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Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution
to the muon g — 2 serve to test the consistency of lattice calculations and may help in tracing the origins of a
potential tension between lattice and data-driven evaluations. In this paper, we present results for the
intermediate time window observable computed using O(a) improved Wilson fermions at six values of the
lattice spacings below 0.1 fm and pion masses down to the physical value. Using two different sets of
improvement coefficients in the definitions of the local and conserved vector currents, we perform a
detailed scaling study which results in a fully controlled extrapolation to the continuum limit without any
additional treatment of the data, except for the inclusion of finite-volume corrections. To determine the
latter, we use a combination of the method of Hansen and Patella and the Meyer-Lellouch-Liischer
procedure employing the Gounaris-Sakurai parametrization for the pion form factor. We correct our results
for isospin-breaking effects via the perturbative expansion of QCD + QED around the isosymmetric theory.
Our result at the physical point is a}™ = (237.30 £ 0.79, + 1.22,) x 107'%, where the systematic error
includes an estimate of the uncertainty due to the quenched charm quark in our calculation. Our result

displays a tension of 3.9 with a recent evaluation of a}'" based on the data-driven method.

DOI: 10.1103/PhysRevD.106.114502

I. INTRODUCTION

The anomalous magnetic moment of the muon, a,, plays a
central role in precision tests of the Standard Model (SM).
The recently published result of the direct measurement
of a, by the Muon g — 2 Collaboration [1] has confirmed
the earlier determination by the E821 experiment at
Brookhaven National Laboratory [2]. When confronted
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with the theoretical estimate published in the 2020 White
paper [3], the combination of the two direct measurements
increases the tension with the SM to 4.26. The SM
prediction of Ref. [3] is based on the estimate of the
leading-order hadronic vacuum polarization (HVP) contri-

bution, aEVP, evaluated from a dispersion integral involving
hadronic cross section data (“‘data-driven approach”) [4-9],

which yields af'® = (693.1 + 4.0) x 1070 [3]. The quoted
error of 0.6% is subject to experimental uncertainties
associated with measured cross section data.

Lattice QCD calculations for a,l}Vp [10-24] as well as
for the hadronic light-by-light scattering contribution ajj™
[25-39] have become increasingly precise in recent

years (see [40-42] for recent reviews). Although these
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calculations do not rely on the use of experimental data,
they face numerous technical challenges that must be
brought under control if one aims for a total error that
can rival or even surpass that of the data-driven approach.
In spite of the technical difficulties, a first calculation of
aﬂVp with a precision of 0.8% has been published recently
by the BMW Collaboration [20]. Their result of aﬂVp =
(707.5 +5.5) x 107'° is in slight tension (2.16) with the
White paper estimate and reduces the tension with the
combined measurement from E989 and E821 to just 1.5¢.
This has triggered several investigations that study the
question whether the SM can accommodate a higher value

for a],IVP without being in conflict with low-energy hadronic
cross section data [43] or other constraints, such as global
electroweak fits [44—47]. At the same time, the consistency
among lattice QCD calculations is being scrutinized with a
focus on whether systematic effects such as discretization

errors or finite-volume effects are sufficiently well con-

trolled. Moreover, when comparing lattice results for aEVP

from different collaborations, one has to make sure that
they refer to the same hadronic renormalization scheme that
expresses the bare quark masses and the coupling in terms
of measured hadronic observables.

Given the importance of the subject and in view of the
enormous effort required to produce a result for aﬁVp at the
desired level of precision, it has been proposed to perform
consistency checks among different lattice calculations in
terms of suitable benchmark quantities that suppress
(respectively, enhance) individual systematic effects.
These quantities are commonly referred to as “window
observables,” whose definition is given in Sec. IL

In this paper we report our results for the so-called
“intermediate” window observables, for which the short-
distance as well as the long-distance contributions in the
integral representation of aﬂVp are reduced. This allows
for a straightforward and highly precise comparison with
the results from other lattice calculations and the data-
driven approach. This constitutes a first step toward a
deeper analysis of a possible deviation between lattice
and phenomenology. Indeed, our findings present further
evidence for a strong tension between lattice calculations
and the data-driven method. At the physical point we
obtain @™ = (237.30 + 1.46) x 107! [see Eq. (45) for a
detailed error budget], which is 3.9¢ above the recent
phenomenological evaluation of (229.4 + 1.4) x 10710
quoted in Ref. [48].

This paper is organized as follows: We motivate and
define the window observables in Sec. II, before describing
the details of our lattice calculation in Sec. III. In Sec. IV we
discuss extensively the extrapolation to the physical point,
focusing specifically on the scaling behavior, and present
our results for different isospin components and the quark-
disconnected contribution. Sections V and VI describe our
determinations of the charm-quark contribution and of

isospin-breaking corrections, respectively. Our final results
are presented and compared to other determinations in
Sec. VIL In-depth descriptions of technical details and
procedures, as well as data tables, are relegated to several
Appendices. Details on how we correct for mistunings of the
chiral trajectory are described in Appendices A and B, and
the determination of finite-volume corrections is discussed in
Appendix C, while the estimation of the systematic uncer-
tainty related to the quenching of the charm quark is
presented in Appendix D. Ancillary calculations of pseu-
doscalar masses and decay constants that enter the analysis
are described in Appendix E. Finally, Appendix F contains
extensive tables of our raw data.

II. WINDOW OBSERVABLES

The most widely used approach to determine the leading
HVP contribution aj;® in lattice QCD is the “time-
momentum representation” [49], i.e.,

AP = (:)2 /0 " atk(1G(1), (1)

where G(t) is the spatially summed correlation function of
the electromagnetic current
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K(t) is a known kernel function (see Appendix B of
Ref. [10]), and the integration is performed over the
Euclidean time variable 7. By considering the contribu-
tions from the light (u, d), strange, and charm quarks to
G(t) one can perform a decomposition of aj,'” in terms of
individual quark flavors. It is also convenient to consider
the decomposition of the electromagnetic current into an
isovector (/ = 1) and an isoscalar (/ = 0) component
according to

jﬁm=jﬂzl+jf,=0+m,

=1 1=0 _

1, - 1, - _
i zi(uy”u—dyﬂd), i g(uyﬂu+dy#d—2syﬂs),

(3)

where the ellipsis in the first line denotes the missing charm
and bottom contributions.

One of the challenges in the evaluation of a}” is
associated with the long-distance regime of the vector
correlator G(1). Owing to the properties of the kernel K(7),
the integrand K(f)G(¢) has a slowly decaying tail that
makes a sizable contribution to a,,'? in the region 7 > 2 fm.
However, the statistical error in the calculation of G(¢)
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increases exponentially with ¢, which makes an accurate
determination a difficult task. Furthermore, it is the
long-distance regime of the vector correlator that is mostly
affected by finite-size effects.

The opposite end of the integration interval, i.e., the
interval ¢ < 0.4 fm, is particularly sensitive to discretization
effects which must be removed through a careful extrapo-
lation to the continuum limit, possibly involving an Ansatz
that includes subleading lattice artifacts, especially if one is
striving for subpercent precision.

At this point it becomes clear that lattice results for aEVp
are least affected by systematic effects in an intermediate
subinterval of the integration in Eq. (1), as already
recognized in [49]. This led the authors of Ref. [13] to
introduce three “window observables,” each defined in
terms of complementary subdomains with the help of
smoothed step functions. To be specific, the short-distance
(SD), intermediate distance (ID) and long-distance (LD)
window observables are given, respectively, by

@ = () [Takocn el @

(oD <g>2 /0 " AR (1)G(1)[0(1. 10, A) = O(1,11, A)],
(5)
@ = (2) [T akwewenn.). 6

where A denotes the width of the smoothed step function ®
defined by

O(t,¢,A) == (1 +tanh[(r - ¢')/A]). (7)

N =

The widely used choice of intervals and smoothing width
that we will follow is
to = 0.4 fm, t;=10fm and A=0.15fm. (8)
The original motivation for introducing the window
observables in Ref. [13] was based on the observation that
the relative strengths and weaknesses of the lattice QCD
and the R-ratio approach complement each other when the
evaluations using either method are restricted to non-
overlapping windows, thus achieving a higher overall
precision from their combination. Since then it has been
realized that the window observables serve as ideal bench-
mark quantities for assessing the consistency of lattice
calculations, since the choice of subinterval can be regarded
as a filter for different systematic effects. Furthermore,
the results can be confronted with the corresponding
estimate using the data-driven approach. This allows for

high-precision consistency checks among different lattice
calculations and between lattice QCD and phenomenology.

In this paper, we focus on the intermediate window and
use the simplified notation

a;vin = (al};VP)ID. (9)

We remark that the observable al‘fi“, which accounts for
about one-third of the total ajj, can be obtained from

experimental data for the ratio

o(ete™ — hadrons)

R(s)= Tem - ptuT)

(10)

o(e

via the dispersive representation of the correlator (2) [49].
How different intervals of center-of-mass energy contribute
to the different window observables in the data-driven
approach is investigated in Appendix Bj; similar observa-
tions have already been made in Refs. [48,50,51]. For the
intermediate window al‘fi“, the relative contribution of the
region /s < 600 MeV is significantly suppressed as com-

pared to the quantity a)}”. Instead, the relative contribution
of the region /s > 900 MeV, including the ¢ meson
contribution, is somewhat enhanced.’ Interestingly, the
region of the p and @ mesons between 600 and
900 MeV makes about the same fractional contribution
to ay™ as to a,l}Vp, namely 55%—-60%. Thus if the spectral
function associated with the lattice correlator G(r) was for
some reason enhanced by a constant factor (1 + ¢€) in the
interval 600 < \/s/MeV < 900 relative to the experi-
mentally measured spectral function R(s)/(122%), it
would approximately lead to an enhancement by a factor
(14 0.6¢) of both @} and a}™. Finally, we note that the
relative contributions of the three /s intervals are rather
similar for alvji“ as for the running of the electromagnetic
coupling from Q% =0 to Q> =1 GeV>.

III. CALCULATION OF A,V]i“ ON THE LATTICE

A. Gauge ensembles

Our calculation employs a set of 24 gauge ensembles
generated as part of the Coordinated Lattice Simulations
(CLS) initiative using Ny =2+ 1 dynamical flavors of
nonperturbatively O(a) improved Wilson quarks and the
tree-level O(a?) improved Liischer-Weisz gauge action
[52]. The gauge ensembles used in this work were
generated for constant average bare quark mass such that
the improved bare coupling g, [53] is kept constant along
the chiral trajectory. Six of the ensembles listed in Table I
realize the SU(3);-symmetric point m, = m,; = m, corre-
sponding to m, = myg ~ 420 MeV. Pion masses lie in the

1 . . . .
Contributions as massive as the J/y, however, make again a

) o h
smaller relative contribution to a P

win than to a,

u
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TABLE 1. Parameters of the simulations: the bare coupling f = 6/ g%, the lattice dimensions, the lattice spacing a in physical units
extracted from Ref. [55], the pion and kaon masses and the physical size of the lattice, the number of gauge field configurations used for
the connected light- and strange-quark contributions (penultimate column) and for the disconnected contribution (last column).
Ensembles with an asterisk are not included in the final analysis but used to control finite-size effects. The ensembles A653, A654,
B450, N451, D450, D452, and E250 have periodic boundary conditions in time; all others have open boundary conditions.

Id p (L) xI a (fm) m, (MeV) mg (MeV) m,L L (fm) # confs conn # confs disc
A653 3.34 243 x 96 0.0993 421(4) 421(4) 5.1 2.4 4000

A654 243 % 96 331(3) 451(5) 40 2.4 4000

H101 3.40 323 x 96 0.08636 416(4) 416(4) 5.8 2.8 2000 s
H102 323 x 96 352(4) 437(4) 4.9 2.8 1900 1900
H105* 323 x 96 277(3) 462(5) 3.9 2.8 2000 1000
N101 483 x 128 278(3) 461(5) 5.8 4.1 1500 1300
C101 483 x 96 219(2) 470(5) 4.6 4.1 2000 2000
B450 3.46 323 x 64 0.07634 415(4) 415(4) 5.1 2.4 1500 e
S400 323 x 128 349(4) 440(4) 4.3 2.4 2800 1700
N451 483 x 128 286(3) 461(5) 53 3.7 1000 1000
D450 643 x 128 215(2) 475(5) 53 49 500 500
D452 643 x 128 154(2) 482(5) 3.8 4.9 900 800
H200* 3.55 323 x 96 0.06426 416(5) 416(5) 4.3 2.1 2000

N202 483 x 128 412(5) 412(5) 6.4 3.1 900 cee
N203 483 x 128 346(4) 442(5) 5.4 3.1 1500 1500
N200 483 x 128 284(3) 463(5) 4.4 3.1 1700 1700
D200 643 x 128 200(2) 480(5) 4.2 4.1 2000 1000
E250 963 x 192 128(1) 489(5) 4.0 6.2 600 1000
N300 3.70 483 x 128 0.04981 419(4) 419(4) 5.1 2.4 1700 e
N302 483 x 128 344(4) 450(5) 4.2 2.4 2200 1000
J303 643 x 192 257(3) 474(5) 4.1 3.2 1000 500
E300 963 x 192 174(2) 490(5) 4.2 4.8 600 500
J500 3.85 643 x 192 0.039 411(4) 411(4) 5.2 2.5 1200

J501 643 x 192 332(3) 443(4) 4.2 2.5 400

range m, =~ 130-420 MeV. Seven of the ensembles used
have periodic (antiperiodic for fermions) boundary con-
ditions in time, while the others admit open boundary
conditions [54]. All ensembles included in the final
analysis satisfy m,L = 4. Finite-size effects can be checked
explicitly for m, = 280 and 420 MeV, where in each case
two ensembles with different volumes but otherwise
identical parameters are available. The ensembles with
volumes deemed to be too small are marked by an asterisk
in Table I and are excluded from the final analysis.

The QCD expectation values are obtained from the CLS
ensembles by including appropriate reweighting factors,
including a potential sign of the latter [56]. A negative
reweighting factor, which originates from the handling of
the strange quark, is found on fewer than 0.5% of the gauge
field configurations employed in this work.

For the bulk of our pion masses, down to the physical
value, results were obtained at four values of the lattice
spacing in the range a = 0.050-0.086 fm. At and close to
the SU(3);-symmetric point, four more ensembles have
been added that significantly extend the range of available
lattice spacings to a = 0.039-0.099 fm, which allows us to
perform a scaling test with unprecedented precision.

B. Renormalization and O(a) improvement

To reduce discretization effects, on-shell O(a) improve-
ment has been fully implemented. CLS simulations are
performed using a nonperturbatively O(a) improved
Wilson action [57]; therefore, we focus here on the
improvement of the vector current in the (u,d,s) quark
sector. To further constrain the continuum extrapolation
and explicitly check our ability to remove leading lattice
artifacts, two discretizations of the vector current are used,
the local (L) and the point-split (C) currents

(L).a v

Ju () = w0y, 5 wx), (11a)

a

917(3) = 5 (Wl am)(1 -+ 1)UL

o

a

“P =)0 S ulckan) ). (11

where y denotes a vector in flavor space, 4 are the Gell-
Mann matrices, and U, (x) is the gauge link in the direction
jt associated with site x. With the local tensor current
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defined as 24, (x) = —1w(x)[r,.7,] 5 w(x), the improved
vector currents are given by

a),a,l a).a a 3 va
T ) = 174 0) + acy ()0, (). a=L.C.

(12)

where 0 is the symmetric discrete derivative d,f(x) =

(1/2a)(f(x 4+ a) — f(x — a)). The coefficients c&f’) have
been determined nonperturbatively in Ref. [58] by impos-
ing Ward identities in large volume ensembles and inde-
pendently in Ref. [59] using the Schrodinger functional
(SF) setup. The availability of two independent sets allows
us to perform detailed scaling tests, which is a crucial
ingredient for a fully controlled continuum extrapolation.

The conserved vector current does not need to be further
renormalized. For the local vector current, the renormal-
ization pattern, including O(a) improvement, has been
derived in Ref. [60]. Following the notations of Ref. [58],
the renormalized isovector and isoscalar parts of the
electromagnetic current read

SR — 2,00, (134
1R (0) = Zg I3 () + Zgod P (), (13b)

where J) = 1y, p is the flavor-singlet current and
Zy = Zy[l + 3byam® + byamg), (14a)
_ by
Zg = Zy |1+ 3byamy —I—?a(mq.l +2mg,)|. (14b)
1 2
Zgy =2y gbv +fv %a(mq,l —mgy). (14c)

Here, my; and mg are the subtracted bare quark masses
of the light and strange quarks, respectively, defined in
Appendix E and m}" = (2mq,; 4 mg)/3 stands for the
average bare quark mass. The renormalization constant
in the chiral limit, Zy, and the improvement coefficients
by and by have been determined nonperturbatively in
Ref. [58]. Again, independent determinations using the
SF setup are available in Refs. [59,61]. The coefficient fv,
which starts at order gg in perturbation theory [58], is
unknown but expected to be very small and is therefore
neglected in our analysis.

Thus, in addition to having two discretizations of the
vector current, we also have at our disposal two sets of
improvement coefficients that can be used to benchmark
our continuum extrapolation:

(1) set 1, using the improvement coefficients obtained in

large-volume simulations in Ref. [58], and

(i) set 2, using Zy and cy from Ref. [59] and by and by
from Ref. [61], using the SF setup.
Note, in particular, that the improvement coefficients cvy,
by and by have an intrinsic ambiguity of order O(a). Thus,
for a physical observable, we expect different lattice
artifacts at order O(a") with n > 2. This will be considered
in Sec. IV C.

C. Correlation functions

The vector two-point correlation function is computed
with the local vector current at the source and either the
local or the point-split vector current at the sink. The
corresponding renormalized correlators are

1
G(LL)’R(t) _ Z%G(LL)’33’[(I) +§Z§G(LL)‘88‘1(t)

1
+§Zgzgo(G(LL)‘80’l(t) —I—G(LL)‘OS‘[(I)), (15a)
G(CL>'R(t) _ Z3G(CL),33,1(t) + %ZSG(CL),SS,IO)
1
+ gzsoG(CL)'SO’I(t)7 (15b)
with the improved correlators
(aL).ab.I @ (@).ad,, = 7(L).b.I
Gl (t):_gz:ZUk (£.X)7,777(0)),
k=1 X
a=1L,C. (16)

In the absence of QED and strong isospin breaking, there
are only two sets of Wick contractions, corresponding to
the quark-connected part and the quark-disconnected part
of the vector two-point functions. The method used to
compute the connected contribution has been presented
previously in Ref. [17]. In this work we have added several
new ensembles and have significantly increased our
statistics, especially for our most chiral ensembles. The
method used to compute the disconnected contribution
involving light and strange quarks is presented in detail in
Ref. [62]. Note that we neglect the charm-quark contribu-
tion to disconnected diagrams in the present calculation.

D. Treatment of statistical errors and autocorrelations

Statistical errors are estimated using the jackknife
procedure with blocking to reduce the size of autocorre-
lations. In practice, the same number of 100 jackknife
samples is used for all ensembles to simplify the error
propagation. In a fit, samples from different ensembles are
then easily matched.

Our analysis makes use of the pion and kaon masses,
their decay constants, and the Wilson flow observable ¢,
as well as the Gounaris-Sakurai parameters entering the
estimate of finite-size effects. These observables are always
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estimated on identical sets of gauge configurations and
using the same blocking procedure, such that correlations
are easily propagated using the jackknife procedure.

The light and strange-quark contributions have been
computed on the same set of gauge configurations, except
for A654 where only the connected strange-quark contri-
bution has been calculated. The quark-disconnected con-
tribution is also obtained on the same set of configurations
for most ensembles (see Table I). When it is not, corre-
lations are not fully propagated; this is expected to have a
very small impact on the error, since the disconnected
contribution has a much larger relative statistical error.

The charm-quark contribution, which is at the one-
percent level, is obtained using a smaller subset of gauge
configurations. Since its dependence on the ratio of pion
mass to decay constant (m,/f,) is rather flat, the error of
this ratio is neglected in the chiral extrapolation of the
charm contribution.

In order to test the validity of our treatment of statistical
errors, we have performed an independent check of the
entire analysis using the I' method [63] for the estimation
of autocorrelation times and statistical uncertainties. The
propagation of errors is based on a first-order Taylor series
expansion with derivatives obtained from automatic differ-
entiation [64]. Correlations of observables based on over-
lapping subsets of configurations are fully propagated and
the results confirm the assumptions made above.

E. Results for a,“ji“ on individual ensembles

For the intermediate window observable, the contribu-
tion from the noisy tail of the correlation function is
exponentially suppressed and the lattice data are sta-
tistically very precise. Thus, on each ensemble, a)ji“ is
obtained using Eq. (5) after replacing the integral by a
discrete sum over time slices. Since the time extent of our
correlator is far longer than #; = 1.0 fm, we can safely
replace the upper bound of Eq. (5) by 7/2, with T the time
extent of the lattice. The results for individual ensembles
are summarized in Tables VIII-X. On ensemble E250,
corresponding to a pion mass of 130 MeV, we reach a
relative statistical precision of about two permille for both
the isovector and isoscalar contributions. The integrands
used to obtain a}™™ are displayed in Fig. 1.

Our simulations are performed in boxes of finite volume
L? with m,L > 4, and corrections due to finite-size effects
(FSE) are added to each ensemble individually prior to
any continuum and chiral extrapolation. This is the only
correction applied to the raw lattice data. FSE are domi-
nated by the zz channel and mostly affect the isovector
correlator at large Euclidean times. For the intermediate
window observable, they are highly suppressed compared
to the full hadronic vacuum polarization contribution.
Despite this suppression, FSE in the isovector channel
are not negligible and require a careful treatment. They are
of the same order of magnitude as the statistical precision

GOK (1) (O(t, tg, A) — O(t, 11, A)) /my,

0.012 - - = Isovector +—=—i
" . Isoscalar +——e—
0.01 - ’ \ Charm (x10) 1
/i \
, .
0.008 - / ' 1
" \
0.006 / | .
0.004 | . 1
1 Lt .
0.002 E /‘, . /.\. .. \\‘ ]
. '/ = o -~ R - \-\
0 g 2o I *-o I 2 e 2w ol
0 0.5 1 1.5 2
¢ |fm]
FIG. 1. Integrands used to compute the intermediate window

a)j’in for the isovector, isoscalar and charm-quark contributions.
The isoscalar contribution does not include the charm-quark
contribution. The data have been obtained on ensemble E250,
which has close-to-physical quark masses, using two local
vector currents and set 1 of renormalization and improvement
coefficients.

for our most chiral ensemble and enhanced at larger pion
masses. In the isoscalar channel, FSE are included only at
the SU(3), point where m, = my. The methodology is
presented in Appendix C, and the corrections we have
applied to the lattice data are given in the last column of
Tables VI and V, respectively, for strategy 1 and 2. In our
analysis, we have conservatively assigned an uncertainty
of 25% to these finite-size corrections, in order to account
for any potential effect not covered by the theoretical
approaches described in Appendix C. In addition to the
ensembles H105 and H200 that are only used to cross-
check the FSE estimate, ensembles S400 and N302 are also
affected by large finite-volume corrections. We exclude
those ensembles in the isovector channel.

IV. EXTRAPOLATION TO THE PHYSICAL POINT
A. Definition of the physical point in isosymmetric QCD

Our gauge ensembles have been generated in the isospin
limit of QCD with m; = m, = my, neglecting strong
isospin-breaking effects and QED corrections. Naively,
those effects are expected to be of order O((m,;—
m,)/Aqcp) ® 1% and O(a) ~ 1% and are not entirely
negligible at our level of precision. In Ref. [65], although
the authors used a different scheme to define their iso-
symmetric setup, those corrections have been found to be of
the order of 0.4% for this window observable. A similar
conclusion was reached in Ref. [13] although only a subset
of the diagrams was considered. This correction will be
discussed in Sec. VI. Only in full QCD + QED is the
precise value of the observable unambiguously defined:
The separation between its isosymmetric value and the
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isospin-breaking correction is scheme dependent. In
Sec. IV D, we provide the necessary information to trans-
late our result into a different scheme.

Throughout our calculation, we define the “physical”
point in the (m,, mg) plane by imposing the conditions
[66—68]

my; = (mﬂo)phys’ (17)

2 2 (2 2
2my —mg =(my. +my,

- m;zﬁ)phys' (18)
Inserting the PDG values [69] on the right-hand side, our
physical isosymmetric theory is thus defined by the values

m, = 134.9768(5) MeV,  my = 495.011(10) MeV.

(19)

We note that since our gauge ensembles have been
generated at constant sum of the bare quark masses, the
linear combination (m% + m2/2) is approximately con-
stant. Two different strategies are used to extrapolate the
lattice data to the physical point.

1. Strategy 1

We use the gradient flow observable #, [70] as an
intermediate scale and the dimensionless parameters

1
(I)z = 8t0m,2,, (I)4 = 8t() <m%( J’_ Em%> (20)

as proxies for the light and the average quark mass as the
physical point is approached. In the expressions of ®, and
®,, 1, is the pion- and kaon-mass dependent flow observ-
able; we use the notation t(s)ym to denote its value at the
SU(3);-symmetric point. We adopt the physical-point value
/81y = 0.4081(20)(37) fm from Ref. [71], obtained by
equating the linear combination of pseudoscalar-meson
decay constants

2 1
fKn=§<fK+§fn) (21)

to its physical value, set by the PDG values of the decay
constants given below. Reference [71] is an update of the
work presented in Ref. [55] and includes a larger set
of ensembles, including ensembles close to the physical
point. We note that in Refs. [55,71] the absolute scale
was determined assuming a slightly different definition of
the physical point: The authors used the meson masses
corrected for isospin-breaking effects as in Ref. [72],
m, = 134.8(3) MeV and my = 494.2(3) MeV. Using
the NLO yPT expressions, we have estimated the effect
on fg, of these small shifts in the target pseudoscalar

meson masses to be at the subpermille level and therefore
negligible for our present purposes.

2. Strategy 2

Here we use f, rescaling, which was already presented
in our previous work [17], and express all dimensionful
quantities in terms of the ratio /5" /(af%), where a2 can
be computed precisely on each ensemble. In this case, the
intermediate scale £, is not needed and we use the following
dimensionless proxies for the quark masses:

m

2 1.2
Mz _ Mk +amz
Sﬂf,zr’

Ykn = Sﬂf%{”

As @y, the proxy yg, is approximately constant along our
chiral trajectory. Since all relevant observables have been
computed as part of this project, this method has the
advantage of being fully self-consistent, and all correlations
can be fully propagated. It will be our preferred strategy.
We use the following input to set the scale in our
isosymmetric theory [69,73]:

y= (22)

fz = 130.56(14) MeV. (23)

The quantity yg, is only used to correct for a small
departure of the CLS ensembles from the physical value
of this quantity, which we obtain using fx =
157.2(5) MeV [69,73]. The latter, phenomenological value
of f implies aratio f/f, that is consistent with the latest
lattice determinations [74—76]. The impact of the uncer-
tainty of fx on a}™ is small,” sa}"" ~0.10 x 107", and
occurs mainly through the strange contribution. In the
isosymmetric theory, we take the phenomenological values
of the triplet (m,, mg, f,) as part of the definition of the
target theory and therefore only include the uncertainty
from fr in our results. By contrast, in the final result
including isospin-breaking effects, which we compare to a
data-driven determination of al‘j’i“, we include the exper-
imental uncertainties of all quantities used as input.

The observables m,, mg, f, and fg, as well as t,/a”
have been computed on all gauge ensembles and corrected
for finite-size effects [77]. Their values for all ensembles
are listed in Table VII.

B. Fitting procedure

We now present our strategy to extrapolate the data to the
physical point in our isosymmetric setup. The ensembles
used in this work have been generated such that the
physical point is approached keeping

Xk = {(D4’y1<n} (24)

The sensitivity of a;’,"i“ to the value of f can be derived from
Table II.
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approximately constant, where the two entries correspond,
respectively, to strategy 1 and 2. To account for the small
mistuning, only a linear correction in AXy = X%hys — Xk is
thus considered. To improve the fit quality, a dedicated
calculation of the dependence of a,“]i“ on Xy has been
performed, which is described in Appendix A. This
analysis does not yet include all ensembles in the final
result, and hence we decided to not apply this correction
ensemble by ensemble prior to the global extrapolation to
the physical point. Instead, we have used AXy to fix
suitable priors on the fit parameter y, in Eq. (26), which
parametrizes the locally linear dependence on Xg. The
values of these priors are given in Appendix A.

To describe the light quark dependence beyond the linear
term in

Xz ={®2. 7} (25)

(respectively, for strategy 1 and 2), we allow for different fit
Anscitze encoded in the function f,(X,). The precise
choice of f, is motivated on physical grounds and depends
on the quark flavor. The specific forms will be discussed

|

below. Since on-shell O(a) improvement has been fully
implemented, leading discretization artifacts are expected
to scale as a®/t, up to logarithmic corrections [78,79]. In
the case of the vacuum polarization function, a further
logarithmic correction proportional to a?log a was dis-
covered in Ref. [80]. Contrary to standard logarithmic
corrections, it does not vanish as the coupling g, goes to
zero due to correlators being integrated over very short
distances. However, the intermediate window strongly
suppresses the short-distance contribution, so that we do
not expect this source of logarithmic enhancement to be
relevant here. However, in the absence of further infor-
mation on the relevant exponents of log a in full QCD
[79], we still consider a possible logarithmic correction
with unit exponent. Moreover, to check whether we are in
the scaling regime, we consider higher-order terms pro-
portional to @*. Finally, we also allow for a term « X2X,
that describes pion-mass dependent discretization effects
of order a’.

Thus, for each discretization of the vector correlator, the
continuum and chiral extrapolation is done independently
assuming the most general functional form

ay™ (X Xz Xi) = @)™ (0, X3 XZP) + BoX2 + B3 X5 + 6X2X,, + eX2log X,
hy:
+ VO(XK - XII)( y%) +7 (er - Xiefxp) +72 (fch(Xn:) - fch(X;cfxp))’ (26)

where “f” can be any flavor content and X, = a/ /%,
parametrizes the lattice spacing. Despite the availability of
data from six lattice spacings and more than 20 ensembles,
trying to fit all parameters is not possible. Thus each
analysis is duplicated by switching on and off the param-
eters S5, 0 and e that control the continuum extrapolation.
In addition, for each functional form f, of the chiral
dependence, different analyses are performed by imposing
cuts in the pion mass (no cut, < 400 MeV, < 300 MeV)
and/or in the lattice spacing.

Since several different fit Ansdtze can be equally well
motivated, we apply the model averaging method presented
in Refs. [81,82] where the Akaike information criterion
(AIC) is used to weight different analyses and to estimate
the systematic error associated with the fit Ansatz (see
also [20,83]). Thus, to each analysis (n) described above
(defined by a specific choice of f,, applying cuts in the
pion mass or in the lattice spacing, and including or
excluding terms proportional to f5, d, €) we associate a
weight w, given by

1
w, = Nexp —5(;(2+2k—2n) , (27)

where y? is the minimum value of the chi-squared of the
correlated fit, k is the number of fit parameters and » is the

number of data points included in the fit.> The normali-
zation factor N is such that the sum over all the analyses’
weights are equal to one. Each analysis is again duplicated
by either using the local-local or the local-conserved
correlators. For those analyses, we use a flat weight.
Finally, when cuts are performed, some fits may have very
few degrees of freedom, and hence we exclude all analyses
that contain fewer than three degrees of freedom. The
central value of an observable O is then obtained by a
weighted average over all analyses

O=> w,0,. (28)

and our estimate of the systematic error associated with the
extrapolation to the physical point is given by

(50)%yst = an(on - (7))2 (29)

*Different definitions of the weight factor have been pro-
posed in the literature. In Ref. [20] the authors used w, =
Nexp [—3 (¢* + 2k — n)] which, applied to our data for a given
number of fit parameters, tends to favor fits that discard many
data points. This issue will be discussed further below.
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The statistical error is obtained from the jackknife pro-
cedure using the estimator defined by Eq. (28).

C. The continuum extrapolation
at the SU(3);-symmetric point

To reach subpercent precision, a good control over the
continuum limit is mandatory [79,80]. As discussed below,
it is one of the largest contributions to our total error
budget. Thus, before presenting our final result at the
physical point, we first demonstrate our ability to perform
the continuum extrapolation. We have implemented three
different checks: First, two discretizations of the vector
correlator are used and the extrapolations to the physical
point are done independently. Both discretizations are
expected to agree within errors in the continuum limit.
Physical observables computed using Wilson-clover quarks
approach the continuum limit with a rate o a® once the
action and all currents are nonperturbatively O(a)
improved [53]. To check our ability to fully remove
O(a) lattice artifacts in the action and the currents, two
independent sets of improvement coefficients are used:
Both of them should lead to an a” scaling behavior but
might differ by higher-order corrections. Finally, we have
included six lattice spacings at the SU(3);-symmetric point,
all of them below 0.1 fm and down to 0.039 fm, to
scrutinize the continuum extrapolation. In this section,
we discuss those three issues, with a specific focus on
the ensembles with SU(3); symmetry.

Ensembles with six different lattice spacings in the range
[0.039:0.099] fm are available for m, = my ~ 420 MeV.

|

Since the pion masses do not match exactly, we first des-
cribe our procedure to interpolate our SU(3);-symmetric
ensembles to a single value of X, = X7, to be able to focus
solely on the continuum extrapolation. This reference point
Xy is chosen to minimize the quadratic sum of the
shifts 6X, = X, — X}.

We start by applying the finite-size effect correction
discussed in the previous section to all ensembles. Then, a
global fit over all the ensembles and simultaneously over
both discretizations of the correlation function is performed
using the functional form of Eq. (26) without any cut in the
pion mass. Thus (yq,7;,7,) are fit parameters common to
both discretizations, while the others are discretization
dependent. For the isovector contribution, we use the
choice fu(X,)=1/X, that leads to a reasonable
x*/d.o.f. = 1.1. The good y?, and more importantly the
good description of the light-quark mass dependence,
ensures that the small interpolation to X is safe and that
we do not bias the result. In practice, we have checked
explicitly that using different functional forms fg, to
interpolate the data leads to changes that are small
compared to the statistical error. Thus, for both choices
of the improvement coefficients (set 1 and set 2), and for
both discretizations LL and CL, the data from an SU(3);-
symmetric ensemble are corrected in the pseudoscalar
masses to the reference SU(3);-symmetric point at the
same lattice spacing. The correction is obtained by taking
the difference of Eq. (26) evaluated with the reference-point
arguments (X,,X;,X%) and the ensemble arguments
(X,, X, Xg), resulting in

ay™ (X, X5, Xy) = ap ™ (X, Xz, Xi) — 8X2(X, — X5) — v0(Xk — X5) =71 (Xz = X5) = 72 (fen(Xz) = fen(X2)).

where @ = (LL), (CL) stands for the discretization. Note
that X} =X; and Xx =X, in view of the SU(3);
symmetry. Throughout this procedure, correlations are
preserved via the jackknife analysis.

In a second step, we extrapolate both discretizations of
the correlation function to a common continuum limit,
using data at all six lattice spacings and assuming a
polynomial in the lattice spacing:

@™ (X, X5) = @™ (0. X2) (1 + BEXE + BX0).
(1)

The two datasets obtained using the two different sets of
improvement coefficients are fitted independently. The
results are displayed in Fig. 2 for two cases: either applying
fr rescaling (left panel) or using 7, to set the scale (right
panel). For set 1 of improvement coefficients, we observe a

(30)

I
remarkably linear behavior over the whole range of lattice
spacings, whether f, rescaling is applied or not. The
second set of improvement coefficients (set 2) leads to
some visible curvature, but the continuum limit is perfectly
compatible provided that lattice artifacts of order a® are
included in the fit.

We also tested the possibility of logarithmic corrections
assuming the Ansatz

a’\;vin,f,a (Xa,X;) _ al\;«in,f (O,X;) (1 +ﬂga)X3 + €(a>XL21 logXa) s
(32)

which is shown as the red symbol and red dashed curve in
Fig. 2. The result is again compatible with the naive a?
scaling, albeit with larger error. We conclude that loga-
rithmic corrections are too small to be resolved in the data.
We also remark that it is difficult to judge the quality of the
continuum extrapolation based solely on the relative size of

114502-9



M. CE et al.

PHYS. REV. D 106, 114502 (2022)

I[sovector, scale fi
200 T T
local-local e
local-conserved 4

set 1: a? ——
set 1: a® + a®

190 F get 1: a2 + a2 log(a)-----
set 2: a’ 4 a®

180

170

0 0.002 0.004 0.006 0.008 0.01
a? [fm?]

Isovector, scale t

local-local
local-conserved 4

set 1: a?

180 1 get1: a® +a®
set 1: a4 a?log(a)-----
set 21 a® +a®

0 0.002 0.004 0.006 0.008 0.01
a? [fm?]

FIG. 2. Continuum extrapolation for the isovector quark contribution at the SU(3);-symmetric point. Left: using f, rescaling. Right:
with 7, to set the scale. The blue and green points correspond to the two different sets of improvement coefficients (see Sec. III). For

clarity, the extrapolated results have been shifted to the left.

discretization effects between our coarsest and finest lattice
spacing, as this measure strongly depends on the definition
of the improvement coefficients.

We tested the modification of the continuum extrapola-
tion via X2 — (a,(1/X,))" X2 as proposed in Refs. [79,84]

i win,I0,¢ . .
for a)™" and a, / in our preferred setup, using f,

rescaling and set 1 of improvement coefficients. The strong
coupling constant «; has been obtained from the three-
flavor A parameter of Ref. [85]. Several choices of ["in the
range from 0.76 to 3 were tested. The curvature that is
introduced by this modification, especially for larger values
of I', would lead to larger values of af]i“ in the continuum
limit. However, such curvature is not supported by the data,
as indicated by a deterioration of the fit quality when I is
increased. Therefore, only small weights would be assigned
to such fits in our model averaging procedure, where the
modification has not been included.

a}\yin,ll % 1010

205 B=334 +—=8 ]
B=340 —=—
200 | Ny B =3.46 ,
. B=355 e
S—— B=370 o
195 | S —— B=385 e
o ] . —
190 | s : ' I N
» & [ ™
185 \’\ 5. @ . : |
S w: .
180 | \\ :
S L2
175 S
0.02 0.04 0.06 0.08 0.1 0.12
Yy

FIG. 3.

D. Results for the isospin and flavor decompositions

Having studied the continuum limit at the SU(3);-
symmetric point, we are ready to present the result of
the extrapolation to the physical point. The charm-quark
contribution is not included here and will be considered
separately in Sec. V.

For the isovector or light quark contribution we
use the same set of functional forms as in Ref. [17],
fen(X,) = {log X; X2;1/X,; X, log X, }. The data show
some small curvature close to the physical pion mass. Thus,
the variation f, = 0 is excluded as it would significantly
undershoot our ensemble at the physical pion mass (E250).
We use set 1 of improvement coefficients as our preferred
choice and will use set 2 only as a cross-check. A typical
extrapolation using f,(9) = 1/ without any cut in the
data is shown in the left panel of Fig. 3. We find that
the specific functional form of f, has much less impact on

a;l/inA,IO X 1010

70
65 | _a
o ~®
60 | g ———————
_— =
55 __— e
e B=334 r—e—
S0F e — B=340 —=— 1
= B =3.46
& -
/=355 e
45 8 =3.70 i
B=385 e
0.02 0.04 0.06 0.08 0.1 0.12
Y

Left: one typical extrapolation of the isovector contribution using f, () = 1/¥. The data correspond to the local-conserved

discretization of the correlator using set 1 of improvement coefficients. Error bands are the results from the fit for each of the six lattice
spacings. The black line is the chiral extrapolation in the continuum limit. The black point is the result at the physical point. Right: the

same for the isoscalar contribution but using f,(7) = 0.
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TABLE II.  Derivatives of the window quantity a,‘j“in (in units of
10719), for both the isovector and isoscalar contributions, as
defined by Eq. (35).

X my myg fl[ fK
1l -7(5) ~11(7) —66(84) 7(5)
10 2(1) —34(2) —29(9) 25(2)

the extrapolation as compared to the inclusion of higher-
order lattice artifacts. For the isoscalar and strange quark
contributions, we restrict ourselves to functions that are not
singular in the chiral limit: f,(X,) = {0;X2; X, log X, }.
Again, the extrapolation using f,(¥) = logy with § # 0
and without any cut in the data is shown in the right panel
of Fig. 3.

Using the fit procedure described above, the AIC
estimator defined in Eq. (28) leads to the following results
for the isovector (I = 1) and the isoscalar contribution,
charm excluded:

ay™! = (186.30 & 0.75, £ 1.08,,) x 10710, (33)

a’\;vin,l(),/: (4741 + 0-23stat + 0-295yst) X 10—10’ (34)

where the first error is statistical and the second is the
systematic error from the fit form used to extrapolate our
data to the physical point. In Table II, we also provide the
derivatives

win,f
oay

5 f e {11, 10},

X e {m;p vafﬂ’fK}’
(35)

to translate our result to a different isosymmetric scheme.

Isovector contribution

194
192 No rescaling J= rescaling 1
190 l b
=
; 188 l Ld | ]_ ?
T% 186 | t ]
184
i & & g ] ¢ & ¢

We also note that both discretizations of the vector
correlator yield perfectly compatible results. For the iso-
vector contribution, and in units of 1071°, we obtain
186.14(0.87) 4, (1.29)y for the local-local discretization

and 186.47(0.79) 4, (0.79) 4y for the local-conserved discre-

tization, with a correlated difference of —0.33(0.72). For the
isoscalar contribution, we find 47.39(0.24),,(0.36) for
the local-local discretization and 47.43(0.20) ,,(0.19) i, for
the local-conserved discretization, with a correlated differ-
ence of —0.04(0.10).

As an alternative to the fit weights given by Eq. (27), we
have tried applying the weight factors used in Ref. [20]; see
the footnote below Eq. (27). While a major change occurs
in the subset of fits that dominate the weighted average, the
results do not change significantly. In particular, the central
value of the isovector contribution changes by no more than
half a standard deviation.

Finally, we have also performed an extrapolation to the
physical point using the second set of improvement
coefficients. Since our study at the SU(3),-symmetric point
shows curvature in the data, we exclude those continuum
extrapolations that are only quadratic in the lattice spacing.
The other variations are kept identical to those used for
the first set. The results are slightly larger but compatible
within one standard deviation. A comparison between the
two strategies to set the scale and the two sets of improve-
ment coefficients is shown in Fig. 4 for both the isovector
and isoscalar contributions.

In order to facilitate comparisons with other lattice
collaborations, we also present results for the light, strange
and disconnected contributions separately. For the light and
strange-quark connected contributions, we obtain

al™ = (207.00 4 0.83, + 1.204) x 10719, (36)

ay™s = (27.68 & 0.18, & 0.22 x 10710, 37
H stat syst

Isoscalar contribution (without charm)

50

n No rescaling fr rescaling
S 48} )i ]
X [ % ® |
é‘: ® ¢
= 4Tt g
23
S}

46 - ~ ~ ~ - ~ by ~ 1

T ¢ s ¢ ; ¢~ ¢
45 L= N s N N S s

FIG. 4. Comparison of the isovector and isoscalar contributions (without the charm) using different variations (either using f, or 7 to
set the scale, and with both sets of improvement coefficients). The blue point is our final estimate obtained from the rescaling method

with set 1 of improvement coefficients.
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For the disconnected contribution, the correlation function
is very precise in the time range relevant for the inter-
mediate window, and a simple sum over lattice points is
used to evaluate Eq. (5). The data are corrected for finite-
size effects using the method described in Appendix C.
Since our ensembles follow a chiral trajectory at fixed
bare average quark mass, we can consider a) ™* as being,
to a good approximation, a function of the SU(3);-breaking
variable A, = {8to(m3 — m2), (m} — m2)/(8xf%,)}
(respectively, for strategy 1 and 2), with the additional
constraint that the disconnected contribution vanishes
quadratically in A, for A, — 0. We apply the following
Ansatz:

a;vin,diSC(Xa’XmXK) = A% (0{+}’0(XK —Xl;(hyS) +ﬁ2xi>

. < 1 A, 1 )
T\, e X))
(38)

The ensembles close to the SU(3), symmetric point

(m, ~ 350 MeV) are affected by significant FSE correc-
tions and are not included in the fit. We obtain for the
disconnected contribution

ay ™ = (—0.81 £ .04, £ 0.08,,) x 10710, (39)

and the extrapolation is shown in Fig. 5. The extrapolation
using f, to set the scale shows less curvature close to the

azrin,disc X 1010

0
) :
—02F - % . I 1
" - g
—04 F T 1
—0.6 - & :
q S
08 L =340 +—=— |
B =346
1k 8 =355 +—e— ]
B=370 —o— 1
-12t 1
—1.4 I I I I
0 0.005 0.01 0.015 0.02
(mic —m2)*/ (87 fier)?
FIG. 5. Extrapolation to the physical point for the quark-

disconnected contribution using Eq. (38). The vertical dashed
line represents the physical point in our isosymmetric QCD setup.
The black point is the result of the extrapolation, and the gray
band represents the extrapolation to the continuum limit with
Xk = X}. Points with dashed error bars are not included
in the fit.

physical point. We use half the difference between the two
extrapolations as our estimate for the systematic error. It is
worth noting that the value for the intermediate window
represents roughly 6% of the total contribution to ajy >,
As a cross-check, we note that using Egs. (36), (37), and

(39) we would obtain @™ — (47.57 + 020+

0.264y5) x 107'%, in good agreement with Eq. (34).

V. THE CHARM-QUARK CONTRIBUTION

In our calculation, charm quarks are introduced in the
valence sector only. A model estimate of the resulting
quenching effect is provided in Appendix D. The method
used to tune the mass of the charm quark has previously
been described in Ref. [17] and has been applied to
additional ensembles in this work. We only sketch the
general strategy here, referring the reader to Ref. [17] for
further details. For each gauge ensemble, the mass of
the ground-state ¢5 pseudoscalar meson is computed at
four values of the charm-quark hopping parameter.
Then the value of x, is obtained by linearly inter-
polating the results in 1/k. to the physical D, meson
mass mp = 1968.35(0.07) MeV [69]. We have checked
that using either a quadratic fit or a linear fit in .
leads to identical results at our level of precision. The
results for all ensembles are listed in the second column of
Table X.

The renormalization factor ZE/C) of the local vector
current has been computed nonperturbatively on each
individual ensemble by imposing the vector Ward identity
using the same setup as in Ref. [58], but with a charm
spectator quark. To propagate the error from the tuning of

K., both Z<V") and a}™ are computed at three values of
close to k.. In the computation of correlation functions, the
same stochastic noises are used to preserve the full
statistical correlations. For both quantities, we observe a
very linear behavior and a short interpolation to k. is
performed. The systematic error introduced by the tuning
of k. is propagated by computing the discrete derivatives of
both observables with respect to k.. (second error quoted in
Table X). This systematic error is considered as uncorre-
lated between different ensembles.

From ensembles generated with the same bare param-
eters but with different spatial extents (H105/N101 or
H200/N202), it is clear that FSE are negligible in the
charm-quark contribution. As in our previous work [17],
the local-local discretization exhibits a long continuum
extrapolation with discretization effects as large as 70%
between our coarsest lattice spacing and the continuum
limit, compared to only 12% for the local-conserved
discretization. Thus, we discard the local-local discretiza-
tion from our extrapolation to the physical point, which
assumes the functional form
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a3 (X gy X Xi) = @™ (0, X3P, XTP) + o X2 4 o X3 + 6X2X, + BuX210g(X,) + 70Xk — XB°) + 71 (X, — X3).

Lattice artifacts are described by a polynomial in X, =
a/+/t; " and a possible logarithmic term is included; recall
that 7;"™ denotes the value of the flow observable at the
SU(3);-symmetric point. Only the set of proxies X, = ¢,
and Xg = ¢, is used. The light-quark dependence shows a
very flat behavior, and a good y?/d.o.f. = 0.9 is obtained
without any cut in the pion mass. The corresponding
extrapolation is shown on the right panel of Fig. 6.

Before quoting our final result, we provide strong
evidence that our continuum extrapolation is under control
by looking specifically at the SU(3);-symmetric point
where six lattice spacings are available. As for the isovector
contribution, we use Eq. (40) to correct for the small pion-
mass mistuning at the SU(3),-symmetric point. The data
are interpolated to a single value of X using the same
strategy as in Eq. (30). Those corrected points are finally
extrapolated to the continuum limit using the Ansatz (31).
The result is shown in the left panel of Fig. 6 for the two
sets of improvement coefficients of the vector current.
Again, excellent agreement is observed between the two
datasets. Even for the charm-quark contribution, we
observe very little curvature when using set 1 of improve-
ment coefficients.

Having confirmed that our continuum extrapolation is
under control, we quote our final result for the charm
contribution obtained using the Ansatz (40). Using
Eq. (28), the AIC analysis described above leads to

my; = mg ~ 420 MeV

3.2 ‘
3l set 1: a? N |
set 1: a®+a®
28 | set 1: a2+azlog(a) ----- |
' st 2:a+ad  ——
2.6
2.4 —P\i —t
2.2
2 |-
1.8
1.6 - I . ) ‘
0 0.002 0.004 0.006 0.008 0.01
a® [fm?]

(40)

[
™ = (2.89 + 0.034 % 0.034y £ 0.13) X 10710,

(41)

where variations include cuts in the pion masses and in the
lattice spacing and fits where the parameters f5, 4 and &
have been either switched on or off.

VI. ISOSPIN-BREAKING EFFECTS

As discussed in the previous Secs. III and IVA, our
computations are performed in an isospin-symmetric setup,
neglecting the effects due to the nondegeneracy of the up-
and down-quark masses and QED. At the percent and
subpercent level of precision it is, however, necessary to
consider the impact of isospin-breaking effects. To estimate
the latter, we have computed alvji“ in QCD + QED on a
subset of our isospin-symmetric ensembles using the
technique of Monte Carlo reweighting [86-90] combined
with a leading-order perturbative expansion of QCD +
QED around isosymmetric QCD in terms of the electro-
magnetic coupling e? as well as the shifts in the bare quark
masses Am,,, Amy, Amg [90-94]. Consequently, we must
evaluate additional diagrams that represent the perturbative
quark mass shifts as well as the interaction between quarks
and photons. We make use of noncompact lattice QED and
regularize the manifest IR divergence with the QEDy
prescription [95], with the boundary conditions of the

a}v:in.c x 1010

3.2
==
-
3k . ;‘\\\\ -
s =
L~ =y
® [} :@\\\
2.8 | = ® 3 —
)
261 =334 e ¢ ]
B=340 +—m— ;%
B —3.46
24| B=355 e N
B =3.70 o
B =3.85 -
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 6. Left panel: study of the continuum extrapolation of the charm-quark contribution to a,‘;’i" at the SU(3);-symmetric point using
the local-conserved discretization of the correlation function. The black and green points are obtained using two independent sets of
improvement coefficients, as explained in Sec. III B. Right panel: example of a typical extrapolation to the physical point of the charm-
quark contribution. The error from the scale setting, which is highly correlated between ensembles, is not shown. The plain lines are
obtained from the fit function (40) without any cut in the pion mass.
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photon and QCD gauge fields chosen in accordance [93].
We characterize the physical point of QCD + QED by the
quantities mlzr[,, ma. + méo -mi., my. - m%, - m?, +
miﬂ and the fine-structure constant a [91]. The first three
quantities are inspired by leading-order chiral perturbation
theory including leading-order mass and electromagnetic
isospin-breaking corrections [67] and correspond to proxies
for the average light-quark mass, the strange-quark mass,
and the light-quark mass splitting. As we consider leading-
order effects only, the electromagnetic coupling does not
renormalize [90]; i.e., we may set e’ = 4za. The lattice
scale is also affected by isospin breaking, which we

however neglect at this stage. Making use of the isosym-
2

metric scale [55], we match mfto and m%. + mio —m?. in
both theories on each ensemble and set my. — my, —

mf[+ + mi(, to its experimental value.

We have computed the leading-order QCD + QED
quark-connected contribution to afji“ as well as the pseu-
doscalar meson masses m 0, m +, mgo, and mg+ required
for the hadronic renormalization scheme on the ensembles
D450, N200, N451 and HI102, neglecting quark-
disconnected diagrams as well as isospin-breaking effects
in sea-quark contributions. The considered quark-con-
nected diagrams are evaluated using stochastic U(1) quark
sources with support on a single time slice whereas the all-
to-all photon propagator in Coulomb gauge is estimated
stochastically by means of Z, photon sources. Covariant
approximation averaging [96] in combination with the
truncated solver method [97] is applied to reduce the
stochastic noise. We treat the noise problem of the vector-
vector correlation function at large time separations by means
of a reconstruction based on a single exponential function.
A more detailed description of the computation can be found
in Refs. [91,92,98]. The renormalization procedure of the
local vector current in the QCD + QED computation is based
on a comparison of the local-local and the conserved-local
discretizations of the vector-vector correlation function and
hence differs from the purely isosymmetric QCD calculation
[58] described in Sec. III B. We therefore determine the
relative correction by isospin breaking in the QCD + QED
setup. For f, rescaling as introduced in Sec. IV A, isospin-
breaking effects in the determination of f, are neglected.
We observe that the size of the relative first-order corrections
for a¥™ is compatible on each ensemble and can in total be
estimated as a (0.3 £ 0.1)% effect.

VII. FINAL RESULT AND DISCUSSION

We first quote our final result a;,"™"*® in our isosymmetric

setup as defined in Sec. IVA. Using the isospin decom-
position, and combining Eqgs. (33), (34), and (41), we find

ay™ = (186.30 & 0.75,, & 1.0845) x 10710, (42)

winlo _ winl0./

win,c
ay +ay

= (50.30 £ 0.23,, + 0.32,) x 10710, (43
y

win,iso ___win,I1 win,I0
ay =ay +ay

= (236.60 £ 0.79y + 1.134 £ 0.055) x 10710,
(44)

where the first error is statistical, the second is the
systematic error, and the last error of a}:’i“’iso is an estimate
of the quenching effect of the charm quark derived in
Appendix D. Overall, this uncertainty has a negligible

effect on the systematic error estimate. The small bottom

quark contribution has been neglected. For aj®, this
contribution has been computed in Ref. [99] and found
to be negligible at the current level of precision.

As stressed in Sec. IV A, our definition of the physical
point in our isosymmetric setup is scheme dependent. To
facilitate the comparison with other lattice collaborations,
the derivatives with respect to the quantities used to define
our isosymmetric scheme are provided in Table II. They
can be used to translate from one prescription to another
a posteriori.

One of the main challenges for lattice calculations of
both aEVp and the window observable is the continuum
extrapolation of the light-quark contribution, which
dominates the results by far. To address this specific
point, we have used six lattice spacings in the range
[0.039,0.0993] fm in our calculation, along with two
different discretizations of the vector current (see the
discussion in Sec. IV C). Although this work contains
many ensembles away from the physical pion mass, we
observe only a mild dependence on the proxy used for the
light-quark mass. This observation is corroborated by
the fact that, in the model averaging analysis, most of
the spread comes from fits that differ in the description of
lattice artifacts rather than on the functional form f, that
describes the light-quark mass dependence.

In Fig. 7, we compare our results in the isosymmetric
theory with other lattice calculations. Our estimate for
ay™*° agrees well with that of the BMW Collaboration
who quote a})™° =236.3(1.4) x 1070 using the stag-
gered quark formulation [20]. However, our result is
about 2.3c6 above the published value by the RBC/
UKQCD  Collaboration, — a}™*° = 232.0(1.5) x 1071,
obtained using domain wall fermions [13]. It is also
1.70 above the recent estimate quoted by ETMC, based
on the twisted-mass formalism [22], which reads a;’in’iso =
231.0(2.8) x 107'°. The difference with the latter two
calculations can be traced to the light-quark contribution
ay™, which is shown in the second panel from the right.
In this context, it is interesting to note that, apart from
BMW, two independent calculations using staggered
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FIG. 7.

Comparison of our results (in units of 1071%) with other lattice calculations [13,18,20-24] in isosymmetric QCD. The four

panels on the left show compilations of the individual quark-disconnected, charm, strange and light-quark contributions. The total result
for @™ in the isosymmetric case is shown in the rightmost panel. Our results are represented by green circles and vertical bands.

quarks (albeit with a different action as compared to the
BMW Collaboration) have quoted results for a) ™"
[18,21,24] that are in good agreement with our estimate,
as can be seen in Fig. 7. The middle panel of the figure
shows that our estimate for the strange quark contribution

is slightly higher compared to other groups, but due to the

relative smallness of a,"™* this cannot account for the

difference between our result for a;"™"** and Refs. [13,22].
Good agreement with the BMW, ETMC and RBC/UKQCD
Collaborations is found for both the charm and quark-
disconnected contributions.

If one accepts that most lattice estimates for the light-
quark connected contribution a "¢ have stabilized around
~207 x 1071°, one may search for an explanation why the
results by RBC/UKQCD [13] and ETMC [22] are smaller

by about 2%. This is particularly important since a}}™"*

contributes about 87% to the entire intermediate window
observable. One possibility is that the extrapolations to the
physical point in Refs. [13,22] are both quite long. For
instance, the minimum pion mass among the set of
ensembles used by ETMC is only about 220 MeV, while
the result by RBC/UKQCD has been obtained from two
lattice spacings, i.e., 0.084 and 0.114 fm. Further studies
using additional ensembles at smaller pion mass and lattice
spacings are highly desirable to clarify this important issue.

In order to compare our result with phenomenological
determinations of the intermediate window observable,
we must correct for the effects of isospin breaking. Our
calculation of isospin-breaking corrections, described in
Sec. VI, has been performed on a subset of our ensembles
and is, at this stage, lacking a systematic assessment of
discretization and finite-volume errors. Furthermore, only
quark-connected diagrams have been considered so far. To
account for this source of uncertainty, we double the error
and thereby apply a relative isospin-breaking correction

of (0.340.2)% to a)™*°, which amounts to a shift of
+(0.70 4 0.47) x 107'°. Thus, our final result including
isospin-breaking corrections is

ay = (237.30 + 0.79, % 1.134, + 0.059

+0.475) x 10710, (45)

Adding all errors in quadrature yields 237.30(1.46) x 10~1°
which corresponds to a precision of 0.6%. A comparison
with other lattice calculations is shown in Fig. 8. Since
corrections due to isospin breaking are small, the same
features are observed as in the isosymmetric theory: While
our result agrees well with the published estimate from
BMW [20], it is larger than the values quoted by ETMC
[22] and RBC/UKQCD [13]. Our result lies 3.9¢ above the
recent evaluation using the data-driven method [48], which
yields @™ =229.4(1.4) x 107'% and is shown in red in
Fig. 8. Our result for a/‘;“i“ is also consistent with the
observation that the central value of our 2019 result for the

@+  This work
—— ETMC 21
—— BMW 20
—e— RBC/UKQCD 18
- ICol?ngelo et al. 22 (R-ratio)

230 235 240
O (U
FIG. 8. Comparison of our result for a)’l"i“ including isospin-
breaking corrections with the estimates by ETMC [22], BMW
[20], and RBC/UKQCD [13]. The estimate based on the data-
driven method of Ref. [48] is shown in red.
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complete hadronic vacuum polarization contribution [17]
lies higher than the phenomenology estimate, albeit with
much larger uncertainties. In Ref. [62] we observed a
similar but statistically much more significant enhancement
in the hadronic running of the electromagnetic coupling,
Aay,q(—Q?) relative to the data-driven evaluation, espe-
cially for Q? < 3 GeV?. As pointed out at the end of Sec. II,
the relative contributions from the three intervals of center-
of-mass energy separated by /s = 600 MeV and /s =
900 MeV are similar for ™™ and Aay,q(—1 GeV?), even
though the respective weight functions in the time-momen-
tum representation are rather different. The fact that the
lattice determination is larger by more than three percent
for both quantities, in each case with a combined error of
less than one percent, suggests that a genuine difference
exists at the level of the underlying spectral function,
R(s)/(127?%), between lattice QCD and phenomenology.
If one were to subtract the data-driven evaluation of a/“j"‘
from the White paper estimate [3] and replace it by our
result in Eq. (45), the tension between the SM prediction
for a, and experiment would be reduced to 2.9¢. This
observation illustrates the relevance of the window observ-
able for precision tests of the SM. Our findings also
strengthen the evidence supporting a tension between

data-driven and lattice determinations of )"
In our future work we will extend the calculation to other
windows and focus on the determination of the full

. L. . h
hadronic vacuum polarization contribution, aj,.
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APPENDIX A: MISTUNING OF THE CHIRAL
TRAJECTORY

The ensembles used in our work have been generated
with a constant bare average sea quark mass which differs
from a constant renormalized mass by O(a) cutoff effects.
When the sum of the renormalized quark masses is kept
constant, the dimensionless parameters ¢, and yg,, which
have been introduced in Sec. IVA to define the chiral
trajectories toward the physical point, are constant to
leading order in chiral perturbation theory (yPT).
Therefore, ¢, and yg, cannot be constant across our set
of ensembles due to cutoff effects and higher-order effects
from yPT.

We have to correct for the sources of mistuning of our
ensembles with respect to the chiral trajectories of strate-
gies 1 and 2. This can be done by parameterizing the
dependence of our observables on Xy € {yx,, ¢4} in the
combined chiral-continuum extrapolation. However, since
the pion and kaon masses are not varied independently

within our set of ensembles, the dependence on AXyx =

XS _ X cannot be resolved reliably in our fits. A
different strategy has to be employed to stabilize our
extrapolation to the physical point.

Explicit corrections of the mistuning prior to the chiral
extrapolation have been used in Ref. [55] to approach the
physical point at constant ¢4 = ¢5™°. These corrections are
based on small shifts defined from the first-order Taylor
expansion of the quark mass dependence of lattice observ-
ables. The expectation value of a shifted observable is
given by

N
(0) = (0)+ ) Amg, M, (A1)
i=1 q.

dmi

with the Ny = 3 sea quark mass shifts Amg ;. Within this
appendix, we work with observables and expectation values
that are defined after integration over the fermion fields;
i.e., the expectation values are taken with respect to the
gauge configurations. The total derivative of an observable
with respect to the quark masses is decomposed via

1) el oo
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The partial derivative of an observable with respect to a
quark mass of flavor i captures the effect of shifts of
valence quark masses. The second and third terms that
contain the derivative of the action § with respect to the
quark masses account for sea quark effects. The chain rule
is used to compute the derivatives of derived observables.

The chain rule relating the derivatives with respect to
the quark masses to those with respect to the variables X ; =
X, Xx can be written

Nioodx;

Ay Ai(n) = i

Z dm j;l( ! i=1 qu'i
(A3)

V71 = (ny, ny, n3), the condition n; = n, being imposed to
remain in the isosymmetric theory. In particular, if the
direction of the vector 7 in the space of quark masses is
chosen such that A (7) vanishes, the following expression
[71] for the derivative of an observable with respect to X is
obtained:

(A4)

o) _ 1 ff:n_d(@
dXK Ak(ﬁ) =1 lqu’i '

20 T T T T T T T T
10 T T
P ged
S 1 T [
E N [ [N
5 ! 8
g - - |
< -10f % T
ook f=334 HH f=355 HH |
8=2340 8=370 FH
(=346 f=385 H
73[} 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
®y
T T T T T T T T
75— .
—10 = T Tk
g 1 ¥
) 1 i
'§31—15 {* T f*
—20r §=331 HH  [f=35 W |
£=340 HH B=370 HH
-2 | | | | ’= 3|.46 | 7 :I - F? 7
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0y

In Ref. [55] the shifts n; have been chosen to be degenerate
for all three sea quarks. In Ref. [71] the same approach is
taken at the SU(3),- symmetric point and 77 = (0,0, 1) is
used when amy; # am ;. To stabilize the predictions for
the derivatives, they are modeled as functions of lattice
spacing and quark mass.

To improve the reliability of our chiral extrapolation, we
have determined the derivatives of a)™"¢ and a}™* with
respect to light and strange-quark masses on a large subset
of the ensembles in Table I. Whereas the computation of the
first term in Eq. (A2) shows a good signal for the vector-
vector correlation function, the second and third term carry
significant uncertainties. In the case of f, rescaling, a non-
negligible statistical error that has its origin in df,/dm,;
enters the derivative of a}™.

Our computation does not yet cover all ensembles in this
work and has significant uncertainties on some of the
included ensembles. Moreover, we have not computed the
mass derivative of @}y ™% that enters a}"™. Therefore, we
have decided not to correct our observables prior to the
global extrapolation but to determine the coefficient y, in
Eq. (26) instead. We do not aim for a precise determination
here but focus instead on the determination of a sufficiently
narrow prior width, in order to stabilize the chiral-
continuum extrapolation.
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FIG. 9. Derivatives of the isovector and the strange-connected contributions to the window observable with respect to X,. The gray

areas illustrate the priors that are used in the global extrapolation.
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We compute the derivatives with respect to Xx as
specified in Eq. (A4) with the shift vector 7 chosen such
that A (1) vanishes ensemble by ensemble; i.e., the shift is
taken in a direction in the quark mass plane where X,
remains constant. The derivatives are therefore sensitive to
shifts in the kaon mass. A residual shift of X, is present at
the permille level.

We collect our results for the derivatives with respect to
¢4 and yg, in Table III. Throughout this appendix, we use
units of 1070 for a}{™, as well as for coefficient y,. The
results are based on the local-local discretization of the
correlation functions and the improvement coefficients and
renormalization constants of set 1. As can be seen, the
derivative of the isovector contribution to the window
observable vanishes within error on most of the ensembles.
This is expected from the order-of-magnitude estimate in
Eq. (B33). No clear trend regarding a dependence on X,

X or X, can be resolved. We show the derivative of a}y ™"

with respect to X, in the upper panels of Fig. 9. For the
corresponding priors for the chiral-continuum extrapolation
we choose

win,I1,yg, win,Il,p,

yynlle — 0(50), —2.5(5.0).  (A5)

The derivative of the strange-connected contribution of
the window observable with respect to Xy is negative and
can be determined to good precision. Our results are shown

TABLE III. Derivatives of the isovector and the strange-
connected contributions to the window observable with respect
to Xx in units of 107'°, The data are based on the local-local
discretization of the vector-vector correlation function and the
improvement coefficients of set 1.

da;vin.ll da;viu.l] daﬂ in,s du‘\ym S

Id o, dyka o, dyka
A653  5.0(1.1) 83(39) —-10.0(0.7)  —80(10)
A654  5.0(1.9) 96(47) —-11.3(0.5)  —93(10)
HI01  —4.7(3.9) 145(137)  —13.4(1.1)  —68(26)
H102 —12.2(3.5) 46(118)  —14.5(1.0)  —91(27)
NI101  —8.9(12.9) —163(143) —17.8(2.1) —204(51)
C101 2.6(8.3) —-84(93)  —12.1(1.6) —138(27)
B450  —3.4(2.6) 42(39) -125(0.7)  —93(9)
N451  —5.3(5.2) —68(71)  —12.8(0.5)  —122(20)
D450  —4.9(10.0)  —85(233)  —11.1(0.8) —116(73)
H200  —0.3(5.3) 241(198)  —10.8(1.3)  —40(40)
N202  -3.5(9.2) 79(136)  —14.5(22)  —95(30)
N203  -3.5(5.1) 125(106)  —16.5(1.6)  —123(25)
N200  3.3(7.2) 136(128)  —14.0(1.3)  —119(24)
D200 7.1(7.1) 121(93) —-11.8(1.4)  —98(26)
N300  0.4(4.3) 8(53) —11.4(1.1)  —98(15)
1303 6.5(9.1) 197(148)  —13.4(12)  —94(32)
J500  —9.0(5.3) —18(68)  —15.1(1.5) —117(19)
1501 —6.1(9.4) 88(189)  —12.5(3.0)  —92(48)

in the lower panels of Fig. 9. We choose our priors such
that their width encompasses the spread of the data. For
the strange-connected and the isoscalar contribution, we
choose

win,s,y g,

7h = —100(20),

win,s, gy
70

=-12.5(2.5). (A06)
These values are compatible with the estimate in Eq. (B26).

Discretization effects in the data may be inspected by
comparing the derivatives based on the two sets of improve-
ment coefficients. Such effects are largest for the two
ensembles at f = 3.34 but are still smaller than the
spread in the data and therefore not significant with respect
to our prior widths. In our global extrapolations, we use
a single set of priors irrespective of the improvement
procedure.

APPENDIX B: PHENOMENOLOGICAL MODELS

In the first subsection of this appendix, we collect
estimates of the sensitivity of the window observables to
various intervals in /s in the dispersive approach. The
observable afji“ can indeed be obtained from experimental
data for the ratio R(s) defined in Eq. (10) via

g = [ dsfun(s)RS). (B1)
where the weight function is given by
2 ” _
Funs) = [ dhe R ()01 10.8) - O(1,11.8)].
24r 0
(B2)

In practice, since the integrand is very strongly suppressed
beyond 1.5 fm, we have used the short-distance expansion
of K(t) given by Eq. (B16) of Ref. [10], which is very
accurate up to 2 fm.

The second and the third subsections contain phenom-
enological estimates of the derivatives of the strangeness
and the isovector contributions to al‘j“i“ with respect to the
kaon mass at fixed pion mass, as a cross-check of the lattice
results presented in Appendix A.

1. Sensitivity of the window quantity

In Ref. [49], a semirealistic model for the R ratio was
used for the sake of comparisons with lattice data generated
in the (u, d, s) quark sector with exact isospin symmetry. In
particular, the model does not include the charm contri-
bution, nor final states containing a photon, such as 7. It
leads to the following values for the window observables

and their sum, the full ath.

hv _
(all p)SDlmodel =56.0 x 10 107 (B3)
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TABLE IV. Fractional contributions in percent from different regions in /s to ahv

( 2VP)SD ID.LD

P and the partial quantities

, as well as the subtracted vacuum polarization at scale 0% =1 GeV?, according to the R-ratio model

given in Ref. [49]. Note that this model includes neither the charm nor final states containing a photon, such as z%.

/5 interval ap”® (al?)sP (ahv?)D (ahvP)LP (1 GeV?)
Below 0.6 GeV 15.5 1.5 5.5 23.5 8.2
0.6 to 0.9 GeV 58.3 23.1 54.9 65.4 52.6
Above 0.9 GeV 26.2 754 39.6 11.1 39.2
Total 100.0 100.0 100.0 100.0 100.0

a/‘:/in|m0del = (azvp)lD|model =2319 x 10_10’ (B4)
(QBVP)LD|model =384.8 x 10_10’ <B5)
" oger = 672.7 x 10710, (B6)

Given the omission of the aforementioned channels, these
values are quite realistic.* Here we only use the model to
provide the partition of the quantities above into three
commonly used intervals of /s, in order to illustrate what
the relative sensitivities of these quantities are to different
energy intervals. These percentage contributions are given
in Table IV, along with the corresponding figures for the
subtracted vacuum polarization:

Q> [
1272 A
The model yields for this quantity the value 385.5 x 10™* at
Q? =1 GeV2. We expect the fractions in the table to be
reliable with an uncertainty at the 5%—7% level.

The model value for the intermediate window is best
compared to the sum of Eqgs. (33) and (34). The difference
is (1.8 4 1.4) x 107!1°, which represents agreement at the
1.35 level. The main reason the R-ratio model agrees better
with the lattice result than a state-of-the-art analysis [48] is
that the model does not account for the strong suppression
of the experimentally measured R ratio in the region 1.0 <
\/s5/GeV < 1.5 relative to the parton-model prediction.
This observation suggests a possible scenario where the
higher lattice value of a;’,““ as compared to its data-driven
evaluation is explained by a too pronounced dip of the R
ratio just above the ¢ meson mass. In such a scenario,
the relative deviation between the central values of a,}jv
obtained on the lattice and using e'e~ data would be
smaller than for a,‘j““ by a factor of about 1.5, given the
entries in Table IV. Indeed, it has been shown [50] that the

R(s)

= 2 §— .
fi(e?) =1(e?) o107

~11(0) = (B7)

“For orientation, the charm contribution to a}}” is 14.66(45) x
10719 [17], and the 7% channel contributes 4.5(1) x 10710 [3].
Adding these to Eq. (B6), the total is 691.9 x 107!°, con-
sistent within errors with the White paper evaluation of
693.1(4.0) x 1071,

central values of the BMW Collaboration [20] cannot be
explained by a modification of the experimental R(s) ratio
below s = 1 GeV? alone.

2. Model estimate of (0/0m2 )ay™* (m2, m%)

In Ref. [62], we have used two closely related R-ratio
models for the strangeness correlator and the light-quark
contribution to the isoscalar correlator:

A, N, a
¢ o 2 e _ s
R ls) = T maals = 2) + eots - o) (142
(B8)
A N
Ri(s) = chbé(s —my) + ?CH(S —s1) <1 —l—%),
(B9)
with
V3o =1.02GeV, 5 =124GeV.  (BIO)
m,, = 0.78265 GeV, my = 1.01946 GeV and [100]
A, 9nT,.(w) 7.33(24)
To _ 72 — B11
8 & m, T (BL1)
A .
7(/):97727:Fee(¢) :586(10) (B12)
9 04 m(/, 9

The threshold values s, and s; have been adjusted to
reproduce the corresponding lattice results for aMVP The
model R ratios of Egs. (B8) and (B9) were used [62] in
the linear combination (18R7_; — 9R*) in order to model
the SU(3),-breaking contribution T1%, which enters the
running of the electroweak mixing angle. Our model for
this linear combination also obeys an exact sum rule,
J& ds(18Ry_, — 9R®) = 0, within the statistical uncertain-
ties. We now evaluate the window quantity for the models
of Egs. (B8) and (B9). For the strangeness contribution, we
have

ay™ = (27.6 £ 0.3,,) x 10719, (B13)
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and for the full isoscalar contribution, the model predicts

ay™0 — (47.4 4 0.54,) x 10710, (B14)
Given the modeling uncertainties, these values are in
excellent agreement with the lattice results presented in
the main part of the text, respectively, Eqs. (37) and (34).
We also record some useful values of the kernel:

Fuin(m3) =29.5x 10710 GeV~2,

Fuin(s1) = 16.1 x 10710 GeV~2, (B15)

d
d—(sfwin(s))s:mi =-113x 1071 GeV2.  (B16)
S p

In the following, we evaluate the strange-quark mass
dependence of a,"™*, based on the idea that the parameters
Ay, my, and s; only depend on the mass of the valence
(strange) quark. This general assumption is reflected in
Egs. (B21), (B22), and (B24) below.

It was noted a long time ago [101] that the electronic
decay width of vector mesons, normalized by the relevant
charge factor, is only very weakly dependent on their mass:

18T, () = 10.8(4) keV, (B17)
9T, () = 11.4(4) keV, (B18)
%-rwu/w) = 12.4(2) keV. (B19)

This suggests that, unlike in QED, (Ay - my) depends less
strongly on my than Ay itself for QCD vector mesons.
Therefore it is best to estimate the derivative of interest as
follows:

6a,‘7m’¢

2
omy

5 :am%(< 9 )m(ﬁfwin(mé)

2
n Aymy\ Omy o
9 Omiamé

(mgfuin(mg)). (B20)

We estimate the following derivatives by taking a finite
difference between the w and the ¢ meson properties:

o (A 1 Aymy — A,m,
( ¢m¢)g_ o™ ~ oMo _012(10) Gev-!

om% \ 9 9 m%—m?
(B21)
and
om? om my—m
—? —omy—L om0 "2 =213 (B22)
omy omy my — my

Thus
aa;vm'd) ~10 -2
| ~((3.5+3.1) = 36.1) x 1071 GeV
K Imz

= (=326 +3.1) x 10719 GeV~2. (B23)

Next, we estimate the dependence originating from the
valence-mass dependence of sy:

(3s1

S1— /50
== 2@% —24. (B4
K K n

Thus the derivative of the perturbative continuum g} ™™

with respect to the squared kaon mass yields

aawin,s,cont
u

P
S 14.1x10710,

:_&(lJras/ﬂ)fwin(sl)M—

om% 9

(B25)
Adding this contribution to Eq. (B23), we get in total

win,s
da,

2
omy

= (—46.6 & 3.1, + 7.0m0qe1) X 10710 GeV~2.
(B26)
To the statistical error from the electronic widths of the w

and ¢ mesons, we have added a modeling error of 15%.
Using f,, the value above translates into

win,s
da,

Obs |y,

~ (=10.9 £ 0.7y £ 1.60q0) X 10710, (B27)

which can directly be compared to the values from lattice
QCD listed in Table III. The agreement is excellent.

In Eq. (B9), we have written the perturbative contribu-
tion above the threshold s; in the massless limit. We now
verify that the mass dependence of the perturbative con-
tribution is negligible for fixed s;. The leading mass-
dependent perturbative contribution to the R ratio well
above threshold is [see e.g., [102], Egs. (11) and (12)]

Rien(m3.5) = Rie (0..5)

N. 2\ 2 - m2
——‘(—6<ﬂ> +12ﬂﬂ+-~->. (B28)
9 s TS

9 awin,s,penN
Bmf( K ~

0.5 x 10710 GeV~2. Since this contribution to #al‘fi“
K

From here we have estimated

is about one-sixth the statistical uncertainty from the vector

meson electronic decay widths, we neglect the perturbative

mass dependence of a;™*.
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For future reference, we evaluate in the same way as in
Eq. (B26) the derivative of aj,* and find

aahvp.s

0;;12 - (_129 + Oy £ 19model) x 10710 Gev—=.
K Im?

(B29)

Here, the dependence on s; only contributes 18% of the
total. We have again assigned a 15% modeling uncertainty
to the prediction. Since we expect valence-quark effects to
dominate, the prediction (B29) can also be applied to the
full isoscalar prediction.

3. Model estimate of (0/0m%)ay ™" (m2, m%)

The influence of the strange quark mass on the isovector
channel is a pure sea quark effect and is as such harder to
estimate. Based on the Okubo-Zweig-lizuka (OZI) rule,
one would also expect a smaller relative sensitivity than
in the strangeness channel addressed in the previous
subsection.

One effect of the presence of strange quarks on the
isovector channel is that kaon loops can contribute. No
isovector vector resonances with a strong coupling to KK
are known; therefore, we attempt to use scalar QED
(sQED) to evaluate the effect of the kaon loops. Note that
at the SU(3);-symmetric point, the sum of the K°K* and
K*K~ contributions to the isovector channel amounts to
half as much as that of the pions. We find, integrating in s
from threshold up to 4 GeV? with mg = 0.495 GeV,

ay™=!'=0.99 x 10719, kaon loops in sQED,  (B30)
0 win, /=1 __ -7.0 10—10 G -2
—ay =-7.0x eV~:  (B31)
omy

A further, more indirect effect of two-kaon intermediate
states is that they can affect the properties of the p meson.
On general grounds, one expects the two-kaon states to
reduce the p mass, since energy levels repel each other.
However, for the window quantity it so happens that
Sfwin(s) has a maximum practically at the p mass; there-
fore, the derivative of this function is extremely small:

2
fwin(s)

The effect of a shift in the p meson mass is therefore heavily
suppressed.5 Reasonable estimates of the order of magni-

tude of the derivative dm,/dm% |2 lead to a contribution to

F) win, /=1
amZ, U

(B32)

d
a(sfwin(s)) . =—0.043.

s=m

which is smaller than the SQED estimate. These

>But note that this effect must be revisited when addressing the
strange—q%ark mass dependence of the isovector contribution to
the full a,".

estimates are based on the observation that the ratio m,,/ f,
is about 5% higher at a pion mass of 311 MeV in the
Ni =2 QCD calculation [103] than if one interpolates
the corresponding Ny = 2 4+ 1 QCD results [17,104] to the
same pion mass, though a caveat is that neither result is
continuum extrapolated. The effect of the kaon intermedi-
ate states on the 7z line shape is even harder to estimate, but
we note that even in N; = 2 QCD calculations [103], i.e., in
the absence of kaons, the obtained g,,, coupling is
consistent with Ny =2+ 1 QCD calculations [17,104]
carried out at comparable pion masses.

In summary, we use the SQED evaluation of Eq. (B31) to
provide the order-of-magnitude estimate:

0 -
—| @™ x—1.6 x 10710 (B33)
04y,
We note that the statistical precision of our lattice-QCD
results for this derivative in Table III is not sufficient to
resolve the small effect estimated here.

APPENDIX C: FINITE-VOLUME CORRECTION

Corrections for finite-size effects (FSE) have been
estimated using a similar strategy to the one presented in
our previous publication on the hadronic contributions to
the muon g—2 [17]. The main difference lies in the
treatment of small Euclidean times, where we have replaced
NLO yPT by the Hansen-Patella method as described
below. We have also investigated finite-size corrections
in yPT at NNLO [20,105]. Overall, we found it to be
comparable in size to the values found in Tables V and VI,
the level of agreement improving for increasing volumes
and decreasing pion masses. Given that the NNLO yPT
correction term is in many cases not small compared to the
NLO term, we refrain from using yPT to compute finite-
size effects in our analysis of a,Vji“ (see [24] for a more
detailed discussion of the issue).

1. The Hansen-Patella method

In Refs. [106,107], finite-size effects for the hadronic
contribution to the muon (g — 2) are expressed in terms of
the forward Compton amplitude of the pion as an expan-
sion in exp (—|7ii|m,L) for |7i|> =1,2,3,6,.... Here, n
schematically represents the number of times the pion
propagates around the kth spatial direction of the lattice.

Corrections that start at order exp (—nggm,L) with ngy =

V2 + v/3 ~ 1.93 are neglected: They appear when at least
two pions propagate around the torus. The results for the
first three leading contributions (|7i|> < 3) can thus be used
consistently to correct the lattice data on each time slice
separately. We decided to use the size of the |7i|> = 3 term,
i.e., the last one that is parametrically larger than the
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TABLE V. Finite-size effects in the isovector channel with £, rescaling, in units of 10710, for our ensembles described in Table I. The
correction obtained using the HP method is given in the third and fourth columns. The MLL estimate in the long-distance region is listed
in the fifth column. The contribution of the kaon is given in column six, where dots for ensembles at the SU(3) symmetric point indicate
that this contribution is contained in the HP and MLL estimates. Our final estimate is given in the last column. Only statistical errors are
shown. We assign an uncertainty of 25% of the FSE on each ensemble (see text).

ID t* (fm) HP (r < t*) HP (r > t*) MLL (1 > t*) Kaon loop Final estimate
A653 0.79 0.98(0.01) 0.81(0.03) 0.78(0.01) e 1.75(0.03)
H101 1.04 0.71(0.01) 0.03(0.00) 0.03(0.00) - 0.74(0.01)
H102 0.86 0.70(0.01) 0.40(0.02) 0.36(0.01) 0.19 1.25(0.10)
H105 0.69 0.58(0.03) 1.95(0.11) 1.87(0.08) 0.14 2.59(0.15)
N101 1.47 0.28(0.01) 0.00(0.00) 0.00(0.00) 0.01 0.29(0.01)
C101 1.21 0.75(0.02) 0.03(0.00) 0.03(0.00) 0.01 0.78(0.02)
B450 0.76 0.83(0.01) 0.77(0.02) 0.74(0.56) e 1.57(0.37)
S400 0.69 0.61(0.01) 1.55(0.05) 1.54(0.03) 0.34 2.50(0.18)
N451 1.22 0.51(0.01) 0.01(0.00) 0.01(0.00) 0.02 0.53(0.01)
D450 1.60 0.32(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.32(0.01)
D452 1.15 0.89(0.02) 0.10(0.01) 0.10(0.01) 0.00 1.00(0.03)
H200 0.58 0.68(0.02) 3.35(0.07) 3.17(0.09) e 3.84(0.16)
N202 1.22 0.38(0.01) 0.00(0.00) 0.00(0.00) e 0.38(0.00)
N203 1.03 0.56(0.01) 0.04(0.00) 0.03(0.00) 0.09 0.69(0.05)
N200 0.84 0.73(0.01) 0.64(0.02) 0.61(0.01) 0.07 1.41(0.05)
D200 1.09 0.95(0.01) 0.11(0.00) 0.10(0.00) 0.01 1.06(0.02)
E250 1.54 0.57(0.02) 0.00(0.00) 0.00(0.00) 0.00 0.57(0.02)
N300 0.75 0.89(0.01) 0.79(0.02) 0.75(0.01) e 1.64(0.03)
N302 0.65 0.61(0.01) 1.79(0.03) 1.73(0.02) 0.34 2.68(0.20)
1303 0.85 0.90(0.01) 0.71(0.02) 0.67(0.01) 0.05 1.62(0.06)
E300 1.25 0.76(0.01) 0.02(0.00) 0.02(0.00) 0.00 0.78(0.01)
J500 0.82 0.98(0.01) 0.41(0.01) 0.40(0.01) e 1.37(0.01)
J501 0.67 0.60(0.01) 1.52(0.04) 1.55(0.02) 0.29 2.44(0.16)

TABLE VI. The same as Table V using 7, to set the scale.

ID * (fm) HP (t < *) HP (1 > r*) MLL (7 > t*) Kaon loop Final estimate
A653 0.79 0.80(0.01) 1.19(0.04) 1.11(0.01) e 1.90(0.06)
H101 1.04 0.73(0.02) 0.13(0.00) 0.12(0.00) . 0.85(0.01)
H102 0.86 0.62(0.01) 0.57(0.02) 0.52(0.01) 0.19 1.33(0.11)
H105 0.69 0.54(0.01) 2.10(0.06) 2.01(0.02) 0.14 2.68(0.15)
N101 1.47 0.29(0.01) 0.00(0.00) 0.00(0.00) 0.01 0.30(0.01)
C101 1.21 0.73(0.02) 0.03(0.00) 0.03(0.00) 0.01 0.76(0.02)
B450 0.76 0.63(0.01) 1.21(0.03) 1.12(0.79) e 1.75(0.53)
5400 0.69 0.50(0.01) 1.87(0.04) 1.82(0.02) 0.34 2.65(0.19)
N451 1.22 0.54(0.01) 0.01(0.00) 0.01(0.00) 0.02 0.57(0.01)
D450 1.60 0.32(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.32(0.01)
D452 1.15 0.88(0.02) 0.07(0.00) 0.08(0.00) 0.00 0.95(0.02)
H200 0.58 0.45(0.01) 4.14(0.09) 3.77(0.12) e 4.22(0.28)
N202 1.22 0.44(0.01) 0.01(0.00) 0.01(0.00) . 0.45(0.01)
N203 1.03 0.57(0.01) 0.11(0.00) 0.10(0.00) 0.09 0.76(0.05)
N200 0.84 0.66(0.01) 0.81(0.02) 0.76(0.01) 0.07 1.49(0.06)
D200 1.09 0.96(0.01) 0.12(0.00) 0.11(0.00) 0.01 1.07(0.02)
E250 1.54 0.53(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.53(0.01)
N300 0.75 0.63(0.01) 1.37(0.03) 1.24(0.02) e 1.87(0.09)
N302 0.65 0.45(0.01) 2.29(0.05) 2.13(0.03) 0.33 2.91(0.25)
1303 0.85 0.81(0.01) 0.93(0.02) 0.87(0.01) 0.05 1.73(0.07)
E300 1.25 0.76(0.01) 0.02(0.00) 0.02(0.00) 0.00 0.78(0.01)
1500 0.82 0.74(0.01) 0.92(0.03) 0.85(0.01) e 1.60(0.05)
J501 0.67 0.43(0.01) 2.02(0.05) 1.97(0.01) 0.29 2.69(0.17)
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neglected n.y ~ 1.93 contribution, as an estimate of the
inherent systematic error.

In this work we follow the method presented in
Ref. [107], where the forward Compton amplitude is
approximated by the pion pole term, which is determined
by the electromagnetic form factor of the pion in the
spacelike region. Since the form factor is only used to
evaluate the small finite-volume correction, a simple but
realistic model is sufficient. Here we use a monopole
parametrization obtained from N, = 2 lattice QCD simu-
lations [108]:

1
&) = e

M?(m2) = 0.517(23) GeV? + 0.647(30)m?2. (C1)
The statistical error on the finite-size correction is obtained
by propagating the jackknife error on the pion and
monopole masses. The results obtained using this method
are summarized in the third and fourth columns of Tables V
and VL

2. The Meyer-Lellouch-Liischer formalism with
Gounaris-Sakurai parametrization

As an alternative, we also consider the Meyer-Lellouch-
Liischer (MLL) formalism. The isovector correlator in both
finite and infinite volume is written in terms of spectral
decompositions:

_ 1 0 4m2\3/2
G'=1(t, ) _@A dow? <1 - w2> |F o (w)]?e=,

(€2)

E;=2\/m2 412, (C3)

where F,(®) is the timelike pion form factor. Following

Glzl(t,L) _ ZlAi|2€_Eit’
i

the Liischer formalism, the discrete energy levels E; =

2+/mZ + k? in finite volume are obtained by solving the
equation

kL

(k) + dla) =nm, g =,

(C4)

where ¢(q) is a known function [109,110], n is a strictly
positive integer and §; is the scattering phase shift in the
isospin [ =1, p-wave channel. Strictly speaking, this
relation holds exactly only below the four-particle thresh-
old that starts at 4m . This is only a restriction at light pion
mass where many states are needed to saturate the spectral
decomposition in finite volume. We will see below how to
circumvent this difficulty. In Ref. [111], the overlap factors
A; that enter the spectral decomposition in finite volume

were shown to be related to the form factor in infinite
volume through the relation

E2
651> 3z (©5)

FuE) = (a0)+ 5L ) T A
The timelike pion form factor has been computed on a
subset of our lattice simulations [17,104]. Since the form
factor is only needed to estimate the small finite-volume
correction, an approximate model can be used. Here, we
assume a Gounaris-Sakurai (GS) parametrization that
contains two parameters: the g,,, coupling and the vector
meson mass m, [112]. A given choice of those parameters
allows us to compute both the finite-volume and infinite-
volume correlation function in the isovector channel at
large Euclidean times using Eq. (C3). The difference
G'=!(t,0) — G'=!(t, L), when inserted into Eq. (5), yields
our estimate of the FSE. In practice, the GS parameters are
obtained from a fit to the isovector correlation function
G'=!(t, L) at large Euclidean times, using Egs. (C3)—(C5).
Statistical errors on the GS parameters can easily be
propagated using the jackknife procedure.

Since this method is expected to give a good description
only up to the inelastic threshold, Eq. (C4) being formally
valid below 4m,, we opt to use the MLL formalism only
above a certain cut in Euclidean time, given by ¢* =
(m,L/4)?/m,. Below the cut, we always use the HP
method described above. Above the cut, the lightest few
finite-volume states in the spectral decomposition saturate
the integrand. The results using the MLL formalism are
summarized in the fifth column of Tables V and VL

3. Corrections applied to lattice data

In Tables V and VI we summarize the FSE correction
applied to the raw lattice data. We find that finite-size
corrections computed using either the HP or the MLL
method for (¢ > ¢*) show good agreement within their
respective uncertainties. Our final estimates, shown in the
rightmost column, are obtained by adding the result from
the HP method at short times (¢ < t*) to that of the MLL
method above ¢* and the kaon loop contribution. The latter
has been computed in yPT at NLO (see for instance [113])
on ensembles without SU(3) flavor symmetry. At the SU(3)
symmetric point, the kaon loop contribution has been
accounted for by scaling the HP and MLL corrections
by a factor of 3/2. We have included the scale factor in the
respective entries in Tables V and VI

The uncertainty quoted in the rightmost column is given
by the statistical error computed as described in the two
previous sections. It includes the statistical error on the
GS parameters and on the monopole mass that appears in
the parametrization of the form factor in Eq. (C1). The
systematic error on the HP contribution is estimated as
described in Appendix C 1.
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For our final estimates of finite-volume corrections, we
adopt a more conservative approach regarding the overall
uncertainty. As in our earlier paper [10], we base our
uncertainty estimate on the comparison to the NLO yPT
correction, which leads us to assign an error of 25% of the
estimated correction for each ensemble, which replaces
the uncertainties quoted in the last column of Tables V
and VI. For example, the finite-size correction applied
to ay™" in the case of ensemble J303 with f, rescaling
is (1.62 £ 0.405) x 10~1°.

APPENDIX D: QUENCHING OF THE CHARM
QUARK

The gauge configurations used in this work contain the
dynamical effects of up, down and strange quarks. As for
the charm quarks, we have only taken into account the
connected valence contributions. In this appendix, we
estimate the systematic error from the missing effect of
charm sea-quark contributions. The question we are after
can be formulated as, “What is the charm-quark effect on
the R ratio in a world in which the charm quark is
electrically neutral?”

As in Ref. [62], we adopt a phenomenological approach.
There, we evaluated the perturbative prediction for the
charm sea-quark effect and found it to be small for the
running of the electromagnetic coupling from Q> =1 to
5 GeV?. Alternatively, we considered D-meson pair crea-
tion in the electromagnetic-current correlator of the (u, d, s)
quark sector. The contribution of the D™D~ channel to the
R ratio reads

1 4m? N\ 32
R (5) =3 (1= 225) V1 ()

> (D)

and similar expressions hold for the D°D? and D} Dj
channels. Since the form factor F'p+ is not known precisely
and our goal is only to estimate the order of magnitude of
the effect, we will approximate it by its value at s = 0,
which amounts to treating D mesons in the scalar QED
framework and replacing their form factors by the relevant
electromagnetic ~ charges:  {Fpo(s), Fp+(s), Fp+} —
{2/3,-1/3,—1/3}. Note that up, down, or strange quarks
play the role of the valence quarks giving the mesons their
respective charges.

The corresponding contributions to aﬂv
using the expression

P are evaluated

AC'Seaa,}}Vp — A dehvp(S)(RDUD" + Rpip- + RDjD;)(*g)’

(D2)

Fip(s) = (iﬁ) /0 " dte ViR (1) = (%)21?(;)’

(D3)

where m,, is the muon mass and the analytic form of K(s)
can be found e.g. in Ref. [114], Sec. IV 1. Similarly, the
counterpart for the intermediate window reads

Acseaguin — A ds fyin(s)(Rpopo + Rp+p- + Rpp-)(s),
(D4)

where f;,(s) is defined in Eq. (B2).
For the D-meson masses, we use the values provided by
the Particle Data Group 2020 [100]. Our results are

A2y 0.314
a™  720.0

(~0.04%), (D5)

Acsegy™ 0,015
ay™  236.60

(~0.006%), (D6)

where we have inserted the aBVp =720.0 value from
Ref. [17]. The charm sea-quark contributions are thus
negligible at the current level of precision.

We notice that A°*34/'"? /™" is much smaller than the
effects found in the HVP contributions to the QED running
coupling, namely ~0.4% [62]. We interpret the difference

as follows: The typical scale in al}'” is given by the muon
mass, which is well separated from the D-meson masses.
Therefore the D-meson effects are strongly suppressed. In
comparison, the running coupling was investigated at the
GeV scale and the suppression is less strong.

In the intermediate window, the charm sea quarks are
even more suppressed, as seen in the tiny value of
AC'Seaa,V]i“ / af,““. This results from the following fact:
Creating D-meson pairs requires a center-of-mass energy
of ~4 GeV, corresponding to ¢ ~ 0.05 fm, which is much
smaller than the lower edge of the intermediate window,
to = 0.4 fm. Therefore, the D-meson pair creation con-
tributes mostly to the short-distance window (aj;?)SP. In
fact, the effect in the intermediate window Ac'seaa,‘j’i“
amounts to at most 5% of the total A“Seaazm.

Charm sea quarks lead not only to on-shell D mesons in
the R(s) ratio, but also to virtual effects below the threshold
for charm production. This is seen explicitly in the
perturbative calculation [115], where the two effects are
of the same order. At present, we do not have a means to
estimate these virtual effects on the quantity a}™, in which
they are less kinematically suppressed. Therefore, we will
conservatively amplify the uncertainty that we assign to the
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neglect of sea charm quarks by a factor of 3 relative to the
prediction of Eq. (D6). This estimate also generously
covers the effect on a),““ which follows from adopting
the perturbative charm-loop effect on R(s) down to
s = 1...1.5 GeV?. Thus, rounding the uncertainty to one
significant digit, we quote

C-! bed wm —
A

=0.05x 10710 (D7)
as the uncertainty on affi“ due to the quenching of the charm
in the final result Eq. (44) for the isosymmetric theory.

APPENDIX E: LIGHT PSEUDOSCALAR
QUANTITIES

In Table VII, we provide our results for the light
pseudoscalar masses and decay constants, in lattice units,
for all our lattice ensembles.

The pseudoscalar decay constant on ensembles with
open boundary conditions is computed using the same
procedure as in Ref. [55]. We construct the ratio

2 [C ,vo)C T — 1/2
R(xo, vo) = _[ 4(x0. Y0)Ca (xo )’o)] (E1)
mp Cp(T = 0, o)
as an estimator for the (improved, but unrenormalized)

decay constant, with mp the pseudoscalar mass. The two-
point correlation functions are

i Z (x0. ¥

Cp(x0,¥0) P(yo,¥)), (E2)

Z Ao X, X

with P = WSy, and Aﬂ =Y, rorsyy + aCAaﬂ(l/_/ryﬂyr’)
the local O(a)-improved interpolating operators for the
pseudoscalar and axial densities, respectively. The coef-
ficient ¢, has been determined nonperturbatively in
Ref. [116] and the valence flavors are denoted by r and
¥/, with r # /. In practice we average the results between
the two source positions yy = 2a and y, = T — 2a, close to
the temporal boundaries. As shown in Ref. [55], a plateau
R, is obtained at large x, where excited state contribu-
tions are small. On ensembles with periodic boundary
conditions, we use the estimator

Ca (%0, Yo) P(yo.¥)), (E3)

_ 22 peac
P —_— J k)
avg m% rr

R (E4)

where mPGAC is the average partial conservation of the

axial current (PCAC) quark mass of flavors r and 7/, and
Zp the overlap factor of the pseudoscalar meson. The
average PCAC mass is defined from an average in the
interval [z, #;] via

p) C x

PCAC __ 0L alXo, )’o

7 E , E5
mrr - t + a 2CP X0 y() ( )

where the source position y, is fixed as specified above for
open boundary conditions and randomly chosen for peri-
odic boundary conditions. The interval is chosen such that
deviations from a plateau which occur at short source-sink
separations and close to the time boundaries are excluded
from the average.

From the bare matrix element R,,,, the renormalized and
O(a)-improved pseudoscalar decay constant is given by

fP(XavXﬂ) = ZA(g())(l + 31—7Aamgv + bAamq,m)Ravg-

(E6)

In this equation, Z, is the renormalization factor in the
chiral limit and b, and b, are improvement coefficients of
the axial current. These quantities are known from
Refs. [117-119]. The average valence-quark mass mg ., =
(mg, +mg,)/2 and the average sea-quark mass m{’ =
(2mg; 4 my ;) /3 are defined in terms of the bare subtracted
quark masses mg, = (2k,)7" — (2kei) !, with kg the
critical value of the hopping parameter at which all three
PCAC masses vanish. In practice, we use the relation [60]

PCAC
My g = m,, _ (rm — 1) PCAC
7 Zrm

maP‘SIAC + O( PCAC>’

, AMlyy

(E7)

where mbCAC = (mPFAC + 2mPCAC) /3 s the average sea

PCAC quark mass and the coefficients Z(§y) = Z,Zp/Za
and r,,(go) have been determined nonperturbatively in
Refs. [120,121].

The lattice data for the light pseudoscalar masses and
decay constants are corrected for finite-size effects using
chiral perturbation theory (yPT) as described in Ref. [77].
Those corrections are small (the negative shift is at most
1.30) and we find that they correctly account for FSE on
the ensembles H105/N101, which are generated using the
same action parameters but different lattice volumes.
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APPENDIX F: TABLES

1. Pseudoscalar observables

TABLE VII. Pseudoscalar masses and decay constants in lattice units, including finite-size corrections. Value of the gluonic
observable #,/a*> and the two dimensionless variables # and ¢, used in the extrapolation to the physical point.

ID amy amg afz afk to/a* y ¢

A653 0.21193(91) 0.21193(91) 0.07164(23) 0.07164(23) 2.171(08) 0.1108(06) 0.7803(70)
A654 0.16647(121) 0.22712(89) 0.06723(33) 0.07206(23) 2.192(11) 0.0777(08) 0.4860(77)
H101 0.18217(62) 0.18217(62) 0.06377(26) 0.06377(26) 2.846(08) 0.1034(09) 0.7557(56)

H102 0.15395(71) 0.19144(57) 0.06057(30) 0.06365(23) 2.872(13) 0.0818(08) 0.5445(54)
H105 0.12136(124) 0.20230(61) 0.05800(110) 0.06431(29) 2.890(08) 0.0555(26) 0.3405(70)

N101 0.12150(55) 0.20158(31) 0.05772(31) 0.06418(20) 2.881(03) 0.0561(07) 0.3403(32)
Cl101 0.09569(73) 0.20579(34) 0.05496(31) 0.06330(15) 2.912(05) 0.0384(07) 0.2133(33)
B450 0.16063(45) 0.16063(45) 0.05674(15) 0.05674(15) 3.662(13) 0.1015(06) 0.7559(48)
S400 0.13506(44) 0.17022(39) 0.05394(38) 0.05675(32) 3.691(08) 0.0794(10) 0.5387(37)
N451 0.11072(29) 0.17824(18) 0.05228(13) 0.05789(08) 3.681(07) 0.0568(03) 0.3610(19)

D450 0.08329(43) 0.18384(18) 0.04989(21) 0.05766(12) 3.698(06) 0.0353(03) 0.2052(21)
D452 0.05941(55) 0.18651(15) 0.04827(49) 0.05704(08) 3.725(01) 0.0192(04) 0.1052(19)
H200 0.13535(60) 0.13535(60) 0.04799(27) 0.04799(27) 5.151(33) 0.1008(15) 0.7549(86)
N202 0.13424(31) 0.13424(31) 0.04821(17) 0.04821(17) 5.140(26) 0.0982(08) 0.7410(53)
N203 0.11254(24) 0.14402(20) 0.04645(14) 0.04907(12) 5.146(08) 0.0744(05) 0.5214(24)
N200 0.09234(31) 0.15071(23) 0.04424(16) 0.04901(16) 5.163(07) 0.0552(05) 0.3522(25)
D200 0.06507(28) 0.15630(15) 0.04226(13) 0.04910(11) 5.181(11) 0.0300(04) 0.1755(16)
E250 0.04170(41) 0.15924(09) 0.04026(19) 0.04864(06) 5.204(04) 0.0136(03) 0.0724(14)
N300 0.10569(23) 0.10569(23) 0.03819(14) 0.03819(14) 8.545(33) 0.0970(09) 0.7636(38)
N302 0.08690(34) 0.11358(28) 0.03663(15) 0.03860(15) 8.524(25) 0.0713(09) 0.5150(43)

J303 0.06475(18) 0.11963(16) 0.03444(12) 0.03872(16) 8.612(23) 0.0448(04) 0.2888(18)
E300 0.04393(16) 0.12372(10) 0.03255(09) 0.03832(17) 8.622(06) 0.0231(02) 0.1331(10)
J500 0.08153(19) 0.08153(19) 0.02989(10) 0.02989(10) 13.990(69) 0.0942(08) 0.7439(51)
J501 0.06582(23) 0.08794(22) 0.02882(15) 0.03059(15) 13.992(67) 0.0661(09) 0.4850(41)
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2. Isovector contribution

TABLE VIII.  Values of the isovector contributions, with and without £, rescaling, in units of 107, for the local-local (LL) and for the
local-conserved (CL) discretizations of the correlation function, as described in the main text. The finite-size correction has been
applied.

Scale #(-set 1 Scale f,-set 1 Scale #-set 2 Scale f,-set2
ID (LL) (CL) (LL) (CL) (LL) (CL) (LL) (CL)

A653  173.94(36)  17625(37)  185.71(28)  189.09(32)  142.15(35) 151.27(37)  150.3821)  162.53(26)
HIO1  172.1039)  173.35(39)  185.49(47)  187.48(49)  150.16(39)  155.36(39)  161.03(40)  168.34(46)
HI102  178.54(52)  179.75(52)  186.34(56)  187.95(58)  157.27(53)  162.26(53)  163.73(51)  169.87(56)
H105%  184.82(50)  186.01(49)  188.15(189)  189.51(199)  164.28(53)  169.09(51)  167.07(159)  172.35(187)
NI01  186.31(43) 187.56(42)  188.94(60)  190.28(61)  165.61(44)  170.48(43)  167.80(54)  173.07(58)
C101 192.19(41)  193.40(41)  190.56(62)  191.69(64)  172.25(43)  176.94(42)  170.87(57)  175.33(62)
B450  168.12(38)  168.82(38)  182.47(35)  183.62(36)  152.53(38)  155.68(38)  165.14(33)  169.63(34)
N451 183.40(28)  184.05(28)  188.25(29)  189.04(29)  168.49(27)  171.4027)  172.8327)  176.17(28)
D450  189.36(26)  190.03(27)  189.80(46)  190.49(47)  174.95(26) 177.79(26)  175.35(43)  178.28(45)
D452 194.96(33)  195.61(33)  192.97(101)  193.58(104)  181.21(34)  183.97(34)  179.42(93)  182.00(101)
H200%  165.17091)  165.44(91)  179.46(90)  179.92(90)  155.70(89)  157.21(89)  169.07(86)  171.19(87)
N202  168.14(68)  168.45(69)  182.46(52)  182.97(53)  158.36(67)  159.92(68)  171.77(50)  173.98(52)
N203  173.7543)  174.11(43)  183.80(44)  184.25(44)  164.22(43)  165.77(43)  173.65(43)  175.60(44)
N200  180.17(43)  180.43(42)  185.21(50)  185.53(50)  171.02(44)  172.41(43)  175.77(49)  177.37(50)
D200 188.37(38)  188.69(37)  189.03(38)  189.36(38)  179.52(39)  180.91(38)  180.14(37)  181.56(38)
E250  194.75(26)  194.96(26)  191.77(45)  191.96(46)  186.36(27)  187.61(26)  183.54(44)  184.66(45)
N300  160.99(59)  161.08(39)  177.99(61)  178.15(60)  156.34(59)  156.89(59)  172.86(60)  173.65(60)
3303 179.51(54)  179.57(55)  184.77(56)  184.84(56)  175.24(55)  175.67(55)  180.39(56)  180.88(56)
E300  188.05(49)  188.13(49)  188.14(47)  188.21(47)  183.96(49)  184.38(50)  184.05(47)  184.47(47)
3500 162.00(72)  162.04(72)  178.03(65)  178.07(65)  159.69(72)  159.97(72)  175.52(65)  175.86(65)
3501 170.16(98)  170.15(98)  182.04(83)  182.07(83)  167.92(98)  168.13(98)  179.68(83)  179.98(83)
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3. Isoscalar contribution

TABLE IX. Values of the isoscalar contributions, with and without f, rescaling, in units of 10~'°, for the local-local (LL) and for the
local-conserved (CL) discretizations of the correlation function, as described in the main text. The finite-size correction has been
applied.

Scale 7y-Set 1 Scale f,-Set 1 Scale #y-Set 2 Scale f,-Set 2

ID (LL) (CL) (LL) (CL) (LL) (CL) (LL) (CL)

A653 57.98(12) 58.75(12) 61.90(9) 63.03(11) 47.38(12) 50.42(12) 50.13(7) 54.18(9)
H101 57.36(13) 57.78(13) 61.83(16) 62.49(16) 50.05(13) 51.78(13) 53.68(13) 56.11(15)
H102 55.30(16) 55.71(16) 58.28(19) 58.82(20) 47.94(16) 49.70(16) 50.38(17) 52.53(18)
H105* 53.16(16) 53.57(15) 54.65(81) 55.12(84) 45.83(15) 47.61(15) 47.05(66) 49.01(76)
N101 53.55(11) 53.97(11) 54.70(25) 55.16(26) 46.18(11) 47.99(11) 47.12(21) 49.06(24)
C101 52.67(11) 53.08(11) 51.89(26) 52.27(27) 45.39(11) 47.18(11) 44.74(22) 46.46(24)
B450 56.04(13) 56.27(13) 60.82(12) 61.21(12) 50.84(13) 51.89(13) 55.05(11) 56.54(11)
N451 52.80(06) 53.01(06) 54.92(10) 55.18(10) 47.51(06) 48.60(06) 49.37(09) 50.61(09)
D450 51.47(06) 51.70(07) 51.70(19) 51.93(19) 46.23(06) 47.33(06) 46.43(17) 47.55(18)
D452 50.90(10) 51.12(10) 49.82(46) 50.06(46) 45.74(10) 46.84(10) 44.79(41) 45.82(43)
H200* 55.06(30) 55.15(30) 59.82(30) 59.97(30) 51.90(30) 52.40(30) 56.36(29) 57.06(29)
N202 56.05(23) 56.15(23) 60.82(17) 60.99(18) 52.79(22) 53.31(23) 57.26(17) 57.99(17)
N203 53.41(13) 53.50(13) 57.33(15) 57.46(15) 50.12(13) 50.65(13) 53.77(14) 54.45(15)
N200 51.61(11) 51.70(10) 53.81(15) 53.92(15) 48.35(11) 48.88(10) 50.39(14) 51.00(15)
D200 50.36(10) 50.46(10) 50.70(13) 50.80(13) 47.11(10) 47.67(09) 47.42(12) 47.99(12)
E250 49.65(09) 49.76(09) 47.90(24) 48.00(24) 46.45(09) 47.01(09) 44.82(22) 45.34(22)
N300 53.66(20) 53.69(20) 59.33(20) 59.38(20) 52.11(20) 52.30(20) 57.62(20) 57.88(20)
J303 49.80(12) 49.82(12) 52.21(16) 52.23(16) 48.25(12) 48.43(12) 50.59(16) 50.80(16)
E300 48.77(08) 48.80(08) 48.82(12) 48.84(12) 47.24(08) 47.44(08) 47.29(11) 47.48(11)
J500 54.00(24) 54.01(24) 59.34(22) 59.36(22) 53.23(24) 53.32(24) 58.51(22) 58.62(22)
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4. Charm-quark contribution

TABLE X. Charm hopping parameter k., renormalization factor of the local vector current Zi,"‘)

, value of a,‘fi“‘c for the two

discretizations of the correlator: local-local (LL) and local-conserved (LC). The first error is statistical and the second is the systematic
error arising from the tuning of the charm-quark hopping parameter as explained in the main text.

ID K. Z i/c) (@) (@) Loy

A653 0.119743(17) 1.32284(15)(71) 5.338(03)(23) 2.729(02)(12)
A654 0.120079(25) 1.30495(11)(105) 5.523(06)(46) 2.870(04)(25)
H101 0.122897(18) 1.20324(11)(70) 4.546(09)(27) 2.692(06)(16)
H102 0.123041(26) 1.19743(08)(99) 4.641(09)(39) 2.765(06)(24)
H105 0.123244(19) 1.18964(08)(74) 4.795(13)(30) 2.878(09)(19)
N101 0.123244(19) 1.18964(08)(74) 4794(17)(30) 2.879(11)(19)
C101 0.123361(12) 1.18500(05)(43) 4.879(13)(24) 2.943(09)(15)
B450 0.125095(22) 1.12972(06)(82) 3.993(07)(26) 2.620(05)(17)
S400 0.125252(20) 1.11159(13)(88) 4.047(08)(31) 2.702(06)(21)
N451 0.125439(15) 1.11412(04)(58) 4.255(02)(23) 2.837(01)(15)
D450 0.125585(07) 1.10790(04)(26) 4.372(01)(12) 2.934(01)(08)
D452 0.125640(06) 1.10790(02)(23) 4.445(01)(09) 2.985(01)(06)
H200 0.127579(16) 1.04843(03)(85) 3.503(10)(27) 2.590(08)(20)
N202 0.127579(16) 1.04843(03)(85) 3.517(10)(27) 2.600(08)(20)
N203 0.127714(11) 1.04534(03)(39) 3.623(08)(19) 2.686(06)(14)
N200 0.127858(07) 1.04012(03)(25) 3.758(11)(13) 2.802(09)(10)
D200 0.127986(06) 1.03587(04)(21) 3.883(17)(11) 2.908(13)(09)
E250 0.128054(03) 1.03310(01)(11) 3.961(01)(11) 2.977(01)(08)
N300 0.130099(18) 0.97722(03)(60) 3.030(08)(36) 2.513(07)(30)
N302 0.130247(09) 0.97241(03)(30) 3.218(07)(19) 2.681(06)(16)
J303 0.130362(09) 0.96037(10)(38) 3.306(12)(18) 2.790(11)(16)
E300 0.130432(06) 0.96639(02)(26) 3.447(02)(25) 2.891(02)(21)
1500 0.131663(16) 0.93412(02)(51) 2.816(11)(40) 2.503(11)(35)
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