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We study the collision of two optical laser pulses in a pump-probe setup using beams with circular and
elliptic cross section and estimate the number of discernible signal photons induced by quantum vacuum
nonlinearities. In this analysis we study strategies to optimize the quantum vacuum signal discernible from
the background of the driving lasers. One of the main results is that the collision of two maximally focused
lasers does not lead to the best discernible signal. Instead, widening the focus typically improves the signal
to background separation in the far field. For petawatt class lasers, an optimal choice of the focus waist
yields several discernible photons per shot in contrast to no discernible signal for tight focusing. Further
enhancement is possible by using an elliptical waist.
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I. INTRODUCTION

As the quantitatively best verified quantum field theory
within the Standard Model of particle physics, quantum
electrodynamics (QED) still offers parameter regimes
untested in experiment. The present study is devoted to
the regime pioneered by Heisenberg and Euler introducing
an effective Lagrangian [1], which encodes the effects of
QED vacuum fluctuations in effective nonlinear inter-
actions between macroscopic electromagnetic fields. An
in-depth study of this regime does not only expand our
understanding of this fundamental theory but could also
shed light on physics beyond the Standard Model (BSM),
e.g., [2–11].
The quantum vacuum can be interpreted as a quantum

state characterized by fluctuations of particle and antiparticle
pairs on short space and time scales. In the case of QED,
these are electrons and positrons interacting with photons.
As fields couple to charges these vacuum fluctuations induce
the effective nonlinear interactions between external electro-
dynamic fields in the Heisenberg-Euler Lagrangian. The
nonlinear terms in the Lagrangian give rise to effects like
photon-photon scattering or birefringence, which become

sizable only at sufficiently high field strengths [12,13]. Thus,
the quantum vacuum closely resembles a nonlinear medium
in solid state physics.
In previous theoretical studies, many different signatures

of the QED vacuum have already been analyzed; see the
reviews [14–24] and references therein. The main problem,
however, is to distinguish between the small amount of
signal photons and the comparably huge number of back-
ground photons of the driving electromagnetic fields.
In this article, we study the prospects of inducing a

discernible quantum vacuum signal in a two-beam pump-
probe setup with optical ultrashort PW laser pulses, such as
previously studied, e.g., by [25–28]. A key parameter to
enhance the signal is the choice of optimal beam waists.
Typically, tightly focused beams down to the diffraction
limit are considered in order to maximize the involved field
strength. While this does, in fact, generically maximize the
scattering amplitudes, it does not necessarily optimize the
signal-to-background ratio which is the relevant quantity to
identify the quantum vacuum signature; cf. also [29,30].
A crucial idea in this context is that the specific use of larger
beam waists can scatter the quantum signal into lower-
noise regions. This is, because the signal amplitude
decreases only with a power law for increasing waists,
whereas the noise decreases exponentially in the relevant
spacetime regions.
In addition to studying beams with circular cross section,

we also allow the probe pulse to have an elliptic focus cross
section such as pioneered in the context of vacuum
birefringence [31,32]. We discuss the advantages of the
circularly or elliptically focused probe beam settings for
variable probe beam waists and determine the respective
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number of discernible signal photons mediated by quantum
vacuum nonlinearites.
Our article is organized as follows. In Sec/ II, we briefly

introduce the theoretical framework to reliably derive the
number of signal photons arising from QED nonlinearites.
Section III specifies the experimental scenario, based on
parameters available at state-of-the-art strong laser facili-
ties. In Sec. V, we identify the phase space regions where
the number of signal photons dominates over the amount
of background photons. We then analyze the effects of
different focusing on the yield for different collision angles
between the pump and probe beams, both for circularly
focused and elliptically focused probe beams. Finally, we
conclude with a summary of our results and a brief outlook
in Sec. VI.

II. THEORETICAL BACKGROUND:
KEY TO THE QUANTUM VACUUM

A convenient way to study the signal photons induced by
quantum vacuum nonlinearities is the vacuum emission
picture [33,34]. Here we assume the vacuum nonlinearites
to be governed by the one-loop Heisenberg-Euler effective
LagrangianLHE [1,12,14,15,35–39] and focus on the leading
nonlinear correction to classicalMaxwell theory. In this limit,
the relevant process can be illustrated by a closed fermion
loop with four photon lines: three photon lines represent the
driving laser pulses and the remaining line characterizes the
photonic output of the nonlinear interaction.
In this section, we briefly summarize this approach

and derive an expression for photonic signatures of
quantum vacuum nonlinearities. We use the metric con-
vention gμν ¼ diagð−;þ;þ;þÞ and Heaviside-Lorentz
units with ℏ ¼ 1 ¼ c.
In order to induce a sizable signal, the driving electro-

magnetic fields should reach extremely high peak field
strength values E and B at the feasible end of current
technology. On the other hand these fields are still weak
compared to the field-strength scale constructed from the

fundamental parameters of QED, i.e. fE; Bg ≪ m2
e
e with the

elementary charge e and the electron mass me. In addition,
we limit ourselves to optical and near-infrared frequencies
with ω ≪ me.
It is convenient to introduce the field-strength invariants

of electrodynamics,

F ¼ 1

4
FμνFμν ¼

1

2
ðB2 −E2Þ;

G ¼ 1

4
F̃μνFμν ¼ −B ·E; ð1Þ

where F̃μν ¼ 1
2
ϵμναβFαβ is the dual field strength tensor.

Then, the Heisenberg-Euler action LHE ¼ LM þ Lint con-
sists of the classical Maxwell term LM ¼ −F and the
nonlinear interaction term induced by quantum fluctuations,

Lint ¼
m4

e

360π2

�
e
m2

e

�
4

ð4F 2 þ 7G2Þ þ…: ð2Þ

In the following, we limit ourselves to the lowest order
photon-photon interaction, i.e. the contribution proportional
to the square of the scalar invariants. Generalizations to
higher orders are straightforward.
The number of quantum vacuum signal photons induced

by the interactions of the driving fields can straightforwardly
be derived within the vacuum emission picture. For this, we
introduce the signal photon field âμ and treat it as an operator
on the Fock space. Replacing the electromagnetic fields
according to Fμν → Fμν þ f̂μν with the classical background
field of the driving lasers Fμν and the signal photon field
f̂μν ¼ ∂

μâν − ∂
νâμ, we obtain the effective action Γint½â� for

the signal photons. This action mediates transitions between
the vacuum state j0 > and the signal photon state jγðpÞðkÞi.
The induced signal photon of unit wave vector k̂ is
characterized by a polarization vector ϵμðpÞðk̂Þ ¼ ð0; eðpÞÞ
spanned by two transverse vectors eðpÞ with p ∈ f1; 2g,
fulfilling k̂ × eðpÞ ¼ eðpþ1Þ and eð3Þ ¼ −eð1Þ.
To evaluate the effective action Γint½âðxÞ� ¼R
d4xLintjF→Fþf̂ we use the locally constant field approxi-

mation. This is quantitatively controlled by the spatiotem-
poral variation scales of the optical driving laser pulses
compared to the time and space scale of QED; the Compton
wavelength of an electron is ƛC ¼ 3.86 × 10−13 m and the
Compton time is τC ¼ 1.29 × 10−21 s. Finally, the informa-
tion about the signal photon distribution far outside the
interaction region is encoded in the signal photon amplitude

ð3Þ

Here, we use � to denote the complex conjugation. Upon
insertion of the corresponding derivatives ofLint into Eq. (3),
we obtain

SðpÞðkÞ ¼
1

i
e
4π2

m2
e

45

ffiffiffi
k
2

r �
e
m2

e

�
3
Z

d4xeikðk̂−tÞ

× ð4½eðpÞ ·E − eðpþ1Þ ·B�F
þ 7½eðpÞ · Bþ eðpþ1Þ · E�GÞ: ð4Þ
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This signal amplitude can be related to the differential
number of signal photons d3NðpÞ of polarization p which
have an energy k ¼ jkj in the differential energy interval dk
and are emitted into the solid angle dΩ around k̂ as

d3NðpÞ ¼
k2dk dΩ
ð2πÞ3 jSðpÞðkÞj2: ð5Þ

This differential form leads to a polarization sensitive
angular resolved signal photon density

ρðpÞðφ; ϑjkmin; kmaxÞ ¼
1

ð2πÞ3
Z

kmax

kmin

dk k2jSðpÞðkÞj2 ð6Þ

depending on the emission angles φ and ϑ and integrated
over a given frequency range kmin to kmax. The total number
of signal photons NðpÞ with polarization (p) in a given solid
angle regime A reads

NðpÞðAjkmin; kmaxÞ ¼
Z
A
dΩρðpÞðφ; ϑjkmin; kmaxÞ: ð7Þ

If the measurement is polarization insensitive we have
to sum both polarizations, i.e. NðAjkmin; kmaxÞ ¼P

2
p¼1NðpÞðAjkmin; kmaxÞ. Further details can be found in

the Refs. [34,40].

III. EXPERIMENTAL SCENARIO

We study the interaction of two strong laser pulses
colliding under an angle ϑcol > 90°. In this section, we
introduce the experimental setup based on state-of-the-art
techniques. Further we choose an example set of param-
eters for experimentally accessible quantum vacuum
signals.
Here, we focus on laser pulses in the optical regime with

the same photon energy of ω0 ¼ 1.55 eV, as is available at
the Advanced Titanium-Sapphire Laser (ATLAS) in the
Centre for Advanced Laser Applications (CALA) facility
(Garching, Germany) [41,42] and the Jenaer Titan:Saphir
200 Terawatt Laser System (JETI-200) laser at Helmholtz
Institut Jena (Jena, Germany) [43,44]. These facilities
operate state-of-the-art high-intensity lasers and illustrate
which field strengths are already available in strong-field
laser experiments.
Accordingly, we use optical laser pulses with a pulse

energy of W ¼ 25 J here. The wavelength is λ ¼ 800 nm
and the pulse duration is τFWHM ¼ 25 fs measured at full
width half maximum (FWHM) of the intensity. Assuming
that the temporal shape of the pulse is Gaussian, we can
convert the FHWM pulse duration τFWHM into an 1=e2

pulse duration τ ¼ 2
ffiffiffiffiffiffiffi
ln 2

p
τFWHM. The calculations are

performed with the 1=e2 pulse duration; if in the following
the FWHM duration is mentioned, then this is indicated
with the addition (FWHM) in brackets.

Moreover, we model the spatial structure of the laser
pulses by Gaussian beams with a focus waist w0, which is
determined by the radial aperture angle of the beams in the
far field Θ via the relation Θ ¼ w0

zR
with the Rayleigh range

zR ¼ π
w2
0

λ . According to the laws of optics, the minimum
focus width is w0 ≃ λ, which corresponds to a radial
aperture of Θ ¼ 1

π ≈ 18.24°. Because of the scaling
Θ ∼ 1

w0
, setups with a focal width larger than the minimum

yield smaller aperture angles in the far field. Consequently,
the photon distribution of the driving lasers constituting a
large background is less wide.
In this work, we consider the collision of two Gaussian

laser pulses under the angle ϑcol. For our calculations, we
vary this angle in the range from 100° to 160° in 10° steps.
For convenience, we refer to one laser as the probe field,
labeled by subscript 1, and the other as the pump field,
labeled by the subscript 2. We deliberately avoid head-on
collisions which would maximize the signal photon yield
for both practical and theoretical reasons; see below. Head-
on collisions are very challenging and may not be practical
due to experimental constraints. We will focus mainly on
the signal emitted in the vicinity of the forward direction of
the probe beam. The purpose of the pump beam is to
provide a localized strong field region inducing the signal.
The propagation directions of the laser pulses are k̂1 ¼ êz
and k̂2 ¼ sin ϑcolêx þ cosϑcolêz, respectively. Their wave
vectors are k1 ¼ ω1k̂1 and k2 ¼ ω2k̂2 with ω1 ¼ ω2 ¼
ω0 ¼ 2 2π

λ . These laser pulses collide at their focal spots at
x ¼ 0 and reach their peak fields at t ¼ 0, which defines
the origin of our coordinate system.
The laser pulses are all linearly polarized. Here, we

choose the polarization of the probe laser such that the
electric field E1ðx; tÞ points into x direction; correspond-
ingly the magnetic field B1ðx; tÞ is orientated along the y
axis. To allow for a generic linearly polarized pump laser,
we introduce the angle β2 between E1ð0; 0Þ and E2ð0; 0Þ
for the collinear collision with ϑcol ¼ 0°. Using ϑcol as the
general collision angle, we obtain

E2ðx; tÞ ¼ E2ðx; tÞ

0
B@

cos β2 cosϑcol
sin β2

− cos β2 sinϑcol

1
CA; ð8Þ

B2ðx; tÞ ∼ k̂2 ×E2ðx; tÞ for the pump fields, where
Eiðx; tÞ describes the general amplitude function. The
maximum of the total polarization insensitive signal occurs
for an angle β2 ¼ 90° which is our angle of choice unless
otherwise stated. In a special scenario, we consider the
signal of birefringence maximized at an angle of β2 ¼ 45°,
see [45]. Further references discuss vacuum birefringence
from a general point of view, cf. [13,29,31,46,47].
Throughout this work we consider a radially symmetric

pump, but use both elliptical and circular focus cross
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sections for the probe laser. To this end, we introduce two
independent beam waists for the probe laser wx in the
collision plane and wy normal to this plane. For conven-
ience, we parametrize wx ¼ wy ¼ μw0 in the case of a
rotationally symmetric probe beam, using a dimensionless
parameter μ ≥ 1. In the case of elliptical cross sections, we
analogously introduce wx ¼ μxw0 and wy ¼ μyw0 with
fμx; μyg ≥ 1. Figure 1 illustrates this scenario with rota-
tionally symmetric pump and probe beams.
To determine the rotationally symmetric quantum vac-

uum signal, it is sufficient to consider the Gaussian beams
in the limit of infinite Rayleigh ranges. This approximation
is justified if the dimensions of the interaction volume are
small compared to the Rayleigh lengths zR. This is true in
the case of very small pulse durations τi ≪ zR;i compared
to the Rayleigh ranges for all involved beams. Another way
to justify the approximation is a small ratio of focal width
w0;i and Rayleigh length zR;j of two colliding beams i and j
with respect to the sine of their collision angle, i.e.
w0;i=zR;j ≪ j sin ϑcolj for i ≠ j. If any of the above con-
ditions is satisfied, then the effectively interacting regions
of the laser beams can be approximated as tubes in the
interaction volume [27,48–50]. Figure 2 shows the beam
radii in the focus by using a probe with elliptical cross
section. For numerical approaches beyond infinite Rayleigh
range approximation see [51–55].
Correspondingly, the field amplitudes can be approxi-

mated as

E1ðxÞ ¼
E0ffiffiffiffiffiffiffiffiffi
μxμy

p e
−ðx·k̂1−tτ1=2

Þ2−x2

w2x
−y2

w2y cosðω0ðx · k̂1 − tÞÞ ð9Þ

and

E2ðxÞ ¼ E0e
−ðx·k̂2−tτ2=2

Þ2−x2−ðx·k̂2Þ2
w2
0 cosðω0ðx · k̂2 − tÞÞ; ð10Þ

where we have used the different propagation directions k̂1

and k̂2. Here, E0 is the field amplitude maximum depend-
ing on the laser pulse properties. It fulfills [56]

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

ffiffiffi
2

π

r
W

πw2
0τ

s
≈ 8.5 × 1015 V=m; ð11Þ

using the parameters given above.

IV. CALCULATION OF THE SIGNATURE OF
QUANTUM VACUUM NONLINEARITES

A. The background of the driving laser pulses

Before we calculate the signal, let us determine the
distribution of the driving laser photons far outside the
interaction volume.
Since we need extremely strong laser fields to stimulate

QED vacuum nonlinearites, the challenge in experiment is to
discern the small quantum vacuum signal from the enormous
number of photons of the driver lasers. In the current
research, there are many ideas to suppress this background
such as an elastic scattering signal outside the forward cones
of the driving lasers, [57]. Another idea is to use inelastic
scattering to obtain signal at a frequency different from
the background and thus achieve a spectral signal-to-
background separation [40]. Furthermore, in experiments
on birefringence, the different polarization of signal and
background can be the key to measurability [13].
Let us describe the background quantitatively, in order to

assess where the signal dominates. In contrast to the signal,
the background in the far field cannot be reliably deter-
mined in the limit of infinite Rayleigh length.
We can estimate the total number of photons per laser

pulse as Ntot ¼ W=ω0 ≈ 1020. This results in a differential
number of background photons of the ith laser dNBg

i
per solid angle element dΩ which satisfies the relation

Ntot ¼ R
Ω dNBg

i , since we use W1 ¼ W2 ¼ W and

FIG. 1. Illustration of the experimental scenario. The red shades
illustrate the forward/backward cones of two laser pulses collid-
ing under the angle ϑcol with a circular focus cross section.
Additionally, the green (blue) lines represent a typical snapshot of
the electric (magnetic) field amplitude.

FIG. 2. Illustration of the beam radii in the focus of the
experimental scenario. Besides the wave vectors of probe k̂1
and pump k̂2, the red dashed curves illustrate the radii of the waist
in the focus. The rotationally symmetric pump has a waist size of
w0 while the probe with elliptical cross section has the waists wx
in the collision plane marked by the yellow plain and wy

perpendicular to it.
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frequency ω1 ¼ ω2 ¼ ω0 for both lasers. For the far-field
distribution of a Gaussian beam with normalization

NBg
0 ¼ w2

0
ω0

2π W, we obtain

dNBg
i

dΩ
¼ μ1iμ2iN

Bg
0 e−

1
2
ω2
0
w2
0
ðμ2

1i cos
2 ϕiþμ2

2i sin
2 ϕiÞθ2i ð12Þ

for a laser pulse with elliptical cross section. Here,

ϕ1 ¼ φ ð13Þ

and

ϕ2¼ arctanðcosφsinϑcosϑcol−sinφsinϑsinϑcolÞ ð14Þ

parametrize the rotations around the beam axis, and

θ1 ¼ ϑ − arccos ðk̂1 · êzÞ; ð15Þ

θ2 ¼ arccos ðcosφ sin ϑ sinϑcol þ cos ϑ cosϑcolÞ ð16Þ

are the polar angles measured from the forward beam axis;
φ and ϑ are azimuthal and polar angle used to parametrize
the emission direction in a spherical coordinate system with
the north pole along the outgoing direction of the probe
laser k1.
For the pump laser with a circular cross section in the far

field, we have

dNBg
2

dΩ
¼ NBg

0 e−
1
2
ω2
0
w2
0
θ2
2 : ð17Þ

Equation (12) implies that the density of background
photons decreases more rapidly with θi the larger μ1i
and μ2i. In the present scenario, the full density of the
background photons is given by

ρBgμ̄ ðφ; ϑÞ ¼
X2
i¼1

dNBg
i

dΩ
: ð18Þ

Since we keep the total pulse energy W, the frequency ω0,
and the pulse duration τ constant, we write ρBgμ̄ ðφ; ϑÞ with
the tuple μ̄ ¼ fμx; μyg indicating the choice of foci of the
probe beam. In the case of circularly focused pulses, we use
μ̄ → μ, i.e. μx ¼ μy ¼ μ.
The spectral distribution of the driving laser pulses is

centered around ω0; therefore, the background is also
dominated by the frequency ω0.
Finally, the number of background photons in a given

solid angle regime A, analogous to Eq. (7), is given by

NBgðA; μ̄Þ ¼
Z
A
dΩρBgμ̄ ðφ; ϑÞ: ð19Þ

B. Quantum vacuum signal

For the signal amplitude SðpÞðkÞ, let us express the

wave vector in spherical coordinates as k ¼ kk̂ with
k̂ ¼ cosφ sin ϑêx þ sinφ sin ϑêy þ cosϑêz.
The vectors orthogonal to k̂ can then be parametrized by

a single angle β as

eβ ¼ sin βk̂jφ→φþπ
2
;ϑ¼π

2
þ cos βk̂jϑ→ϑþπ

2
: ð20Þ

Without loss of generality we associate the polarization
p ¼ 1 with β and p ¼ 2 with β þ π

2
, respectively.

The leading quantum vacuum signal arises from the
effective coupling of three electromagnetic fields. For
convenience, we express the electric and the magnetic
field of the ith laser pulse field strength and direction
according to Eiðx;tÞ¼Eiðx;tÞÊi and Biðx;tÞ¼Eiðx;tÞB̂i,
respectively. In turn, Eq. (4) can be written as [40]

SðpÞðkÞ¼
1

i
e
4π2

m2
e

45

ffiffiffi
k
2

r �
e
m2

e

�
3

ðI121g121þI212g212Þ ð21Þ

with

gijiðφ; ϑÞ ¼ 2ðeβ · Êi − eβþπ
2
· B̂iÞ × ðB̂i · B̂j − Êi · ÊjÞ

−
7

2
ðeβ · B̂i þ eβþπ

2
· ÊiÞ × ðB̂i · Êj þ B̂j · ÊiÞ;

ð22Þ

and

I ijiðkÞ ¼
Z

d4xeikðk̂−tÞEiðx; tÞEjðx; tÞEiðx; tÞ: ð23Þ

The function gijlðφ; ϑÞ depends on the orientation of the
electromagnetic fields of the driving laser fields and the
signal; IijlðkÞ is the Fourier transform of the product of
three field amplitudes evaluated on shell.
In the conventions used here, the relevant contributions

read

g121ðφ; ϑÞ ¼
1

4
ð1 − cosϑÞð1 − cosϑcolÞ

× ½3 cos ðβ þ β2 − φÞ − 11 cos ðβ − β2 − φÞ�
ð24Þ

and
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g212ðφ; ϑÞ

¼ 1

4
ð1 − cosϑcolÞð½11 cos β − 3 cos ðβ þ 2β2Þ�

× ½ðcosϑ cosϑcol − 1Þ cosφþ sin ϑ sinϑcol�
þ ½11 sin β − 3 sin ðβ þ 2β2Þ�ðcosϑ − cos ϑcolÞ sinφÞ:

ð25Þ

We aim at the density of signal photons ρSigμ̄ ðφ; ϑÞ
regardless of their frequency. The latter lies within a small
frequency range around ω0, see also the detailed analysis
in [40]. Apart from Sec. V C, we consider the inclusive
average over polarizations. We are mainly interested in the
parametric dependence of the signal density on the focus
width (along both orthogonal axes) explicitly indicated by
the parameter tuple μ̄.
We begin by substituting the signal amplitude from

Eq. (21) into Eq. (6),

ρSigμ̄ ðφ;ϑÞ¼
X2
p¼1

1

ð2πÞ3
Z

∞

0

dkk2jSðpÞðkÞj2

¼ 1

2ð2πÞ7
1

452

�
e
me

�
8

×
Z

∞

0

dkk3
X2
p¼1

ðI121g121þI212g212Þ2; ð26Þ

taking advantage of the fact that the Fourier transform of a
real symmetric function is also a real symmetric function,
i.e., I�

ijl ¼ I ijl. All contributions I121g121 and I212g212
give rise to nonvanishing contributions for complementary
values of ðφ; ϑÞ. The interference term 2I121I212g121g212 is
exponentially suppressed in comparison to the “direct”
channels and can be safely neglected. Therefore, we neglect
the interference term in the remainder. This also increases
the performance of the numerical integration over the
solid angle.
With these approximations, we can calculate the Fourier

integrals I iji analytically, since their evaluation amounts
to performing Gaussian integrals. Then, Eq. (26) can be
expressed as

ρSigμ̄ ðφ;ϑÞ¼ 1

ð2πÞ7
2

452

�
e
me

�
8

×

��X2
p¼1

g2121ðφ;ϑÞ
�Z

∞

0

dkk3I2
121ðkÞ

þ
�X2

p¼1

g2212ðφ;ϑÞ
�Z

∞

0

dkk3I2
212ðkÞ

�
: ð27Þ

Subsequently we are mainly interested in the case of
β2 ¼ π

2
, where we obtain

X2
p¼1

g2121ðφ; ϑÞjβ2¼π
2
¼ 196 sin4

ϑ

2
sin4

ϑcol
2

; ð28Þ

X2
p¼1

g2212ðφ;ϑÞ
���
β2¼π

2

¼ 49 sin4
ϑcol
2

½cos ϑ cosϑcol − 1

þ cosφ sin ϑ sin ϑcol�2: ð29Þ

So far, all calculations could be performed analytically.
The number of signal photons NSigðA; μ̄Þ emitted into a
given solid angle areaA is finally evaluated by a numerical
integration over A as

NSigðA; μ̄Þ ¼
Z
A
dΩρSigμ̄ ðφ; ϑÞ: ð30Þ

V. DISCERNABILITY ANALYSIS OF QUANTUM
VACUUM SIGNAL

Our goal is to distinguish the weak quantum vacuum
signal from the strong laser background. This requires a
comparison of angular resolved densities or particle num-
bers of the signal and background. In this section, we
discuss ways to achieve optimal signal-to-background
separation.
Let us first introduce a discernibility criterion.
We call a signal discernible if the density of signal

photons ρSigμ̄ ðφ; ϑÞ in a given solid-angle regionAμ̄ is larger

than the density ρBgμ̄ ðφ; ϑÞ of the background provided by
the driver lasers [58]. The union of all such regions defines
the solid-angle region

Ad;μ̄ ¼ fðφ;ϑÞ ∈ ½0; 2π� × ½0; πÞjρSigμ̄ ðφ; ϑÞ ≥ ρBgμ̄ ðφ; ϑÞg:
ð31Þ

For simply connectedAd;μ̄, we describe the boundary ∂Ad;μ̄

using the upper boundary ϑuðφÞ and lower boundary ϑlðφÞ,
such that

∂Ad;μ̄¼fϑlðφÞjφ∈ ½φi;φf �g∪fϑuðφÞjφ∈ ½φi;φf �g; ð32Þ

where ϑuðφiÞ ¼ ϑlðφiÞ and ϑuðφfÞ ¼ ϑlðφfÞ, respectively.
In Appendix, a method for numerically determining region
Ad;μ̄ including its boundary is detailed. In addition, we also
show there how to compute the boundary functions ϑl=uðφÞ
for non-simply-connected regions.

A. Probe with circular cross section

Let us begin with the collision of pump and probe laser
pulses with circular cross section. First we turn our
attention to the collision under the angle ϑcol ¼ 160°.
The pump laser is focused to its diffraction limit with
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w0 ¼ w0 ¼ w0 ¼ 2π=ω0, whereas the probe beam has a
variable waist size w ¼ wx ¼ wy ¼ μw0 with μ ∈ ½1; 10�.
The lower bound corresponds to the diffraction limit.
Larger values of μ are not considered, because a saturation

is observed already before μ ¼ 10. In the remainder of this
work, we stick to the definitions and laser parameters
as introduced in Sec. III, i.e., both pulses have a pulse
duration of τ1 ¼ τ2 ¼ 25 fs (FWHM), a pulse energy of
W1 ¼ W2 ¼ 25 J and ω1 ¼ ω2 ¼ ω0 ¼ 1.55 eV.
At first we determine the solid angle regions where the

signal is discernible; see Appendix. For convenience, we
define the area of a given solid angle region A as

AðAÞ ¼
Z
A
dΩ: ð33Þ

The dependence of this quantity on the parameter
μ ¼ w=w0 is shown in Fig. 3. From Fig. 3, we infer that
there is no discernible signal for μ ≤ 1.6. For ≤ μ ≲ 4 the
area of Ad grows very strongly, but the increase with μ
becomes much slower beyond μ ≈ 4.
In Fig. 4, we highlight the photon density for the full

solid angle region of 4π for the example μ ¼ 5. Here, the
region where the signal dominates the background is
encircled by a green demarcation curve. Inside this region,
the density of the signal photons is shown in the corre-
sponding color scale (from black via green to yellow).
Outside this area, the background of the driving photons is

FIG. 3. Area of the solid angle region Ad;μ where ρ
Sig
μ > ρBgμ as

a function of μ for a collision angle of ϑcol ¼ 160°. Here we
consider the collision of two frequency ω0 beams of equal pulse
duration τ ¼ 25 fs (FWHM) and pulse energy W ¼ 25 J. The
pump (probe) beam has a circular cross section with waist radius
w0 ¼ 2π

ω0
(wx ¼ wy ¼ μw0).

FIG. 4. Mollweide plot (longitude φ, latitude ϑ) of the signal photon density ρSig5 ðφ;ϑÞ and the background of the driving laser fields
ρBg5 ðφ; ϑÞ. The region where ρSig > ρBg is highlighted by the green demarcation curve with the green color function and for the
complementary region ρSig < ρBg the purple color function is chosen. We consider the collision of two frequency ω0 beams of equal
pulse duration τ ¼ 25 fs (FWHM) and pulse energyW ¼ 25 J for ϑcol ¼ 160°. The pump (probe) beam has a circular cross section with
waist radius w0 ¼ 2π

ω0
(wx ¼ wy ¼ 5w0).
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shown; for this a different color scale (from black via purple
to ocher) is used.
In order to map the sphere onto a flat diagram, we use a

Mollweide projection, which conserves the relevant areas
of surfaces but is not angle conserving. The lower boundary
ϑlðφÞ is almost constant in φ because this region is close to
the forward beam axis of the probe beam ϑ ¼ 0which has a
circular cross section.
By contrast, the upper bound ϑuðφÞ shows a more

pronounced φ dependence. It becomes minimal in the
collision plane of the driving lasers at φ ¼ 0 and maximal
perpendicular to the collision plane at φ ¼ 180°. In
between, ϑuðφÞ varies monotonically.
The color scale encodes the distribution of the signal

photons. The largest discernible signals are reached close to
ϑlðφÞ. Furthermore, we observe pronounced maxima for
ϑ ≈ 17; 4° and φ ∈ ½100°; 140°� and φ ∈ ½220°; 260°�,
respectively.
Next, we analyze the total number of discernible signal

photons NSigðAd;μÞ as a function of μ, as depicted in Fig. 5.
Only for μ ≳ 1.6, a discernible signal can be identified.
The increase of NSig differs visibly from the growth ofAd;μ

with μ. At μ ≈ 5.5 we encounter a pronounced maximum
with NSigðAd;5.5Þ ≈ 5.84 photons per shot. For comparison,
the associated number of background photons yields
NBgðAd;5Þ ≈ 0.12 photons per shot. For μ ≳ 5.5 NSig

decreases approximately linearly with μ. A similar behavior
was identified in the head-on collision of optical and x-ray
laser pulses in [29].
The appearance of a local maximum in NSig shows that

the probe waist provides a handle to amplify or decrease the
signal for given other parameters. Since the pulse energy
and duration are kept constant, the probe intensity
decreases for a wider focus. At the same time, a wider
focus tends to increase Ad;μ because the probe divergence
diminishes. Even though the area AðAd;μÞ does not change

too much, the value of the lower limit ϑl changes signifi-
cantly; this can be seen in Fig. 6. At some point, however,
the intensity of the probe eventually becomes too weak for
large values of μ such that the number of signal photons
decreases.
In Fig. 5, apart from NSigðAd;μÞ, the maximum number

of background photons maxfNBgðAd;μÞjμ ∈ ½1.6; 10�g ≈
0.16 is marked with a dashed line. This maximum is
reached for μ ¼ 3.3.
In Fig. 6, we highlight our results for Ad;μ for other

collision angles. Here we analyze the collision angles from
100° to 160° in 10° steps.
This figure shows the boundaries ϑlðφÞ and ϑdðφÞ of the

regions Ad;μ. Besides, the directions of the driving lasers
are indicated: the colored shading indicates the direction
of the pump laser, the black one the direction of the
probe beam.
For each value of ϑcol, we plot ∂Ad;μ for six different

values of μ ∈ f2; 3; 4; 5; 6; 7g. These are indicated by the
spacing of the dashing; the larger μ, the smaller the spacing
of the dashes.
We observe that the upper bound ϑu is almost indepen-

dent of μ for ϑcol > 100°. The reason for this is that the
choice of μ affects only the focusing of the probe laser
propagating along ϑ ¼ 0. At the same time, we find that the
lower bound ϑl becomes smaller, i.e., AðAd;muÞ grows with
increasing μ.
Analogous to Fig. 5 for ϑcol ¼ 160°, we plot the number

of signal and background photons per shot in the regions
Ad;μ as a function of μ in Fig. 7. Here the different photon
numbers are compared adapting a logarithmic scale. In
each case, the number of signal photons (solid) surpasses
the number of background photons (dashed) in line with the
discernibility criterion adopted to determine Ad;μ. For each
value of ϑcol considered here, a local maximum in the
numbers of signal or background photons is observed. The
positions μmax of these maxima shift to smaller values of μ
as the collision angle ϑcol increases. Moreover, we find that
the position of the maximum of the background varies
slower with μ than that for the signal when changing ϑcol. In
addition, μBgmax < μSigmax always holds in the considered cases.
Tables I and II list the numbers of signal and background

photons per shot at the corresponding values μSigmax and μ
Sig
max,

respectively.
A comparison of these values confirms that the number

of discernible signal photons increases with ϑcol. Note,
however, that the infinite Rayleigh range approximation
allows for reliable insights only as long as 2=ðμw0ω0Þ <
j sinϑcolj; cf. also Sec. III.
Interestingly, the area of the regions Ad;μ decreases

with increasing angle ϑcol—except for the results with
collision angle ϑcol ¼ 100°. For example, with ϑcol ¼ 130°
at μSigmax ¼ 6.4 we find AðAd;6.4Þ ≈ 1.10π, whereas for
ϑcol ¼ 160° we have AðAd;6.4Þ ≈ 0.85π. This indicates that

FIG. 5. Number of discernible signal photons NSigðAd;μÞ as a
function of μ for a collision angle of ϑcol ¼ 160°. The maximum
number of background photons NBgðAd;3.8Þ ≈ 0.16 is reached at
μ ¼ 3.8. See Fig. 3 for the laser parameters employed here.
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FIG. 7. Number of signal (solid) and background photons
(dashed) in solid angle regionAd;μ as a function of μ ¼ wx=w0 ¼
wy=w0 for different collision angles ϑcol. See Fig. 6 for the laser
parameters employed here.

TABLE I. Maximum numbers of discernible signal photons
NSigðAd;μÞ for different collision angles ϑcol. The maximum is

reached at μ ¼ μSigmax. For comparison, the corresponding number
of background photons NBgðAd;μÞ is also given here. See Fig. 6
for the laser parameters employed here.

ϑcol μ ¼ μSigmax NSigðAd;μÞ NBgðAd;μÞ
100° 7.1 0.237 0.004
110° 6.9 0.414 0.006
120° 6.5 0.694 0.012
130° 6.4 1.139 0.017
140° 6.1 1.898 0.032
150° 5.8 3.376 0.062
160° 5.5 5.839 0.118

FIG. 6. Mollweide plot (longitude φ, latitude ϑ) showing the different direction of the pump laser pulses for different collision
angles ϑcol. The forward beam axis of the pump laser is marked by different colors and the forward beam axis of the probe is marked
by the black color. The bounds ϑlðφÞ and ϑuðφÞ highlighting ρSig ¼ ρBg are marked by colored lines for different values of μ: 2, 3, 4,
5, 6, 7. The value of μ is encoded by the lines style. Lager μmeans smaller spacing between dashes. The pump (probe) is focused to a
waist of w0 ¼ 2π

ω0
(wx ¼ wy ¼ μω0). Both frequencies ω0 ¼ 1.55 eV lasers have the same pulse energy W ¼ 25 J and duration

τ ¼ 25 fs (FWHM).
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the strength of the signal is more important than the size of
the region where the signal surpasses the background.

B. Probe with elliptical cross section

In a next step we turn to a probe beam with an elliptical
cross section. To this end, we introduce two independent
waist sizes wx ¼ μxw0 and wy ¼ μyw0 for the probe beam.
These values determine the two semi-axes of the elliptic
cross section.
From the analysis of circular cross sections, see Sec. VA,

we know that the signal becomes maximal for wx ¼
wy ¼ μSigmaxw0. The tighter the focusing, the larger the
intensity, which results in a stronger signal. However, at
the same time the divergence of the beam is increased, so that
the discernible signal generically decreases. If this beam is
now focused harder along only one of the semi-axes, the
signal is still expected to increase, whereas it remains
discernible in the perpendicular direction characterized by
keeping the value μSigmax fixed. Keeping other parameters
fixed, such an elliptical cross section is expected to result in a
larger yield of discernible signal photons NSig [31,32].
For generic choices of μx and μy, the parameter space is

significantly increased in comparison to the rotationally
symmetric case characterized by a single parameter
μ ¼ μx ¼ μy. For convenience and for simplifying the
following discussion, we fix the parameter μx to the value
maximizing the signal in Sec. VA for the corresponding
collision angle ϑcol, i.e. set μx ¼ μSigmaxðϑcolÞ, cf. Table I. We
choose μyðϑcolÞ ∈ ½1; μSigmaxðϑcolÞ� as a free parameter, since
this leads to the maximum possible value of discernible
signal photons at ϑcol ¼ 160°. For comparison, we
discuss afterwards the case with μy ¼ μSigmax and variable

μx ∈ ½1; μSigmaxðϑcolÞ�.
In a first step, we focus on a collision of angle

ϑcol ¼ 160°. We set μx ¼ μSigmaxð160°Þ ¼ 5.5, maximizing
the discernible signal for the circular case, and keep μy as a
free parameter. All other parameters remain unchanged.

First we consider the angular regions Ad;μy where the
signal dominates the background. Here the index μy
indicates the parameter to be varied.
In Fig. 8 we study the discernible solid angle area

AðAd;μyÞ as function of μy. Unlike before, there exist two
distinct angular regions for small values of μy, where the
signal becomes discernible. This is illustrated in Fig. 8 by
the red and blue curves representing the areas of these
regions; the red (blue) curve measures the area around
φ ¼ 0 (φ ¼ 180°). We denote the former (latter) region by

Að1Þ
d;μy

(Að2Þ
d;μy

). In Fig. 8 the third, dashed green curve

indicates the sum of both areas, AðAð1Þ
d;μy

∪ Að2Þ
d;μy

Þ ¼
AðAd;μyÞ. For μy ≈ 2.3 the two regions unite and beyond
this value only a single angular region where the signal is
discernible persists; cf. the green solid line. Interestingly,
the value of μy where the two regions merge amounts to an
inflection point in the angular area. Figure 8 also shows two
representative Mollweide projections of the boundaries of
these regions for μy ¼ 2 and μy ¼ 3.
Tracing these areas in Mollweide projections as a

function of μy, it can be observed how the two regions

Að1Þ
d;μy

and Að2Þ
d;μy

slowly converge and finally merge. In this

process the upper bounds ϑðmÞ
u ðφÞ do not change signifi-

cantly; only the lower bounds ϑðmÞ
l ðφÞ visibly change with

μy predominantly in the vicinity of φ ¼ 90° and φ ¼ 270°.
Now, we compare the properties of the two disjoint

regions for the example value of μy ¼ 2. It is obvious that

TABLE II. Maximum numbers of background photons
NBgðAd;μÞ for different collision angles ϑcol. The maximum is

reached at μ ¼ μBgmax. For comparison, the corresponding number
of signal photons NSigðAd;μÞ is also given here. See Fig. 6 for the
laser parameters employed here.

ϑcol μ ¼ μBgmax NSigðAd;μÞ NBgðAd;μÞ
100° 4.5 0.169 0.005
110° 4.5 0.309 0.009
120° 4.4 0.524 0.016
130° 4.2 0.838 0.022
140° 4.0 1.367 0.041
150° 4.0 2.669 0.082
160° 3.8 4.340 0.161

FIG. 8. Area of solid angle regime Ad;μy as function of μy for a
collision angle of ϑcol ¼ 160°. For low values of μy the region
Adμy is separated into two parts, as illustrated by the red and blue
colored curves. Their sum yields the dashed green curve. The
inlays show Mollweide plots of the areas for the example values
of μy ¼ 2 and μy ¼ 3. For μy ¼ 3 the region is simply connected;
see the green solid line in the corresponding plot. Both pulses
have the same frequency ω0 ¼ 1.55 eV, energy W ¼ 25 J and
duration τ ¼ 25 fs (FWHM). Here, we depict results for a probe
with an elliptical cross section (wx ¼ 5.5w0, wy ¼ μyw0) and a
pump focused to w0 ¼ 2π=ω0.
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the area AðAð1Þ
d;2Þ is much larger than AðAð2Þ

d;2Þ;
AðAð2Þ

d;2Þ=AðAd;2Þ ≈ 22.3%. Interestingly, only 3.0% of the
background photons and 0.5% of the signal photons are
located in this 22.3% of the total area. In absolute numbers,

we count around 0.02 signal photons per shot in Að2Þ
d;2 and

7.22 in Að1Þ
d;2. With rotationally symmetric focusing,

cf. Sec. VA and in particular Fig. 4, the signal at φ ¼ 0°
is significantly weaker compared to φ ¼ 180°. An analogous
behavior is observed for beams with elliptical average, the
effect is even amplified by the different beam waists.
Figure 9 illustrates the densities ρSig1 ðφ; ϑÞ and ρBg1 ðφ; ϑÞ

for the example μx ¼ 5.5, μy ¼ 1 and ϑcol ¼ 160°. In
contrast to Fig. 4, we use here a logarithmic scale for
the background. Figure 9 clearly shows how the elliptical
probe cross section affects the discernible signal. The ocher
colored area in the lower half sphere reflects the elliptical
probe cross section. Its shape is reminiscent to a strongly
curved banana, which overlays parts of the region of the
signal. The breakthrough of the yellow, i.e., background
dominated, regions can be easily understood: in the
particular situation considered here, the probe waist in
�x direction (φ ¼ 0; 180°) is much larger than the one in
�y direction (φ ¼ 90°; 270°) which matches the pump

waist. Because in the y direction the width of the pump
acting as scatterer is of the same order as the probe waist,
their far-field divergences are quite similar and the signal can
never surpass the background in this direction. On the other
hand, in the x direction the probe waist is much wider than
the scatterer resulting in a weaker far-field angular decay
of the signal and thus eventually a discernible signal from
a certain value of ϑ onwards. As a consequence of
the fact that these two distinct regimes are continuously
connected the breakthrough feature appears. In the region
around ϑ ¼ 180° the signal is much stronger than in the
region around φ ¼ 0 separated from it. This is consistent
with previous observations at μy ¼ 2: the former region
accounts for 21.2% of the total area and contains only 3% of
the background and 0.5% of the discernible signal photons.
Considering the union of both regions, where the signal
dominates the background, 11.63 signal photons per shot
can be counted, and 0.25 background photons per shot.
Figure 10 shows the regions of the dominant signals

for different collision angles ϑcol. The parameter μx ¼
μSigmaxðϑcolÞ is fixed for each collision angle ϑcol to a
corresponding value listed in Table I. At the same time,
the parameter μy is varied in the interval ½1; μSigmaxðϑcolÞ�.
Figure 10 clearly shows that the upper bound ϑuðφÞ

FIG. 9. Mollweide plot (longitude φ, latitude ϑ) of the signal ρSig1 ðφ;ϑÞ and background ρBg1 ðφ;ϑÞ photon densities for ϑcol ¼ 160°.
The angular region where the signal is discernible is highlighted by solid green lines (left color scales). Outside these regions, the
background dominates (right color scale). Both lasers deliver pulses of energyW ¼ 25 J and duration τ ¼ 25 fs (FWHM) at a frequency
of ω0 ¼ 1.55 eV. The pump (probe) has a circular (elliptical) cross section. The pump waist is w0 ¼ 2π=ω0 and the probe waists are
wx ¼ 5.5w0 and wy ¼ w0, respectively.
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typically does not change appreciably with μy for constant
ϑcol. The only exception is the angle ϑcol ¼ 100°. Here the
collision angle is close to ϑcol ≈ 90°; thus the influence of
the width of the probe beam on the upper bond ϑuðφÞ varies
more, cf. also Fig. 6.
At the same time the lower boundary ϑlðφÞ changes

strongly with ϑcol. Here we observe that pronounced local
maxima around φ ¼ 90° and φ ¼ 270° appear for decreas-
ing μy. If the value of ϑlðφÞ at the maxima reaches the
corresponding upper bound ϑuðφÞ, then two separate
angular regions are formed. However, this effect appears
only at larger collision angles—starting from ϑcol ≃ 120°—
and becomes more pronounced with larger angles ϑcol.
The discernible-signal area increases with μy for each

ϑcol. At larger collision angles ϑcol the total area AðAd;μyÞ is
smaller than for smaller ϑcol.
In Fig. 11, we highlight the dependence of the number of

discernible signal photons NSigðAd;μyÞ on μy for different
collision angles by solid lines. Additionally, we mark the
number of discernible signal photons as function of μx by
dashed lines with a constant choice of μy ¼ μSigmax.
Obviously, the discernible signal NSigðAd;μ̄Þ increases with
increasing collision angle ϑcol for each value of μy and μx,
respectively.

First we consider the results with fixed μx and varying
μy. It is interesting to note that two (local) maxima can
occur in the μy intervals studied. In any case the value

FIG. 11. Discernible number of signal photons in the solid
angle regime Ad;μ̄ as function of μy (μx) with constant μx ¼ μSigmax

(μy ¼ μSigmax) for different collision angles ϑcol illustrated by solid
(dashed) lines. Both lasers deliver frequency ω0 ¼ 1.55 eV
photons at a pulse energy W ¼ 25 J and duration τ ¼ 25 fs
(FWHM). The pump is focused to w0 ¼ 2π=ω0. The probe waists
are wx ¼ μSigmaxw0 and wy ¼ μyw0 (wx ¼ μxw0 and wy ¼ μSigmaxw0).

FIG. 10. Mollweide plot (longitude φ, latitude ϑ) showing angular regions where the signal is discernible for different collision angles
ϑcol: 100° to 160° in 10° steps labeled by the color order: blue, red, yellow, magenta, light green, cyan, and brown. Additionally,
the probe laser is marked by the black shade. This waist sizes of the elliptically focused probe wx ¼ μSigmaxðϑcolÞ2π=ω0 and
wy ¼ 1

5
ð5þ lðμSigmaxðϑcolÞ − 1ÞÞπ=ω0. The contours for which ρSig ¼ ρBg holds for a given collision angle are marked by the differently

colored lines associated with different values of μy ¼ 1
5
ð5þ lðμSigmaxðϑcolÞ − 1ÞÞ with l ∈ N½0;5�: encoded by the type of lines; with higher

wideness parameter, the spacing of the dashes is smaller. The driving laser pulses have the same energy W ¼ 25 J, duration τ ¼ 25 fs,
and frequency ω0 ¼ 1.55 eV. The pump waist is w0 ¼ 2π=ω0.
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NSigðAd;μSigmax
Þ for μy ¼ μSigmax is a maximum; cf. also dis-

cussion in Sec. VA. For all graphs with ϑcol > 100° and
variable μy, there exists a local minimum in the interval

μy ∈ ½1; μSigmax�. Therefore, the function increases with μy
smaller than μy at this local minimum. This leads to a
maximum value (not necessarily a local maximum) at the
position μy ¼ 1. However, this value is only for the
collision angles ϑcol ¼ 150° and ϑcol ¼ 160° larger than
the signal photon number at μy ¼ μSigmax. This implies that
for smaller collision angles ϑcol < 150° elliptical cross
sections do not result in an increased discernible signal
as long as the semi-axes μy < μSigmax and μx ¼ μSigmax are fixed.
On the other hand, for large collision angles ϑcol elliptical
probe cross sections can increase the discernible signal. For
ϑcol ¼ 150° we determine NSigðAd;1Þ ¼ 4.90 signal pho-
tons per shot, for ϑcol ¼ 160° it is even NSigðAd;1Þ ¼ 11.63.
If, on the other hand, we consider μx as a free parameter

and fix μy ¼ μSigmax for the corresponding angle ϑcol, we find
in all cases that the number of discernible signal photons
increases with decreasing μx. Except for ϑcol ¼ 140°,
ϑcol ¼ 150° and ϑcol ¼ 160°, the maximum value is always
found at μx ¼ 1 and μy ¼ μSigmax, see Table III. Moreover,
except for the angle ϑcol ¼ 160°, the maxima are always
larger than in the case of variable μy and fixed μx. With
decreasing collision angle ϑcol, this is because the pro-
nounced maxima of ρðφ; ϑlðφÞÞ of the signal are closer to
φ ¼ 0 or φ ¼ 180°, i.e. the collision plane. Only at the
angle ϑcol ¼ 160° with φ ¼ 114.5° and φ ¼ 245.5° the
pronounced maxima are closer to the plane of wy than wx.
At the same time, the maximum of NðAd;μ̄Þ for ϑcol ¼ 160°

is significantly larger for μy ¼ 1, μx ¼ μSigmax, which is why
we focus here on the case of variable μy.
The small kinks visible in some graphs in Fig. 11 for

larger μx, μy are numerical artifacts; they become more

pronounced as the collision angle ϑcol increases. They
occur when two regions merge, as shown in Fig. 8,
affecting the precision of the numerical integration.
Also, the artifacts appear at the value for μy where ϕi ¼ 0

and φf ¼ 2π for the boundary functions ϑl=uðφÞ of Ad;μy

appears for the first time.
In Table III we list the maximal discernible signal photon

number for the parameters considered here. Only for
ϑcol ¼ 160°, the maximum is detected for the fixed choice
μx ¼ μSigmaxðϑcolÞ. Since this signal is much larger than the
other maximum, we limit our discussion to this parameter
choice. In addition, Table III lists the corresponding
number of background photons. Here, we want to empha-
size again that in the determined regions the signal
significantly dominates the background. d thus this focus
can contribute to a larger maximum background.

C. Quantum vacuum birefringence

Let us finally consider the phenomenon of birefringence.
For this, we concentrate exclusively on the collision angle
ϑcol ¼ 160° and the two parameter sets of circular or
elliptical cross sections where polarization insensitive
measurements maximize the discernible signal, i.e. we
use the width parameters μ ¼ 5.5 or μx ¼ 5.5, μy ¼ 1,
respectively.
For birefringence, we now set the polarization angle β2

of the pump beam to β2 ¼ 45°, as explained earlier in
Sec. III. We consider only signal photons whose polariza-
tion is perpendicular to the original linear polarization
of the probe beam with flipped polarization angle β⊥
[31,59]. This implies eβ⊥ ·E1ðx; tÞ ¼ 0 such that β⊥ ¼
arctan ðcosϑ cotφÞ holds.
We determine the number of signal photons as before

with the restriction that no sum over the polarizations
is performed. Instead, we use ðpÞ → β⊥ and derive the
corresponding signal photon density

ρSig;⊥μ̄ ðφ;ϑÞ ¼ 1

ð2πÞ7
2

452

�
e
me

�
8

×

�
g2β⊥π

4
;121ðφ;ϑÞ

Z
∞

−∞
dk k3I2

121ðkÞ

þ g2β⊥π
4
;212ðφ;ϑÞ

Z
∞

−∞
dk k3I2

212ðkÞ
�
: ð34Þ

Compared with Eq. (27), only the value of the function
gβ⊥π

4
;iji changes. The number of polarization flipped signal

photons NSig;⊥ðA; μ̄Þ follows analogously to Eq. (30).
In order to estimate the background, we introduce the

polarization purity P characterizing the quality of the probe
polarimetry polarizer-analyzer system [60]. Here we con-
sider realistic purities on the range from P ¼ 10−1 to
P ¼ 10−10 in logarithmic steps. For a conservative estimate
of the solid angle region of the discernible signal, we use

TABLE III. Maximum numbers of discernible signal photons
NðAd;μ̄Þ and its corresponding relative probe waist sizes μy and μy
for two-beam collision with elliptic probe for different collision
angles ϑcol. These parameters are selected according to the
maximum signal, whereby at least one parameter fulfills μx ¼
μSigmaxðϑcolÞ or μy ¼ μSigmaxðϑcolÞ. For comparison, the corresponding
number of background photons NBgðAd;μ̄Þ is also given here. See
Fig. 11 for the laser parameters employed here.

ϑcol μx μy NSigðAd;μ̄Þ NBgðAd;μ̄Þ
100° 1 7.1 0.294 0.009
110° 1 6.9 0.586 0.009
120° 1 6.5 1.044 0.016
130° 1 6.4 1.864 0.032
140° 1.113 6.1 3.205 0.061
150° 1.32 5.8 5.243 0.116
160° 5.5 1. 11.633 0.248
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Ad;μ̄ ¼
�
ðφ; ϑÞ ∈ ½0; 2π� × ½0; πÞj

ρSig;⊥μ̄ ðφ; ϑÞ ≥ P
dNBg

1

dΩ
þ dNBg

2

dΩ

	
; ð35Þ

where we have not applied any polarization constraints to
the background of the pump beam. The latter has no
influence in the relevant region of the flipped signal and
additionally gives us an upper bound ϑuðφÞ for easier
evaluation of the integrations.
In Fig. 12, the number of signal photons in the dominant

regions NSig;⊥ðAd;μ̄Þ is plotted as a function of the purity P.
We also distinguish between an elliptical and a circular
probe beam. In both cases there is always a sufficient
number of discernible signal photons; as expected the
number decreases with the purity, however, only rather
mildy in accordance with the findings of [61].
Let us discuss the results for P ¼ 10−10. Considering a

probe beam with circular cross section we obtain
NSig;⊥ðAd;5.5Þ ¼ 0.44 signal photons per shot against a
background of NBg;⊥ðAd;5.5Þ ¼ 0.01 on an area of
AðAd;5.5Þ ¼ 0.85π. In the case of the elliptically focused
probe beam we get NSig;⊥ðAd;1Þ ¼ 1.00 discernible signal
photons per shot and a background of NBg;⊥ðAd;1Þ ¼ 0.03.
The area of the region of the discernible signal is
AðAd;1Þ ¼ 0.66π. In order to put these values into context,
let us compare them with the number of signal photons in a
forward cone Aπ

4
¼ fðφ; ϑÞ ∈ ½0; 2π� × ½0; π

4
�g. Here we

count NSig;⊥ðAπ
4
Þ ¼ 0.86 by using a probe beam with

circular cross section or NSig;⊥ðAπ
4
Þ ¼ 3.67 with an ellip-

tical probe. Accordingly, it is possible to measure a

significant fraction 0.51% (0.27%) of the whole signal
for a circular (elliptical) probe.
However, the number of driving laser photons beyond

the output polarity occurring in Aπ
4
exceeds these numbers

by far [NBg;⊥ðAπ
4
Þ ≈ 1020], which shows that our method

for optimizing the measurement region of the signature
of the quantum vacuum is also useful for the effect of
birefringence.
The rather weak dependence of the discernible-photon

number on the polarization purity might seem surprising
but is completely consistent with the observations of
vacuum birefringence studies with x-ray probes such as,
e.g., [29,61,62]: while a substantial degree of polarization
purity is absolutely essential for a birefringence measure-
ment on axis, a less pure setup can be compensated for by
a scenario that includes scattering into low-background
regions.

VI. CONCLUSIONS AND OUTLOOK

In an effort to increase the signal of nonlinear vacuum-
induced interactions, we have studied the relevance of
the choice of beam waists in the collision of two optical
laser pulses. Focusing on collision angles in the range
100° ≤ ϑcol ≤ 160°, we see a decisive dependence of the
detectable signal strength in terms of discernible photons
on the beam waist of the probe beam both for circular as
well as elliptical beam cross section.
In order to simplify the experimental scenario, we

consider the two pulses as originating from the same
ultra-intense laser source, having similar properties with
respect to pulse duration, frequency, and total energy; the
common source is taken to resemble the parameters
available in [41–44]. For a mostly analytically accessible
and efficient theoretical modeling, the laser pulses are
considered in the infinite Rayleigh range approximation.
This allows for a controlled determination and analysis of
discernible signals and their angular emission regimes in
the considered parameter ranges.
The essential mechanisms become already visible for the

simpler case of a probe beam with circular cross section.
One of our key findings is that the maximization of the
discernible signal requires a comprise between increasing
the intensity in the collision region and decreasing the
background in the detection region. While the signal
increases quadratically with the intensity, the background
decreases exponentially beyond the outgoing laser cone
which in turn decreases for larger waist sizes. In the range
of collision angles 100° < θcol < 160°, we observe that an
optimal beam waist is about ∼ 5…7 times bigger than the
diffraction limit. Our results are in line with those found in a
counterpropagating setup [29].
For the largest scattering angle studied in this work,

elliptical cross sections come with further mechanisms to
increase the signal: suitable choices of the ellipticity can

FIG. 12. Discernible number of polarization flipped signal
photons in the solid angle regime Ad;μ̄ as a function of the
purity P of the polarization of the probe beam in logarithmic
scale. Here only the collision scenarios for collision angles ϑcol ¼
160° are analyzed. Both linear polarized driving lasers deliver
frequency ω0 ¼ 1.55 eV photons at a pulse energyW ¼ 25 J and
duration τ ¼ 25 fs (FWHM). The pump is focused to
w0 ¼ 2π=ω0. The probe waists are wx ¼ μxw0 and wy ¼ μyw0.
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increase the intensity in the collision region while main-
taining the background suppression in the detection region.
Additionally, we investigated the discernible photon

signal including a polarization flip in promising laser
configurations. This signal of birefringence was determined
as a function of the polarization purity; the results are
promising for probe beams with circular cross section as
well as with elliptical cross section.
For completeness, let us point out that further sources of

background photons can become relevant in experiments.
Apart from the photons comprising the driving laser beams
included in our present study, there is generically a
scattering background. Such scattering originates in dif-
fraction of laser photons off the walls of the vacuum
chamber and optical apertures both upstream from the
beam guidance as well as downstream in the collection
optics. Furthermore (relativistic) Thomson and (relativistic)
Rayleigh scattering by residual gas ions and their electrons
can occur and need to be controlled and reduced in
experiment. First ideas of reducing these background
sources through space and time resolved detection have
already been successfully implemented [44].
We expect that the mechanisms studied in this work

that maximize the signal can also be operative in collisions
of a larger number of pulses [57,63–67]; in addition, also
scattering into different frequency channels can lead to
further enhancements in such scenarios [40,68–71].
In summary, the present work demonstrates that a

detailed modeling of laser pulse collisions based on theory
from first principles can identify unexpected sweet spots
for future discovery experiments of QED vacuum
nonlinearities.
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APPENDIX: SOLID ANGLE REGIONS OF
DISCERNIBLE SIGNAL

A signal is discernible if the local photon density of the
signal surpasses the density of the photons of the driving
lasers. The solid angle region where the signal dominates is
defined by

Ad;μ̄ ¼ fðφ;ϑÞ ∈ ½0; 2π� × ½0; πÞjρSigμ̄ ðφ; ϑÞ ≥ ρBgμ̄ ðφ; ϑÞg:
ðA1Þ

The shape of this region depends on the parameters of
the interacting lasers, in particular the choice of the beam
waists, represented by μ̄, and the collision angle ϑcol.
This region can be of variable shape and is in general

not simply connected. If the signal is nowhere discernible,
then Ad;μ̄ ¼ fg.
We denote the boundary of the region Ad;μ̄ by

∂Ad;μ̄ ¼ fðφ; ϑÞ ∈ ½0; 2π� × ½0; πÞjρSigμ̄ ðφ; ϑÞ ¼ ρBgμ̄ ðφ; ϑÞg:
ðA2Þ

For simply connected regions, the boundary can be
parametrized by two functions ϑlðφÞ ≤ ϑuðφÞ depending
on the azimuthal angle φ, where ϑlðφÞ denotes the lower
bound and ϑuðφÞ the upper bound for a discernible signal
region. These functions are defined in the interval ½φi;φf�
with φi and φf implicitly determined by ϑlðφiÞ ¼ ϑuðφiÞ
and ϑlðφfÞ ¼ ϑuðφfÞ for φi > 0 and φf < 2π. If the latter
condition is violated, ϑl=uð0Þ ¼ ϑl=uð2πÞ applies in both
cases, where the values of the two functions on the upper
and lower boundary may now be unequal. In this case, we
have ∂Ad;μ̄¼fϑlðφÞjφ∈ ½φi;φf�g∪fϑuðφÞjφ∈ ½φi;φf�g.
If the region Ad;μ̄ is not simply connected, but at most

two mappings to ϑ can be found for any given value of φ,
then the φ domain can be divided intoM connected intervals

½φðmÞ
i ;φðmÞ

f � labeled by m ¼ 1; 2…;M, where the lower

and upper bounds ϑðmÞ
l=u ðφÞ can be defined such that

∂Ad;μ̄ ¼ ∪M
m¼1 ðfϑðmÞ

l ðφÞjφ ∈ ½φðmÞ
i ;φðmÞ

f �g ∪ fϑðmÞ
u ðφÞjφ ∈

½φðmÞ
i ;φðmÞ

f �gÞ. It is possible to discuss even more compli-
cated shapes of Ad;μ̄ and ∂Ad;μ̄, respectively, but this is not
necessary in the present case, cf. below.
In order to determine Ad;μ̄ explicitly, we first calculate

∂Ad;μ̄ by determining all possible functions ϑðφÞ, which
solve the equation ρSigμ̄ ðφ; ϑÞ ¼ ρBgμ̄ ðφ; ϑÞ on ðφ; ϑÞ ∈
½0; 2π� × ½0; πÞ. Since ρSigμ̄ in general exhibits a complicated
dependency on ϑ and φ, we construct a algorithm for its
determination.
Being aware of potential shortcomings of this approach

discussed below, we determine both a lower bound ϑlðφÞ
and upper bound ϑuðφÞ ≥ ϑlðφÞ in a first step. For this end,
we sample the interval φ ∈ ½0; 2π� by nφ sampling points,
usually using nφ ¼ 300 or bigger. For each given value of
φ, we then determine the lower/upper bounds ϑl=dðφÞ using
the iterative procedure illustrated schematically in Fig. 13.
In iteration I the interval ϑ ∈ ½0; πÞ is divided into nϑ points
with Δϑ ¼ π

nϑ
, using nϑ ¼ 70 or bigger. Depending on

whether we are looking for the upper or lower bound we
start with ϑ ¼ π or ϑ ¼ 0. In the following we concentrate
on the determination of the lower bound. To this end, we
evaluate both ρSigμ̄ and ρBgμ̄ at each sampling point with
ascending value of ϑ → ϑþ Δϑ from the initial value
ϑ ¼ 0 and compare them. If ρSigμ̄ ðφ; ϑÞ < ρBgμ̄ ðφ; ϑÞ holds,
we increase ϑ by Δϑ and compare again. If the signal
density becomes larger or equal to the background density,
we terminate the procedure and register this value as ϑl;I.
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If the first iteration did not result in a positive outcome, we
decrease the step size Δϑ by one-fourth, Δϑ → 1

4
Δϑ, and

repeat iteration I. If this also does not yield a result, we
assume an empty solution for this value of φ. We continue
with the next iteration step.
In iteration II, we refine the outcome of iteration I by

adjusting the bounds of the ϑ domain to be studied. As
initial value, we now use ϑi ¼ ϑl;I − Δϑ, as final value

ϑf ¼ ϑl;I. From these two values a new step sizeΔϑ ¼ ϑf−ϑi
nϑ

is calculated. Starting with ϑ ¼ ϑi the values of ρ
Sig
μ̄ and ρBgμ̄

are compared again until the signal dominates. The
corresponding value is registered and ϑl;II is used as input
for the next iteration III which resembles iteration II
with ϑl;I → ϑl;II.
After seven iterations we stop and use ϑl;VII ¼ ϑl. By

successively decreasing the intervals and step sizes, this
value has a maximum error of πn−7ϑ , which is negligible in
the context of the accuracy of the applied approximations.
Applying this procedure to all sampling points of φ we

obtain a table of mappings fφ; ϑlg. We use this table to
interpolate a function ϑlðφÞ (or several functions for
regions which are not simply connected). For this
interpolation we fit third-order polynomials between
successive data points. Analogously, we obtain the
interpolation ϑuðφÞ of the upper bound. These results

allow us to determine the solid angle region where the
signal dominates the background as Ad;μ̄ ¼ Al;μ̄ ∩ Au;μ̄

with Al;μ̄ ¼ fðφ; ϑÞ ∈ ½0; 2π� × ½0; πÞjϑðφÞ ≥ ϑlðφÞÞg and
Au;μ̄ ¼ fðφ;ϑÞ ∈ ½0; 2π� × ½0; πÞjϑðφÞ ≤ ϑuðφÞÞg.
The iterative algorithm may provide us with an erro-

neous result for Ad;μ̄. Figure 14 illustrates a potential
source of error: if for a fixed value of φ more than two
values of ϑ exist, then the numerical method presented
above fails. However, it nevertheless makes sense to

FIG. 14. Potential source of error of the algorithm for deter-
mining the solid angle region of the dominant signal. The frames
show the range where ρSigμ̄ ðφ;ϑÞ ¼ ρBgμ̄ ðφ; ϑÞ. Left is the real
requested region shown; on the other hand, right is the result
according to the used numerical method shown. Since the
numerical method always assumes exactly one upper and one
lower bound, the multiple mappings of φ to ϑ, as visible left,
cannot be detected. Such a case was observed at a collision angle
ϑcol ¼ 90° and circular focusing μ ¼ 5 of the probe beam.

FIG. 13. Scheme for the numerical determination of the lower bound of ϑl at constant φ for a dominant signal. The evaluated functions
ρSigμ̄ ðφ;ϑÞ and ρBgμ̄ ðφ;ϑÞ are compared at fixed φ on the interval ½ϑi;ϑf�, starting in stepsΔϑ ascending from ϑi. In the first iteration s ¼ I

we define ϑi ≡ 0 and ϑf ≡ π. If always ρBgμ̄ ðφ;ϑÞ > ρSigμ̄ ðφ;ϑÞ is valid, the interval is scanned again with a quarter of the step size. If
there is no finding for given φ the signal is classified as recessive in this region. If the signal is dominant at ϑl;s, then the run is terminated
prematurely and the next iteration step s → sþ 1 begins. Here, the interval boundaries are adjusted to ϑi ≡ ϑl;s−1 − Δϑ and ϑf ≡ ϑl;s−1
according to the previous iteration step. The step size is redetermined and the procedure starts again. After seven iterations, the result
ϑl ¼ ϑl;VII is used.
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adopt this method for the following reasons: first, this
algorithm remains fast and compact in comparison
to additionally resolving distinguished regions with
multiple values of ϑ for fixed values of φ. Second—
and most importantly—we search for regions fulfillingR
A dΩ½ρSigμ̄ ðφ; ϑÞ − ρSigμ̄ ðφ; ϑÞ� > 0. As long as the total
integral over A is positive, the signal dominates the

background, regardless of whether this is also the case
locally inA. A potential failure of the algorithm therefore
does not lead to wrong estimates for the signal photon
number. Third, we can make sure that region Ad;μ̄

satisfies the desired condition by plotting the function
ρSigμ̄ ðφ; ϑÞ − ρSigμ̄ ðφ; ϑÞ > 0 and compare it with the graph
of region Ad;μ̄.
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