The question is how to predict reliable
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Table 1. Isotopes with half-lives in the range 107-1011 yr

Isoptope Half-Life Isoptope Half-Life
40K 1.3× 109 yr 205Pb 1.5× 107 yr
87Rb 4.8× 1010 yr 232Th 1.4× 1010 yr
92Nb 3.5× 107 yr 235U 7× 108 yr
129I 1.6× 107 yr 236U 2.3× 107 yr

147Sm 1.1× 1011 yr 238U 4.5× 109 yr
176Lu 3.7× 1010 yr 244Pu 8× 107 yr
187Re 4.4× 1010 yr 247Cm 1.6× 107 yr

production ratios for these long-lived isotopes, if (a) not even the site is completely

clear, and (b) even for a given site nuclear uncertainties enter. The abundances of

especially these heaviest nuclei produced in the r-process depend on mass models, β-

decay properties (half-lives, delayed fission, delayed neutron emission), fission barriers

and fragment distributions, and last but not least neutron captures, especially their

rates during the r-process freeze-out (65; 76; 141).

Nevertheless, parametrized, so-called site-independent fits, based on a superposition

of neutron densities, have been utilized to reproduce all solar r-process abundances from

A = 130 through the actinides. These were then applied to predict the production ratios

of long-lived isotopes, which can be compared to meteoritic ratios for these long- lived

actinide isotopes like 232Th and 235,238U, indicating for ratios, indicating the abundances

at the formation of the solar system. This permits conclusions on overall galactic

evolution (see e.g, 134; 135; 136; 140). When utilizing instead observations in individual

old stars, and making use of e.g. detected elemental Th/Eu and U/Eu ratios, it is

possible to obtain age estimates for these stars. If the latest pollution before their birth

had a solar-type pattern, the change in abundance ratios due to decay can give an

indication for the age of the star. This resulted in typical ages in the range 12-14 Gyr

(137; 24; 138; 139) for the lowest metallicity (and oldest) stars in the Galaxy. This use

of low-metallicity stars has the advantage that one can avoid uncertainties introduced

by chemical evolution modeling.

As discussed above, among the stars with observed Th and U, there exist a number

of actinide-boost stars with an enhanced ratio of Th/Eu (see Fig. 2) and U/Eu in

comparison to the other r-process enhanced stars (see e.g. 139; 25). These are observed

especially at low metallicities around [Fe/H] ≈ -3 (142; 26). When utilizing production

ratios from the parametrized fits, discussed above, to estimate the age of those stars,

unrealistically low to negative ages result. Although it appears that most of their element

abundances, up to the third r-process peak, are close to solar-system r-abundances, one

should further investigate possible correlations between the actinide boost and other

elemental abundance features. The question is whether this points to a different site than

the one responsible for the solar-type r-process abundances or variations of conditions
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within the same site

The actinide to Eu ratios is related to the path of the r-process and the timing (a)

when the actinides are reached via the r-process flow and (b) when fission plays a role

after their production and continuation on to heavier nuclei. Due to this the r-process

results are dependent on the proton/nucleon ratio Ye in expanding matter, determining

the neutron to seed ratio. Intuitively one could expect that the lowest (most neutron-

rich) Ye’s would lead to the highest actinide production and thus actinide to Eu ratios.

(142) showed, with their nuclear physics input, that the actinide to Eu ratio is highest

for a Ye in the range 0.1-0.15 (see their Figs. 16 and 17), with the highest ratio around

Ye=0.125. Higher Ye-values (i.e. less neutron-rich conditions) lead to a smaller actinide

production, because of a less strong r-process which did not produce, yet, large amounts

of actinides. Lower Ye-values (i.e. more or very neutron-rich conditions) lead also to

smaller actinide to Eu ratios. This is due to the fact that an initially higher actinide

production is reduced later by fission cycling, which can be very effective in destroying

the actinides. The details depend on mass models and related fission barriers.

(143) could show a similar behavior as indicated in Fig. 5 using the trajectory

adopted in (87). Thus, an actinide boost can be attained by having Ye-conditions close to

0.125. Lower actinide to Eu ratios can either be attained by a superposition of conditions

with Ye>0.15 or by having a larger contribution from very neutron-rich environments

with Ye<0.10. (144) did an independent study, testing in detail the influence of nuclear

physics uncertainties. They find slightly higher Ye-values of 0.15 for the maximum

actinide production, but similar conclusions. In addition, the actinide decline for lower

Ye’s is examined as a function of the number of fission cycles permitted by the actual

Ye. In all these cases Th/U, both actinide nuclei close in mass numbers, are not strongly

affected by a variation in Ye.

(26) argue, that superpositions of a variety of conditions, as occurring in neutron

star mergers of possibly different masses and/or mass ratios (affecting the total amount

of dynamic ejecta, neutrino wind, and black hole accretion disk outflows), can be

responsible for the different outcome resulting in solar-type r-process patterns or actinide

boosts. Another option is that this points to different sites, containing, e.g., larger

amounts of lower Ye’s (as expected from the dynamic tidal ejecta of neutron star

mergers). In this case the dominant r-process site could lead to smaller actinide to

Eu ratios, as found in most r-enhanced stars.

Based on the discussion above, MHD jets with slightly higher Ye’s, reaching only

down to Ye=0.15 might result in higher actinide abundances. But this is still speculative

and also strongly dependent on uncertain nuclear input physics as well as uncertainties in

site specific conditions. However, it is intriguing to check how both types of abundance

patterns can be observed in low-metallicity stars. Improved predictions for all the most

probable main r-process sites, discussed in the previous section can hopefully lead to a

one-to-one connection between responsible production sites and observations.

When discussing how a variation in the produced abundance pattern can affect

kilonova lightcurves and spectra (92), with the aim to identify the exact pattern for
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Figure 5. From (143): Utilizing the DZ mass model permits large variations of

actinide production, even at low Ye. The highest actinide production is found at

Ye = 0.125

individual observed events. (59) and (117) discuss variations expected among neutron

star mergers and collapsars, the latter being dominated by less neutron-rich black hole

accretion disk outflows.

In addition to the identification and possible explanation of the abundance pattern

in actinide boost stars, related to long-lived unstable Th and U isotopes, short-lived

radioactive isotopes have been addressed by (145; 146). Nuclei with half-lives of a few

106 to 107 yr permit to probe recent nucleosynthesis events in the vicinity of the presolar

nebula. In the present context only nuclei of an r-process origin are of interest here. Of

these (147) point out 129I and 247Cm with identical half-lives.

In addition to observations of long-lived radioactive species like Th and U, seen

via the spectra of stars throughout galactic evolution, there have also been detections

in deep-sea sediments, indicating more recent additions of these elements to the earth.

While the earlier discussion points to rare strong r-process events in the early galaxy,

the latter detections, suggest the same in recent history. Radioactive species can act

as witness of recent additions to the solar system, dependent on their half-lives. Two

specific isotopes have been utilized in recent years to measure such activities in deep

sea sediments. One of them, 60Fe, has a half-life of 2.6× 106 yr and can indicate recent

additions from events occurring up to several million years ago. 60Fe is produced during
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the evolution and explosion of massive stars, leading to supernovae (148; 149; 4; 14). It

is found in deep-sea sediments which incorporated stellar debris from a nearby explosion

about two million years ago (150; 151; 152; 153). Such a contribution is consistent with

a supernova origin and related occurrence frequencies, witnessing the last nearby event.

Another isotope utilized, 244Pu, has a half-life of 8.1 × 107 yr (see table 1) and would

contain a collection from quite a number of contributing events. As dicussed above,

strong r-process events with a frequency as high as CCSNe would require 10−4–10−5 M�
of r-process matter ejected per event in order to explain the present day solar abundances

(21). The 244Pu detection in (154) is lower than expected from such predictions by

two orders of magnitude, suggesting that considerable actinide nucleosynthesis is very

rare (permitting substantial decay since the last nearby event). This indicates that

CCSNe did not contribute significantly to the strong r-process in the solar neighborhood

for the past few hundred million years (155), but does not exclude a weak r-process

contribution with very minor Eu production (156). Very recent investigations (157),

possibly indicating that 60Fe from the last CCSNe might have been accompanied by a

(very) minor 244Pu contribution underline (i) the rare major actinide producing events,

but (ii) possibly also a frequent weak r-process, producing very small, but not negligible

amounts of actinides.

5. Discussion and Conclusions

The previous sections underline that observations of Honda-type or limited-r stars ask

for a weak r-process, which can be frequent, causing a small scatter in [Eu/Fe] also

at low metallicities, when originating from such sources. Possible candidates, although

not proven yet, are (see section 3 for sources) (a) EC supernovae, (c) CCSNe, and (d)

Quark Deconfinement supernovae. Detailed predictions still need to emerge, especially

whether not only small amounts of Eu but also small (but not negligible) amounts of

actinides can be co-produced.

The main, strong r-process, has to come from rare events, with an occurrence

frequency lower by a factor 100 (or more) than that of CCSNe. This requirement can

be matched by (see section 3 for sources) (g) NS mergers, but also additional rare sites

like (e) MHD jet supernovae, (f) collapsars, and (h) NS-BH mergers are not excluded.

In fact, a number (among them the most sophisticated) chemical evolution simulations

argue for such additional candidate sites (126; 125; 112; 114; 113; 130; 59; 131; 117; 132),

especially to explain deficiencies with respect to [Eu/Fe] observations encountered for

low metallicities down to [Fe/H]=-3 and below. This goes together with the question

whether actinide boost stars require a different origin or are just a sign of varying

conditions among the variety of compact binary merger events.

Thus, while there exist substantial doubts whether neutron star mergers can be the

only site of the main, strong r-process, responsible for the heavy r-process elements up

to the actinides (also at lowest metallicities), there might exist possible ways out of the

dilemma, avoiding contradictions with observations:
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• neutron star kicks during the second supernova explosion can act in such a way

that the actual neutron star merger takes place outside the initial Fe pollution by

the preceding supernovae (158; 159; 160), thus moving the [Eu/Fe] imprint to lower

metallicities. This could permit the ejection of r-process matter in environments

with a lower [Fe/H]. If in such a way the merger event can be displaced from the

original supernovae, it is found (161) that mergers could be made barely consistent

with the [Eu/Fe] observations, if such displacement is taken into account and very

short coalescence timescales of 106 yr are used.

• One of the major aspects for the treatment of compact binary mergers is the

connection of earlier supernova events, producing a neutron star and Fe ejecta, with

the later delayed merger event and its r-process ejecta. Special binary evolution

aspects might apply for such close binary systems and the resulting supernovae

(162; 163). It is not clear whether the evolution of a close binary system of massive

stars with serveral mass exchange periods leads to the same type of CCSN events

with substantial Fe ejection as known from single star evolution.

• In addition to reproducing galactic evolution observations of [Eu/Fe] at lowest

metallicities (halo stars), which challenges the early r-process contributions by

NS mergers, there exists a challenge of the Eu enrichment at high metallicities

(disk stars), related to the observed decrease of [Eu/Fe] vs. metallicity at [Fe/H]

> -1, (112; 113; 114; 115; 117). Possible solutions for the latter are that star

formation takes only place in the cold ISM, which does not include the latest and

recent enrichments (116) or that the delay-time distributions of the mergers (after

formation of the two neutron stars) does not follow a simple t−1 power law as

inferred from population synthesis studies and statistics of short duration gamma-

ray bursts (118).

• Triple and multiple stellar systems can cause different delay time distributions for

the neutron star mergers (164; 165) and enhance NS merger rates.

• Like other hydrodynamic calculations, large-scale SPH simulations, can suffer from

resolutions problems, which overestimates the material mixing. This mixes Fe with

larger amounts of interstellar medium and thus causes a decrease in the metallicity

at which r-process sets in. This seemed (possibly incorrectly) to permit NS

mergers as the only source of the main, strong r-process, also at lowest metallicities

(124; 127; 128; 129). On the other hand, such simulations can handle substantial

turbulent mixing of interstellar medium matter in the early Galaxy, not included in

simpler stochastic inhomogenous chemical evolution simulations (see section 4.2).

• Another option is that early on, in galactic substructures of the size of dwarf

galaxies, different star formation rates can exist combined with a loss of

nucleosynthesis ejecta out of these galaxies due to smaller gravity. This can

shift the behavior of the [Eu/Fe] ratio as a function of metallicity [Fe/H] to

lower metallicities. When also considering a statistical distribution of (down to

small) coalescence timescales in the individual substructures, the low-metallicity
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observations could possibly be matched (166), while the merging of these

substructures within the early Galaxy at later times can be made consistent with

the [Eu/Fe] decline (similar to alpha elements) at [Fe/H]=-1. See in this context

also (167).

The discussion above underlines, that it is still inconclusive whether binary

compact mergers alone can explain low metallicity observations, although they could

be responsible for the dominant amount of r-process products in the solar system

and present Galaxy. Independent of this uncertainty, when introducing an additional

component which acts already at lowest metallicities, a perfect fit to observations can be

obtained. The detection of actinide boost stars, found in particular at metallicities as

low as [Fe/H]≈-3, adds to this question, whether an additional component with different

nucleosynthesis conditions, being active at such low metallicities, is required. The

alternative would be that a variety in the statistical distribution of NS mergers properties

with different masses and mass ratios can cover the variation in nucleosynthesis

conditions.

This overview of the possible astrophysical r-process sites, from proven ones to other

still more speculative options, has shown that substantial progress has been made since

the process was postulated in the 1950s. But it also shows that, despite the very first

observation of an r-process production site (GW170817) in 2017, confirming neutron star

mergers as probably the most important site, many open questions remain and further

progress on all fronts is required in a truly interdisciplinary effort. This includes nuclear

physics far from stability and the nuclear equation of state, magneto-hydrodynamic

modeling with high resolution to resolve the magneto-rotational instability (MRI),

sophisticated inhomogeneous galactic evolution modeling with high resolution from

small dwarf-galaxy size substructures to clusters, including inflows and outflows,

but foremost multi-messenger astronomical observations which permit to detect and

understand magnetars and other rare classes of supernovae, core-collapse supernovae and

the option whether they can give rise to a weak r-process, collapsar/hypernovae/long

duration GRBs, and the vast class of compact binary mergers, sampling the whole

variety of possible systems and their statistical properties.
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[45] Halevi G and Mösta P 2018 Mon. Not. Roy. Astron. Soc. 477 2366–2375

[46] Reichert M, Obergaulinger M and Arcones A 2019 in preparation

[47] MacFadyen A I and Woosley S E 1999 Astrophys. J. 524 262–289 (Preprint

astro-ph/9810274)

[48] Piran T 2004 Rev. Mod. Phys. 76 1143–1210

[49] Nomoto K, Tominaga N, Umeda H, Kobayashi C and Maeda K 2006 Nuclear

Physics A 777 424–458 (Preprint astro-ph/0605725)

[50] Nagataki S 2011 International Journal of Modern Physics D 20 1975–1978

[51] Sekiguchi Y and Shibata M 2011 Astrophys. J. 737 6 (Preprint 1009.5303)

[52] Ono M, Hashimoto M, Fujimoto S, Kotake K and Yamada S 2012 Prog. Theor.

Phys. 128 741–765

[53] McKinney J C, Tchekhovskoy A and Blandford R D 2013 Science 339 49 (Preprint

1211.3651)

[54] Janiuk A, Sukova P and Palit I 2018 Astrophys. J. 868 68 (Preprint 1810.05261)

[55] McLaughlin G C and Surman R 2005 Nucl. Phys. A 758 189–196

[56] Surman R, McLaughlin G C and Hix W R 2006 Astrophys. J. 643 1057–1064

(Preprint astro-ph/0509365)

[57] Janiuk A 2017 Astrophys. J. 837 39 (Preprint 1609.09361)

[58] Janiuk A and Sapountzis K 2018 arXiv e-prints arXiv:1803.07873 (Preprint

1803.07873)

[59] Siegel D M, Barnes J and Metzger B D 2019 Nature 569 241–244

[60] Lattimer J M and Schramm D N 1974 Astrophys. J. 192 L145–L147

[61] Rosswog S, Davies M B, Thielemann F K and Piran T 2000 Astron. & Astrophys.

360 171–184

[62] Freiburghaus C, Rosswog S and Thielemann F K 1999 Astrophys. J. 525 L121–

L124

[63] Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2017

Phys. Rev. Lett. 119(16) 161101

[64] Rosswog S 2015 Int. J. Mod. Phys. D 24 1530012

[65] Goriely S and Mart́ınez-Pinedo G 2015 Nucl. Phys. A 944 158–176



Nuclear Physics in Astrophysics IX (NPA-IX)

Journal of Physics: Conference Series 1668 (2020) 012044

IOP Publishing

doi:10.1088/1742-6596/1668/1/012044

22

REFERENCES

[66] Fernández R and Metzger B D 2016 Annu. Rev. Nucl. Part. Sci. 66 23–45

(Preprint 1512.05435)

[67] Thielemann F K, Eichler M, Panov I V and Wehmeyer B 2017 Annu. Rev. Nucl.

Part. Sci. 67 253–274

[68] Baiotti L and Rezzolla L 2017 Rep. Prog. Phys. 80 096901

[69] Bauswein A, Just O, Janka H T and Stergioulas N 2017 Astrophys. J. Lett. 850

L34

[70] Shibata M, Fujibayashi S, Hotokezaka K, Kiuchi K, Kyutoku K, Sekiguchi Y and

Tanaka M 2017 Phys. Rev. D 96(12) 123012

[71] Horowitz C J et al. 2019 J. Phys. G: Nucl. Part. Phys. 46 083001 (Preprint

1805.04637)

[72] Metzger B D 2019 arXiv e-prints arXiv:1910.01617 (Preprint 1910.01617)

[73] Lattimer J M 2019 Annals of Physics 411 167963

[74] Abbott B P et al. 2020 arXiv e-prints arXiv:2001.01761 (Preprint 2001.01761)

[75] Korobkin O, Rosswog S, Arcones A and Winteler C 2012 Mon. Not. Roy. Astron.

Soc. 426 1940–1949

[76] Eichler M, Arcones A, Kelic A, Korobkin O, Langanke K, Marketin T, Mart́ınez-

Pinedo G, Panov I, Rauscher T, Rosswog S, Winteler C, Zinner N T and

Thielemann F K 2015 Astrophys. J. 808 30

[77] Wanajo S, Sekiguchi Y, Nishimura N, Kiuchi K, Kyutoku K and Shibata M 2014

Astrophys. J. 789 L39

[78] Goriely S, Bauswein A, Just O, Pllumbi E and Janka H T 2015 Mon. Not. Roy.

Astron. Soc. 452 3894–3904

[79] Sekiguchi Y, Kiuchi K, Kyutoku K, Shibata M and Taniguchi K 2016 93 124046

(Preprint 1603.01918)

[80] Bovard L, Martin D, Guercilena F, Arcones A, Rezzolla L and Korobkin O 2017

Phys. Rev. D 96(12) 124005

[81] Martin D, Perego A, Arcones A, Thielemann F K, Korobkin O and Rosswog S

2015 Astrophys. J. 813 2 (Preprint 1506.05048)

[82] Just O, Bauswein A, Pulpillo R A, Goriely S and Janka H T 2015 Mon. Not. Roy.

Astron. Soc. 448 541–567

[83] Wu M R, Fernández R, Mart́ınez-Pinedo G and Metzger B D 2016 Mon. Not.

Roy. Astron. Soc. 463 2323–2334

[84] Wu Y and MacFadyen A 2018 Astrophys. J. 869 55

[85] Janiuk A 2019 Astrophys. J. 882 163 (Preprint 1907.00809)

[86] Metzger B D, Mart́ınez-Pinedo G, Darbha S, Quataert E, Arcones A, Kasen D,

Thomas R, Nugent P, Panov I V and Zinner N T 2010 Mon. Not. Roy. Astron.

Soc. 406 2650–2662



Nuclear Physics in Astrophysics IX (NPA-IX)

Journal of Physics: Conference Series 1668 (2020) 012044

IOP Publishing

doi:10.1088/1742-6596/1668/1/012044

23

REFERENCES

[87] Barnes J, Kasen D, Wu M R and Mart́ınez-Pinedo G 2016 Astrophys. J. 829 110

(Preprint 1605.07218)

[88] Hotokezaka K, Wanajo S, Tanaka M, Bamba A, Terada Y and Piran T 2016 Mon.

Not. Roy. Astron. Soc. 459 35–43

[89] Kasen D and Barnes J 2018 arXiv e-prints arXiv:1807.03319 (Preprint

1807.03319)

[90] Zhu Y et al. 2018 Astrophys. J. 863 L23

[91] Rosswog S, Sollerman J, Feindt U, Goobar A, Korobkin O, Wollaeger R, Fremling

C and Kasliwal M M 2018 Astron. & Astrophys. 615 A132

[92] Wu M R, Barnes J, Mart́ınez-Pinedo G and Metzger B D 2019 Phys. Rev. Lett.

122(6) 062701

[93] Tanaka M et al. 2017 Publ. Astron. Soc. Japan 69 102 (Preprint 1710.05850)

[94] Kawaguchi K, Shibata M and Tanaka M 2018 Astrophys. J. 865 L21

[95] Kasliwal M M, Kasen D, Lau R M, Perley D A, Rosswog S, Ofek E O, Hotokezaka

K, Chary R R, Sollerman J, Goobar A and Kaplan D L 2019 Mon. Not. Roy.

Astron. Soc. L14

[96] Wu M R, Banerjee P, Metzger B D, Mart́ınez-Pinedo G, Aramaki T, Burns E,

Hailey C J, Barnes J and Karagiorgi G 2019 Astrophys. J. 880 23 (Preprint

1905.03793)

[97] Watson D et al. 2019 Nature 574 497–500 (Preprint 1910.10510)

[98] Lattimer J M and Schramm D N 1976 Astrophys. J. 210 549–567

[99] Lattimer J M 2019 arXiv e-prints arXiv:1908.03622 (Preprint 1908.03622)

[100] Janka H T, Eberl T, Ruffert M and Fryer C L 1999 Astrophys. J. Lett. 527 L39–

L42 (Preprint astro-ph/9908290)

[101] Foucart F 2012 Phys. Rev. D 86 124007 (Preprint 1207.6304)

[102] Kawaguchi K, Kyutoku K, Shibata M and Tanaka M 2016 Astrophys. J. 825 52

(Preprint 1601.07711)

[103] Audouze J and Tinsley B M 1976 Annu. Rev. Astron. Astrophys. 14 43–79

[104] Tinsley B M 1980 Fundamentals of Cosmic Physics 5 287–388

[105] Travaglio C, Galli D, Gallino R, Busso M, Ferrini F and Straniero O 1999

Astrophys. J. 521 691–702

[106] Ishimaru Y and Wanajo S 1999 Astrophys. J. 511 L33–L36 (Preprint

astro-ph/9812067)

[107] De Donder E and Vanbeveren D 2004 New Astron. 9 1–16

[108] Wanajo S and Ishimaru Y 2006 Nucl. Phys. A 777 676–699

[109] Matteucci F, Romano D, Arcones A, Korobkin O and Rosswog S 2014 Mon. Not.

Roy. Astron. Soc. 438 2177–2185 (Preprint 1311.6980)



Nuclear Physics in Astrophysics IX (NPA-IX)

Journal of Physics: Conference Series 1668 (2020) 012044

IOP Publishing

doi:10.1088/1742-6596/1668/1/012044

24

REFERENCES

[110] Ishimaru Y, Wanajo S and Prantzos N 2015 Astrophys. J. 804 L35 (Preprint

1504.04559)

[111] Vangioni E, Goriely S, Daigne F, François P and Belczynski K 2016 Mon. Not.

Roy. Astron. Soc. 455 17–34 (Preprint 1501.01115)
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M R, Lippuner J, Sprouse T M, Surman R and Wollaeger R 2018 Astrophys. J.

855 99

[115] Côté B et al. 2019 Astrophys. J. 875 106 (Preprint 1809.03525)

[116] Schönrich R A and Weinberg D H 2019 Mon. Not. Roy. Astron. Soc. 487 580–594

(Preprint 1901.09938)

[117] Siegel D M 2019 arXiv e-prints arXiv:1901.09044 (Preprint 1901.09044)

[118] Beniamini P and Piran T 2019 487 4847–4854 (Preprint 1903.11614)

[119] Chiappini C, Matteucci F and Romano D 2001 Astrophys. J. 554 1044–1058

(Preprint arXiv:astro-ph/0102134)

[120] Recchi S, Matteucci F and D’Ercole A 2001 Mon. Not. Roy. Astron. Soc. 322

800–820 (Preprint astro-ph/0002370)

[121] Argast D, Samland M, Thielemann F K and Qian Y Z 2004 Astron. & Astrophys.

416 997–1011

[122] Spitoni E, Matteucci F, Recchi S, Cescutti G and Pipino A 2009 Astron. &

Astrophys. 504 87–96 (Preprint 0906.3400)

[123] Recchi S, Calura F and Kroupa P 2009 Astron. & Astrophys. 499 711–722

(Preprint 0903.2395)

[124] van de Voort F, Quataert E, Hopkins P F, Kereš D and Faucher-Giguère C A
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[146] Côté B et al. 2019 Astrophys. J. 887 213
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