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Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution

to the muon g − 2 serve to test the consistency of lattice calculations and may help in tracing the origins of a

potential tension between lattice and data-driven evaluations. In this paper, we present results for the

intermediate time window observable computed using OðaÞ improved Wilson fermions at six values of the

lattice spacings below 0.1 fm and pion masses down to the physical value. Using two different sets of

improvement coefficients in the definitions of the local and conserved vector currents, we perform a

detailed scaling study which results in a fully controlled extrapolation to the continuum limit without any

additional treatment of the data, except for the inclusion of finite-volume corrections. To determine the

latter, we use a combination of the method of Hansen and Patella and the Meyer-Lellouch-Lüscher

procedure employing the Gounaris-Sakurai parametrization for the pion form factor. We correct our results

for isospin-breaking effects via the perturbative expansion of QCDþ QED around the isosymmetric theory.

Our result at the physical point is awinμ ¼ ð237.30� 0.79stat � 1.22systÞ × 10−10, where the systematic error

includes an estimate of the uncertainty due to the quenched charm quark in our calculation. Our result

displays a tension of 3.9σ with a recent evaluation of awinμ based on the data-driven method.

DOI: 10.1103/PhysRevD.106.114502

I. INTRODUCTION

The anomalousmagneticmoment of themuon,aμ, plays a
central role in precision tests of the Standard Model (SM).

The recently published result of the direct measurement

of aμ by the Muon g − 2 Collaboration [1] has confirmed

the earlier determination by the E821 experiment at

Brookhaven National Laboratory [2]. When confronted

with the theoretical estimate published in the 2020 White

paper [3], the combination of the two direct measurements

increases the tension with the SM to 4.2σ. The SM

prediction of Ref. [3] is based on the estimate of the

leading-order hadronic vacuum polarization (HVP) contri-

bution, a
hvp
μ , evaluated from a dispersion integral involving

hadronic cross section data (“data-driven approach”) [4–9],

which yields a
hvp
μ ¼ ð693.1� 4.0Þ × 10−10 [3]. The quoted

error of 0.6% is subject to experimental uncertainties

associated with measured cross section data.

Lattice QCD calculations for a
hvp
μ [10–24] as well as

for the hadronic light-by-light scattering contribution ahlblμ

[25–39] have become increasingly precise in recent

years (see [40–42] for recent reviews). Although these
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calculations do not rely on the use of experimental data,

they face numerous technical challenges that must be

brought under control if one aims for a total error that

can rival or even surpass that of the data-driven approach.

In spite of the technical difficulties, a first calculation of

a
hvp
μ with a precision of 0.8% has been published recently

by the BMW Collaboration [20]. Their result of a
hvp
μ ¼

ð707.5� 5.5Þ × 10−10 is in slight tension (2.1σ) with the

White paper estimate and reduces the tension with the

combined measurement from E989 and E821 to just 1.5σ.

This has triggered several investigations that study the

question whether the SM can accommodate a higher value

for a
hvp
μ without being in conflict with low-energy hadronic

cross section data [43] or other constraints, such as global

electroweak fits [44–47]. At the same time, the consistency

among lattice QCD calculations is being scrutinized with a

focus on whether systematic effects such as discretization

errors or finite-volume effects are sufficiently well con-

trolled. Moreover, when comparing lattice results for a
hvp
μ

from different collaborations, one has to make sure that

they refer to the same hadronic renormalization scheme that

expresses the bare quark masses and the coupling in terms

of measured hadronic observables.

Given the importance of the subject and in view of the

enormous effort required to produce a result for a
hvp
μ at the

desired level of precision, it has been proposed to perform

consistency checks among different lattice calculations in

terms of suitable benchmark quantities that suppress

(respectively, enhance) individual systematic effects.

These quantities are commonly referred to as “window

observables,” whose definition is given in Sec. II.

In this paper we report our results for the so-called

“intermediate” window observables, for which the short-

distance as well as the long-distance contributions in the

integral representation of a
hvp
μ are reduced. This allows

for a straightforward and highly precise comparison with

the results from other lattice calculations and the data-

driven approach. This constitutes a first step toward a

deeper analysis of a possible deviation between lattice

and phenomenology. Indeed, our findings present further

evidence for a strong tension between lattice calculations

and the data-driven method. At the physical point we

obtain awinμ ¼ ð237.30� 1.46Þ × 10−10 [see Eq. (45) for a

detailed error budget], which is 3.9σ above the recent

phenomenological evaluation of ð229.4� 1.4Þ × 10−10

quoted in Ref. [48].

This paper is organized as follows: We motivate and

define the window observables in Sec. II, before describing

the details of our lattice calculation in Sec. III. In Sec. IV we

discuss extensively the extrapolation to the physical point,

focusing specifically on the scaling behavior, and present

our results for different isospin components and the quark-

disconnected contribution. Sections V and VI describe our

determinations of the charm-quark contribution and of

isospin-breaking corrections, respectively. Our final results

are presented and compared to other determinations in

Sec. VII. In-depth descriptions of technical details and

procedures, as well as data tables, are relegated to several

Appendices. Details on how we correct for mistunings of the

chiral trajectory are described in Appendices A and B, and

the determination of finite-volume corrections is discussed in

Appendix C, while the estimation of the systematic uncer-

tainty related to the quenching of the charm quark is

presented in Appendix D. Ancillary calculations of pseu-

doscalar masses and decay constants that enter the analysis

are described in Appendix E. Finally, Appendix F contains

extensive tables of our raw data.

II. WINDOW OBSERVABLES

The most widely used approach to determine the leading

HVP contribution a
hvp
μ in lattice QCD is the “time-

momentum representation” [49], i.e.,

a
hvp
μ ¼

�

α

π

�

2
Z

∞

0

dtK̃ðtÞGðtÞ; ð1Þ

where GðtÞ is the spatially summed correlation function of

the electromagnetic current

GðtÞ ¼ −
a3

3

X

3

k¼1

X

x⃗

hjemk ðt; x⃗Þjemk ð0Þi;

jemμ ¼ 2

3
ūγμu −

1

3
d̄γμd −

1

3
s̄γμsþ

2

3
c̄γμcþ � � � ; ð2Þ

K̃ðtÞ is a known kernel function (see Appendix B of

Ref. [10]), and the integration is performed over the

Euclidean time variable t. By considering the contribu-

tions from the light (u, d), strange, and charm quarks to

GðtÞ one can perform a decomposition of a
hvp
μ in terms of

individual quark flavors. It is also convenient to consider

the decomposition of the electromagnetic current into an

isovector (I ¼ 1) and an isoscalar (I ¼ 0) component

according to

jemμ ¼ jI¼1
μ þjI¼0

μ þ��� ;

jI¼1
μ ¼1

2
ðūγμu− d̄γμdÞ; jI¼0

μ ¼1

6
ðūγμuþ d̄γμd−2s̄γμsÞ;

ð3Þ

where the ellipsis in the first line denotes the missing charm

and bottom contributions.

One of the challenges in the evaluation of a
hvp
μ is

associated with the long-distance regime of the vector

correlator GðtÞ. Owing to the properties of the kernel K̃ðtÞ,
the integrand K̃ðtÞGðtÞ has a slowly decaying tail that

makes a sizable contribution to a
hvp
μ in the region t≳ 2 fm.

However, the statistical error in the calculation of GðtÞ
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increases exponentially with t, which makes an accurate

determination a difficult task. Furthermore, it is the

long-distance regime of the vector correlator that is mostly

affected by finite-size effects.

The opposite end of the integration interval, i.e., the

interval t≲ 0.4 fm, is particularly sensitive to discretization

effects which must be removed through a careful extrapo-

lation to the continuum limit, possibly involving an Ansatz

that includes subleading lattice artifacts, especially if one is

striving for subpercent precision.

At this point it becomes clear that lattice results for a
hvp
μ

are least affected by systematic effects in an intermediate

subinterval of the integration in Eq. (1), as already

recognized in [49]. This led the authors of Ref. [13] to

introduce three “window observables,” each defined in

terms of complementary subdomains with the help of

smoothed step functions. To be specific, the short-distance

(SD), intermediate distance (ID) and long-distance (LD)

window observables are given, respectively, by

ðahvpμ ÞSD ≡

�

α

π

�

2
Z

∞

0

dtK̃ðtÞGðtÞ½1 − Θðt; t0;ΔÞ�; ð4Þ

ðahvpμ ÞID ≡

�

α

π

�

2
Z

∞

0

dtK̃ðtÞGðtÞ½Θðt; t0;ΔÞ−Θðt; t1;ΔÞ�;

ð5Þ

ðahvpμ ÞLD ≡

�

α

π

�

2
Z

∞

0

dtK̃ðtÞGðtÞΘðt; t1;ΔÞ; ð6Þ

where Δ denotes the width of the smoothed step function Θ

defined by

Θðt; t0;ΔÞ≡ 1

2
ð1þ tanh½ðt − t0Þ=Δ�Þ: ð7Þ

The widely used choice of intervals and smoothing width

that we will follow is

t0 ¼ 0.4 fm; t1 ¼ 1.0 fm and Δ ¼ 0.15 fm: ð8Þ

The original motivation for introducing the window

observables in Ref. [13] was based on the observation that

the relative strengths and weaknesses of the lattice QCD

and the R-ratio approach complement each other when the

evaluations using either method are restricted to non-

overlapping windows, thus achieving a higher overall

precision from their combination. Since then it has been

realized that the window observables serve as ideal bench-

mark quantities for assessing the consistency of lattice

calculations, since the choice of subinterval can be regarded

as a filter for different systematic effects. Furthermore,

the results can be confronted with the corresponding

estimate using the data-driven approach. This allows for

high-precision consistency checks among different lattice

calculations and between lattice QCD and phenomenology.

In this paper, we focus on the intermediate window and

use the simplified notation

awinμ ≡ ðahvpμ ÞID: ð9Þ

We remark that the observable awinμ , which accounts for

about one-third of the total a
hvp
μ , can be obtained from

experimental data for the ratio

RðsÞ≡ σðeþe− → hadronsÞ
σðeþe− → μþμ−Þ ð10Þ

via the dispersive representation of the correlator (2) [49].

How different intervals of center-of-mass energy contribute

to the different window observables in the data-driven

approach is investigated in Appendix B; similar observa-

tions have already been made in Refs. [48,50,51]. For the

intermediate window awinμ , the relative contribution of the

region
ffiffiffi

s
p

< 600 MeV is significantly suppressed as com-

pared to the quantity a
hvp
μ . Instead, the relative contribution

of the region
ffiffiffi

s
p

> 900 MeV, including the ϕ meson

contribution, is somewhat enhanced.
1
Interestingly, the

region of the ρ and ω mesons between 600 and

900 MeV makes about the same fractional contribution

to awinμ as to a
hvp
μ , namely 55%–60%. Thus if the spectral

function associated with the lattice correlator GðtÞ was for
some reason enhanced by a constant factor (1þ ϵ) in the

interval 600 <
ffiffiffi

s
p

=MeV < 900 relative to the experi-

mentally measured spectral function RðsÞ=ð12π2Þ, it

would approximately lead to an enhancement by a factor

ð1þ 0.6ϵÞ of both a
hvp
μ and awinμ . Finally, we note that the

relative contributions of the three
ffiffiffi

s
p

intervals are rather

similar for awinμ as for the running of the electromagnetic

coupling from Q2 ¼ 0 to Q2 ¼ 1 GeV2.

III. CALCULATION OF Awin
μ ON THE LATTICE

A. Gauge ensembles

Our calculation employs a set of 24 gauge ensembles

generated as part of the Coordinated Lattice Simulations

(CLS) initiative using Nf ¼ 2þ 1 dynamical flavors of

nonperturbatively OðaÞ improved Wilson quarks and the

tree-level Oða2Þ improved Lüscher-Weisz gauge action

[52]. The gauge ensembles used in this work were

generated for constant average bare quark mass such that

the improved bare coupling g̃0 [53] is kept constant along
the chiral trajectory. Six of the ensembles listed in Table I

realize the SUð3Þf-symmetric point mu ¼ md ¼ ms corre-

sponding to mπ ¼ mK ≈ 420 MeV. Pion masses lie in the

1
Contributions as massive as the J=ψ , however, make again a

smaller relative contribution to awinμ than to a
hvp
μ .
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range mπ ≈ 130–420 MeV. Seven of the ensembles used

have periodic (antiperiodic for fermions) boundary con-

ditions in time, while the others admit open boundary

conditions [54]. All ensembles included in the final

analysis satisfymπL≳ 4. Finite-size effects can be checked

explicitly for mπ ¼ 280 and 420 MeV, where in each case

two ensembles with different volumes but otherwise

identical parameters are available. The ensembles with

volumes deemed to be too small are marked by an asterisk

in Table I and are excluded from the final analysis.

The QCD expectation values are obtained from the CLS

ensembles by including appropriate reweighting factors,

including a potential sign of the latter [56]. A negative

reweighting factor, which originates from the handling of

the strange quark, is found on fewer than 0.5% of the gauge

field configurations employed in this work.

For the bulk of our pion masses, down to the physical

value, results were obtained at four values of the lattice

spacing in the range a ¼ 0.050–0.086 fm. At and close to

the SUð3Þf-symmetric point, four more ensembles have

been added that significantly extend the range of available

lattice spacings to a ¼ 0.039–0.099 fm, which allows us to

perform a scaling test with unprecedented precision.

B. Renormalization and OðaÞ improvement

To reduce discretization effects, on-shell OðaÞ improve-

ment has been fully implemented. CLS simulations are

performed using a nonperturbatively OðaÞ improved

Wilson action [57]; therefore, we focus here on the

improvement of the vector current in the ðu; d; sÞ quark

sector. To further constrain the continuum extrapolation

and explicitly check our ability to remove leading lattice

artifacts, two discretizations of the vector current are used,

the local (L) and the point-split (C) currents

J
ðLÞ;a
μ ðxÞ ¼ ψ̄ðxÞγμ

λa

2
ψðxÞ; ð11aÞ

J
ðCÞ;a
μ ðxÞ ¼ 1

2

�

ψðxþ aμ̂Þð1þ γμÞU†
μðxÞ

λa

2
ψðxÞ

− ψ̄ðxÞð1 − γμÞUμðxÞ
λa

2
ψðxþ aμ̂Þ

�

; ð11bÞ

where ψ denotes a vector in flavor space, λ are the Gell-

Mann matrices, and UμðxÞ is the gauge link in the direction
μ̂ associated with site x. With the local tensor current

TABLE I. Parameters of the simulations: the bare coupling β ¼ 6=g20, the lattice dimensions, the lattice spacing a in physical units

extracted from Ref. [55], the pion and kaon masses and the physical size of the lattice, the number of gauge field configurations used for

the connected light- and strange-quark contributions (penultimate column) and for the disconnected contribution (last column).

Ensembles with an asterisk are not included in the final analysis but used to control finite-size effects. The ensembles A653, A654,

B450, N451, D450, D452, and E250 have periodic boundary conditions in time; all others have open boundary conditions.

Id β ðL
a
Þ3 × T

a
a (fm) mπ (MeV) mK (MeV) mπL L (fm) # confs conn # confs disc

A653 3.34 243 × 96 0.0993 421(4) 421(4) 5.1 2.4 4000 � � �
A654 243 × 96 331(3) 451(5) 4.0 2.4 4000 � � �
H101 3.40 323 × 96 0.08636 416(4) 416(4) 5.8 2.8 2000 � � �
H102 323 × 96 352(4) 437(4) 4.9 2.8 1900 1900

H105* 323 × 96 277(3) 462(5) 3.9 2.8 2000 1000

N101 483 × 128 278(3) 461(5) 5.8 4.1 1500 1300

C101 483 × 96 219(2) 470(5) 4.6 4.1 2000 2000

B450 3.46 323 × 64 0.07634 415(4) 415(4) 5.1 2.4 1500 � � �
S400 323 × 128 349(4) 440(4) 4.3 2.4 2800 1700

N451 483 × 128 286(3) 461(5) 5.3 3.7 1000 1000

D450 643 × 128 215(2) 475(5) 5.3 4.9 500 500

D452 643 × 128 154(2) 482(5) 3.8 4.9 900 800

H200* 3.55 323 × 96 0.06426 416(5) 416(5) 4.3 2.1 2000 � � �
N202 483 × 128 412(5) 412(5) 6.4 3.1 900 � � �
N203 483 × 128 346(4) 442(5) 5.4 3.1 1500 1500

N200 483 × 128 284(3) 463(5) 4.4 3.1 1700 1700

D200 643 × 128 200(2) 480(5) 4.2 4.1 2000 1000

E250 963 × 192 128(1) 489(5) 4.0 6.2 600 1000

N300 3.70 483 × 128 0.04981 419(4) 419(4) 5.1 2.4 1700 � � �
N302 483 × 128 344(4) 450(5) 4.2 2.4 2200 1000

J303 643 × 192 257(3) 474(5) 4.1 3.2 1000 500

E300 963 × 192 174(2) 490(5) 4.2 4.8 600 500

J500 3.85 643 × 192 0.039 411(4) 411(4) 5.2 2.5 1200 � � �
J501 643 × 192 332(3) 443(4) 4.2 2.5 400 � � �
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defined as Σ
a
μνðxÞ ¼ − 1

2
ψðxÞ½γμ; γν� λ

a

2
ψðxÞ, the improved

vector currents are given by

J
ðαÞ;a;I
μ ðxÞ ¼ J

ðαÞ;a
μ ðxÞ þ ac

ðαÞ
V ðg0Þ∂̃νΣa

μνðxÞ; α ¼ L;C;

ð12Þ

where ∂̃ is the symmetric discrete derivative ∂̃νfðxÞ ¼
ð1=2aÞðfðxþ aÞ − fðx − aÞÞ. The coefficients c

ðαÞ
V have

been determined nonperturbatively in Ref. [58] by impos-

ing Ward identities in large volume ensembles and inde-

pendently in Ref. [59] using the Schrödinger functional

(SF) setup. The availability of two independent sets allows

us to perform detailed scaling tests, which is a crucial

ingredient for a fully controlled continuum extrapolation.

The conserved vector current does not need to be further

renormalized. For the local vector current, the renormal-

ization pattern, including OðaÞ improvement, has been

derived in Ref. [60]. Following the notations of Ref. [58],

the renormalized isovector and isoscalar parts of the

electromagnetic current read

J
ðLÞ;3;R
μ ðxÞ ¼ Z3J

ðLÞ;3;I
μ ðxÞ; ð13aÞ

J
ðLÞ;8;R
μ ðxÞ ¼ Z8J

ðLÞ;8;I
μ ðxÞ þ Z80J

ðLÞ;0;I
μ ðxÞ; ð13bÞ

where J0μ ¼ 1
2
ψ̄γμψ is the flavor-singlet current and

Z3 ¼ ZV½1þ 3b̄Vam
av
q þ bVamq;l�; ð14aÞ

Z8 ¼ ZV

�

1þ 3b̄Vam
av
q þ bV

3
aðmq;l þ 2mq;sÞ

�

; ð14bÞ

Z80 ¼ ZV

�

1

3
bV þ fV

�

2
ffiffiffi

3
p aðmq;l −mq;sÞ: ð14cÞ

Here, mq;l and mq;s are the subtracted bare quark masses

of the light and strange quarks, respectively, defined in

Appendix E and mav
q ¼ ð2mq;l þmq;sÞ=3 stands for the

average bare quark mass. The renormalization constant

in the chiral limit, ZV, and the improvement coefficients

bV and b̄V have been determined nonperturbatively in

Ref. [58]. Again, independent determinations using the

SF setup are available in Refs. [59,61]. The coefficient fV,

which starts at order g60 in perturbation theory [58], is

unknown but expected to be very small and is therefore

neglected in our analysis.

Thus, in addition to having two discretizations of the

vector current, we also have at our disposal two sets of

improvement coefficients that can be used to benchmark

our continuum extrapolation:

(i) set 1, using the improvement coefficients obtained in

large-volume simulations in Ref. [58], and

(ii) set 2, using ZV and cV from Ref. [59] and bV and b̄V
from Ref. [61], using the SF setup.

Note, in particular, that the improvement coefficients cV,

bV and b̄V have an intrinsic ambiguity of order OðaÞ. Thus,
for a physical observable, we expect different lattice

artifacts at order OðanÞ with n ≥ 2. This will be considered

in Sec. IV C.

C. Correlation functions

The vector two-point correlation function is computed

with the local vector current at the source and either the

local or the point-split vector current at the sink. The

corresponding renormalized correlators are

GðLLÞ;RðtÞ ¼ Z2
3G

ðLLÞ;33;IðtÞþ 1

3
Z2
8G

ðLLÞ;88;IðtÞ

þ 1

3
Z8Z80ðGðLLÞ;80;IðtÞþGðLLÞ;08;IðtÞÞ; ð15aÞ

GðCLÞ;RðtÞ ¼ Z3G
ðCLÞ;33;IðtÞ þ 1

3
Z8G

ðCLÞ;88;IðtÞ

þ 1

3
Z80G

ðCLÞ;80;IðtÞ; ð15bÞ

with the improved correlators

GðαLÞ;ab;IðtÞ ¼ −
a3

3

X

3

k¼1

X

x⃗

hJðαÞ;a;Ik ðt; x⃗ÞJðLÞ;b;Ik ð0Þi;

α ¼ L;C: ð16Þ

In the absence of QED and strong isospin breaking, there

are only two sets of Wick contractions, corresponding to

the quark-connected part and the quark-disconnected part

of the vector two-point functions. The method used to

compute the connected contribution has been presented

previously in Ref. [17]. In this work we have added several

new ensembles and have significantly increased our

statistics, especially for our most chiral ensembles. The

method used to compute the disconnected contribution

involving light and strange quarks is presented in detail in

Ref. [62]. Note that we neglect the charm-quark contribu-

tion to disconnected diagrams in the present calculation.

D. Treatment of statistical errors and autocorrelations

Statistical errors are estimated using the jackknife

procedure with blocking to reduce the size of autocorre-

lations. In practice, the same number of 100 jackknife

samples is used for all ensembles to simplify the error

propagation. In a fit, samples from different ensembles are

then easily matched.

Our analysis makes use of the pion and kaon masses,

their decay constants, and the Wilson flow observable t0,
as well as the Gounaris-Sakurai parameters entering the

estimate of finite-size effects. These observables are always
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estimated on identical sets of gauge configurations and

using the same blocking procedure, such that correlations

are easily propagated using the jackknife procedure.

The light and strange-quark contributions have been

computed on the same set of gauge configurations, except

for A654 where only the connected strange-quark contri-

bution has been calculated. The quark-disconnected con-

tribution is also obtained on the same set of configurations

for most ensembles (see Table I). When it is not, corre-

lations are not fully propagated; this is expected to have a

very small impact on the error, since the disconnected

contribution has a much larger relative statistical error.

The charm-quark contribution, which is at the one-

percent level, is obtained using a smaller subset of gauge

configurations. Since its dependence on the ratio of pion

mass to decay constant ðmπ=fπÞ is rather flat, the error of
this ratio is neglected in the chiral extrapolation of the

charm contribution.

In order to test the validity of our treatment of statistical

errors, we have performed an independent check of the

entire analysis using the Γ method [63] for the estimation

of autocorrelation times and statistical uncertainties. The

propagation of errors is based on a first-order Taylor series

expansion with derivatives obtained from automatic differ-

entiation [64]. Correlations of observables based on over-

lapping subsets of configurations are fully propagated and

the results confirm the assumptions made above.

E. Results for awinμ on individual ensembles

For the intermediate window observable, the contribu-

tion from the noisy tail of the correlation function is

exponentially suppressed and the lattice data are sta-

tistically very precise. Thus, on each ensemble, awinμ is

obtained using Eq. (5) after replacing the integral by a

discrete sum over time slices. Since the time extent of our

correlator is far longer than t1 ¼ 1.0 fm, we can safely

replace the upper bound of Eq. (5) by T=2, with T the time

extent of the lattice. The results for individual ensembles

are summarized in Tables VIII–X. On ensemble E250,

corresponding to a pion mass of 130 MeV, we reach a

relative statistical precision of about two permille for both

the isovector and isoscalar contributions. The integrands

used to obtain awinμ are displayed in Fig. 1.

Our simulations are performed in boxes of finite volume

L3 with mπL≳ 4, and corrections due to finite-size effects

(FSE) are added to each ensemble individually prior to

any continuum and chiral extrapolation. This is the only

correction applied to the raw lattice data. FSE are domi-

nated by the ππ channel and mostly affect the isovector

correlator at large Euclidean times. For the intermediate

window observable, they are highly suppressed compared

to the full hadronic vacuum polarization contribution.

Despite this suppression, FSE in the isovector channel

are not negligible and require a careful treatment. They are

of the same order of magnitude as the statistical precision

for our most chiral ensemble and enhanced at larger pion

masses. In the isoscalar channel, FSE are included only at

the SUð3Þf point where mπ ¼ mK . The methodology is

presented in Appendix C, and the corrections we have

applied to the lattice data are given in the last column of

Tables VI and V, respectively, for strategy 1 and 2. In our

analysis, we have conservatively assigned an uncertainty

of 25% to these finite-size corrections, in order to account

for any potential effect not covered by the theoretical

approaches described in Appendix C. In addition to the

ensembles H105 and H200 that are only used to cross-

check the FSE estimate, ensembles S400 and N302 are also

affected by large finite-volume corrections. We exclude

those ensembles in the isovector channel.

IV. EXTRAPOLATION TO THE PHYSICAL POINT

A. Definition of the physical point in isosymmetric QCD

Our gauge ensembles have been generated in the isospin

limit of QCD with ml ≡mu ¼ md, neglecting strong

isospin-breaking effects and QED corrections. Naively,

those effects are expected to be of order Oððmd −

muÞ=ΛQCDÞ ≈ 1% and OðαÞ ≈ 1% and are not entirely

negligible at our level of precision. In Ref. [65], although

the authors used a different scheme to define their iso-

symmetric setup, those corrections have been found to be of

the order of 0.4% for this window observable. A similar

conclusion was reached in Ref. [13] although only a subset

of the diagrams was considered. This correction will be

discussed in Sec. VI. Only in full QCDþ QED is the

precise value of the observable unambiguously defined:

The separation between its isosymmetric value and the

FIG. 1. Integrands used to compute the intermediate window

awinμ for the isovector, isoscalar and charm-quark contributions.

The isoscalar contribution does not include the charm-quark

contribution. The data have been obtained on ensemble E250,

which has close-to-physical quark masses, using two local

vector currents and set 1 of renormalization and improvement

coefficients.
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isospin-breaking correction is scheme dependent. In

Sec. IV D, we provide the necessary information to trans-

late our result into a different scheme.

Throughout our calculation, we define the “physical”

point in the ðmπ; mKÞ plane by imposing the conditions

[66–68]

mπ ¼ ðmπ0Þphys; ð17Þ

2m2
K −m2

π ¼ðm2
Kþ þm2

K0 −m2
πþÞphys: ð18Þ

Inserting the PDG values [69] on the right-hand side, our

physical isosymmetric theory is thus defined by the values

mπ ¼ 134.9768ð5Þ MeV; mK ¼ 495.011ð10Þ MeV:

ð19Þ

We note that since our gauge ensembles have been

generated at constant sum of the bare quark masses, the

linear combination ðm2
K þm2

π=2Þ is approximately con-

stant. Two different strategies are used to extrapolate the

lattice data to the physical point.

1. Strategy 1

We use the gradient flow observable t0 [70] as an

intermediate scale and the dimensionless parameters

Φ2 ¼ 8t0m
2
π; Φ4 ¼ 8t0

�

m2
K þ 1

2
m2

π

�

ð20Þ

as proxies for the light and the average quark mass as the

physical point is approached. In the expressions of Φ2 and

Φ4, t0 is the pion- and kaon-mass dependent flow observ-

able; we use the notation t
sym
0 to denote its value at the

SUð3Þf-symmetric point. We adopt the physical-point value
ffiffiffiffiffiffi

8t0
p ¼ 0.4081ð20Þð37Þ fm from Ref. [71], obtained by

equating the linear combination of pseudoscalar-meson

decay constants

fKπ ¼
2

3

�

fK þ 1

2
fπ

�

ð21Þ

to its physical value, set by the PDG values of the decay

constants given below. Reference [71] is an update of the

work presented in Ref. [55] and includes a larger set

of ensembles, including ensembles close to the physical

point. We note that in Refs. [55,71] the absolute scale

was determined assuming a slightly different definition of

the physical point: The authors used the meson masses

corrected for isospin-breaking effects as in Ref. [72],

mπ ¼ 134.8ð3Þ MeV and mK ¼ 494.2ð3Þ MeV. Using

the NLO χPT expressions, we have estimated the effect

on fKπ of these small shifts in the target pseudoscalar

meson masses to be at the subpermille level and therefore

negligible for our present purposes.

2. Strategy 2

Here we use fπ rescaling, which was already presented

in our previous work [17], and express all dimensionful

quantities in terms of the ratio f
phys
π =ðaflatπ Þ, where aflatπ can

be computed precisely on each ensemble. In this case, the

intermediate scale t0 is not needed and we use the following
dimensionless proxies for the quark masses:

ỹ ¼ m2
π

8πf2π
; yKπ ¼

m2
K þ 1

2
m2

π

8πf2Kπ
: ð22Þ

As Φ4, the proxy yKπ is approximately constant along our

chiral trajectory. Since all relevant observables have been

computed as part of this project, this method has the

advantage of being fully self-consistent, and all correlations

can be fully propagated. It will be our preferred strategy.

We use the following input to set the scale in our

isosymmetric theory [69,73]:

fπ ¼ 130.56ð14Þ MeV: ð23Þ

The quantity yKπ is only used to correct for a small

departure of the CLS ensembles from the physical value

of this quantity, which we obtain using fK ¼
157.2ð5Þ MeV [69,73]. The latter, phenomenological value

of fK implies a ratio fK=fπ that is consistent with the latest
lattice determinations [74–76]. The impact of the uncer-

tainty of fK on awinμ is small,
2
δawinμ ≃ 0.10 × 10−10, and

occurs mainly through the strange contribution. In the

isosymmetric theory, we take the phenomenological values

of the triplet ðmπ; mK; fπÞ as part of the definition of the

target theory and therefore only include the uncertainty

from fK in our results. By contrast, in the final result

including isospin-breaking effects, which we compare to a

data-driven determination of awinμ , we include the exper-

imental uncertainties of all quantities used as input.

The observables mπ , mK , fπ and fK, as well as t0=a
2

have been computed on all gauge ensembles and corrected

for finite-size effects [77]. Their values for all ensembles

are listed in Table VII.

B. Fitting procedure

We now present our strategy to extrapolate the data to the

physical point in our isosymmetric setup. The ensembles

used in this work have been generated such that the

physical point is approached keeping

XK ¼ fΦ4; yKπg ð24Þ

2
The sensitivity of awinμ to the value of fK can be derived from

Table II.
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approximately constant, where the two entries correspond,

respectively, to strategy 1 and 2. To account for the small

mistuning, only a linear correction in ΔXK ¼ X
phys
K − XK is

thus considered. To improve the fit quality, a dedicated

calculation of the dependence of awinμ on XK has been

performed, which is described in Appendix A. This

analysis does not yet include all ensembles in the final

result, and hence we decided to not apply this correction

ensemble by ensemble prior to the global extrapolation to

the physical point. Instead, we have used ΔXK to fix

suitable priors on the fit parameter γ0 in Eq. (26), which

parametrizes the locally linear dependence on XK. The

values of these priors are given in Appendix A.

To describe the light quark dependence beyond the linear

term in

Xπ ¼ fΦ2; ỹg ð25Þ

(respectively, for strategy 1 and 2), we allow for different fit

Ansätze encoded in the function fchðXπÞ. The precise

choice of fch is motivated on physical grounds and depends

on the quark flavor. The specific forms will be discussed

below. Since on-shell OðaÞ improvement has been fully

implemented, leading discretization artifacts are expected

to scale as a2=t0 up to logarithmic corrections [78,79]. In

the case of the vacuum polarization function, a further

logarithmic correction proportional to a2 log a was dis-

covered in Ref. [80]. Contrary to standard logarithmic

corrections, it does not vanish as the coupling g0 goes to
zero due to correlators being integrated over very short

distances. However, the intermediate window strongly

suppresses the short-distance contribution, so that we do

not expect this source of logarithmic enhancement to be

relevant here. However, in the absence of further infor-

mation on the relevant exponents of log a in full QCD

[79], we still consider a possible logarithmic correction

with unit exponent. Moreover, to check whether we are in

the scaling regime, we consider higher-order terms pro-

portional to a3. Finally, we also allow for a term ∝ X2
aXπ

that describes pion-mass dependent discretization effects

of order a2.
Thus, for each discretization of the vector correlator, the

continuum and chiral extrapolation is done independently

assuming the most general functional form

awin;fμ ðXa; Xπ; XKÞ ¼ awin;fμ ð0; Xexp
π ; X

exp
K Þ þ β2X

2
a þ β3X

3
a þ δX2

aXπ þ ϵX2
a logXa

þ γ0ðXK − X
phys
K Þ þ γ1ðXπ − X

exp
π Þ þ γ2ðfchðXπÞ − fchðXexp

π ÞÞ; ð26Þ

where “f” can be any flavor content and Xa ¼ a=
ffiffiffiffi

t0
p

parametrizes the lattice spacing. Despite the availability of

data from six lattice spacings and more than 20 ensembles,

trying to fit all parameters is not possible. Thus each

analysis is duplicated by switching on and off the param-

eters β3, δ and ϵ that control the continuum extrapolation.

In addition, for each functional form fch of the chiral

dependence, different analyses are performed by imposing

cuts in the pion mass (no cut, < 400 MeV, < 300 MeV)

and/or in the lattice spacing.

Since several different fit Ansätze can be equally well

motivated, we apply the model averaging method presented

in Refs. [81,82] where the Akaike information criterion

(AIC) is used to weight different analyses and to estimate

the systematic error associated with the fit Ansatz (see

also [20,83]). Thus, to each analysis (n) described above

(defined by a specific choice of fch, applying cuts in the

pion mass or in the lattice spacing, and including or

excluding terms proportional to β3, δ, ϵ) we associate a

weight wn given by

wn ¼ N exp

�

−
1

2
ðχ2 þ 2k − 2nÞ

�

; ð27Þ

where χ2 is the minimum value of the chi-squared of the

correlated fit, k is the number of fit parameters and n is the

number of data points included in the fit.
3
The normali-

zation factor N is such that the sum over all the analyses’

weights are equal to one. Each analysis is again duplicated

by either using the local-local or the local-conserved

correlators. For those analyses, we use a flat weight.

Finally, when cuts are performed, some fits may have very

few degrees of freedom, and hence we exclude all analyses

that contain fewer than three degrees of freedom. The

central value of an observable O is then obtained by a

weighted average over all analyses

Ō ¼
X

n

wnOn; ð28Þ

and our estimate of the systematic error associated with the

extrapolation to the physical point is given by

ðδOÞ2syst ¼
X

n

wnðOn − ŌÞ2: ð29Þ

3
Different definitions of the weight factor have been pro-

posed in the literature. In Ref. [20] the authors used wn ¼
N exp ½− 1

2
ðχ2 þ 2k − nÞ� which, applied to our data for a given

number of fit parameters, tends to favor fits that discard many
data points. This issue will be discussed further below.
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The statistical error is obtained from the jackknife pro-

cedure using the estimator defined by Eq. (28).

C. The continuum extrapolation

at the SUð3Þf-symmetric point

To reach subpercent precision, a good control over the

continuum limit is mandatory [79,80]. As discussed below,

it is one of the largest contributions to our total error

budget. Thus, before presenting our final result at the

physical point, we first demonstrate our ability to perform

the continuum extrapolation. We have implemented three

different checks: First, two discretizations of the vector

correlator are used and the extrapolations to the physical

point are done independently. Both discretizations are

expected to agree within errors in the continuum limit.

Physical observables computed using Wilson-clover quarks

approach the continuum limit with a rate ∝ a2 once the

action and all currents are nonperturbatively OðaÞ
improved [53]. To check our ability to fully remove

OðaÞ lattice artifacts in the action and the currents, two

independent sets of improvement coefficients are used:

Both of them should lead to an a2 scaling behavior but

might differ by higher-order corrections. Finally, we have

included six lattice spacings at the SUð3Þf-symmetric point,

all of them below 0.1 fm and down to 0.039 fm, to

scrutinize the continuum extrapolation. In this section,

we discuss those three issues, with a specific focus on

the ensembles with SUð3Þf symmetry.

Ensembles with six different lattice spacings in the range

½0.039∶0.099� fm are available for mπ ¼ mK ≈ 420 MeV.

Since the pion masses do not match exactly, we first des-

cribe our procedure to interpolate our SUð3Þf-symmetric

ensembles to a single value of Xπ ¼ X⋆
π , to be able to focus

solely on the continuum extrapolation. This reference point

X⋆
π is chosen to minimize the quadratic sum of the

shifts δXπ ¼ Xπ − X⋆
π .

We start by applying the finite-size effect correction

discussed in the previous section to all ensembles. Then, a

global fit over all the ensembles and simultaneously over

both discretizations of the correlation function is performed

using the functional form of Eq. (26) without any cut in the

pion mass. Thus ðγ0; γ1; γ2Þ are fit parameters common to

both discretizations, while the others are discretization

dependent. For the isovector contribution, we use the

choice fchðXπÞ ¼ 1=Xπ that leads to a reasonable

χ2=d:o:f: ¼ 1.1. The good χ2, and more importantly the

good description of the light-quark mass dependence,

ensures that the small interpolation to X⋆
π is safe and that

we do not bias the result. In practice, we have checked

explicitly that using different functional forms fch to

interpolate the data leads to changes that are small

compared to the statistical error. Thus, for both choices

of the improvement coefficients (set 1 and set 2), and for

both discretizations LL and CL, the data from an SUð3Þf-
symmetric ensemble are corrected in the pseudoscalar

masses to the reference SUð3Þf-symmetric point at the

same lattice spacing. The correction is obtained by taking

the difference of Eq. (26) evaluated with the reference-point

arguments ðXa; X
⋆
π ; X

⋆
KÞ and the ensemble arguments

ðXa; Xπ; XKÞ, resulting in

awin;f;αμ ðXa; X
⋆
π ; X

⋆
KÞ ¼ awin;f;αμ ðXa; Xπ; XKÞ − δX2

aðXπ − X⋆
πÞ − γ0ðXK − X⋆

KÞ − γ1ðXπ − X⋆
πÞ − γ2ðfchðXπÞ − fchðX⋆

πÞÞ;
ð30Þ

where α ¼ ðLLÞ; ðCLÞ stands for the discretization. Note

that X⋆
K ¼ X⋆

π and XK ¼ Xπ in view of the SUð3Þf
symmetry. Throughout this procedure, correlations are

preserved via the jackknife analysis.

In a second step, we extrapolate both discretizations of

the correlation function to a common continuum limit,

using data at all six lattice spacings and assuming a

polynomial in the lattice spacing:

awin;f;αμ ðXa; X
⋆
πÞ ¼ awin;fμ ð0; X⋆

πÞð1þ β
ðαÞ
2 X2

a þ β
ðαÞ
3 X3

aÞ:
ð31Þ

The two datasets obtained using the two different sets of

improvement coefficients are fitted independently. The

results are displayed in Fig. 2 for two cases: either applying

fπ rescaling (left panel) or using t0 to set the scale (right

panel). For set 1 of improvement coefficients, we observe a

remarkably linear behavior over the whole range of lattice

spacings, whether fπ rescaling is applied or not. The

second set of improvement coefficients (set 2) leads to

some visible curvature, but the continuum limit is perfectly

compatible provided that lattice artifacts of order a3 are

included in the fit.

We also tested the possibility of logarithmic corrections

assuming the Ansatz

awin;f;αμ ðXa;X
⋆
πÞ¼awin;fμ ð0;X⋆

πÞð1þβ
ðαÞ
2 X2

aþϵðαÞX2
a logXaÞ;

ð32Þ

which is shown as the red symbol and red dashed curve in

Fig. 2. The result is again compatible with the naive a2

scaling, albeit with larger error. We conclude that loga-

rithmic corrections are too small to be resolved in the data.

We also remark that it is difficult to judge the quality of the

continuum extrapolation based solely on the relative size of
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discretization effects between our coarsest and finest lattice

spacing, as this measure strongly depends on the definition

of the improvement coefficients.

We tested the modification of the continuum extrapola-

tion via X2
a → ðαsð1=XaÞÞΓ̂X2

a as proposed in Refs. [79,84]

for awin;I1μ and a
win;I0;=c
μ in our preferred setup, using fπ

rescaling and set 1 of improvement coefficients. The strong

coupling constant αs has been obtained from the three-

flavor Λ parameter of Ref. [85]. Several choices of Γ̂ in the

range from 0.76 to 3 were tested. The curvature that is

introduced by this modification, especially for larger values

of Γ̂, would lead to larger values of awinμ in the continuum

limit. However, such curvature is not supported by the data,

as indicated by a deterioration of the fit quality when Γ̂ is

increased. Therefore, only small weights would be assigned

to such fits in our model averaging procedure, where the

modification has not been included.

D. Results for the isospin and flavor decompositions

Having studied the continuum limit at the SUð3Þf-
symmetric point, we are ready to present the result of

the extrapolation to the physical point. The charm-quark

contribution is not included here and will be considered

separately in Sec. V.

For the isovector or light quark contribution we

use the same set of functional forms as in Ref. [17],

fchðXπÞ ¼ flogXπ;X
2
π; 1=Xπ;Xπ logXπg. The data show

some small curvature close to the physical pion mass. Thus,

the variation fch ¼ 0 is excluded as it would significantly

undershoot our ensemble at the physical pion mass (E250).

We use set 1 of improvement coefficients as our preferred

choice and will use set 2 only as a cross-check. A typical

extrapolation using fchðỹÞ ¼ 1=ỹ without any cut in the

data is shown in the left panel of Fig. 3. We find that

the specific functional form of fch has much less impact on

FIG. 3. Left: one typical extrapolation of the isovector contribution using fchðỹÞ ¼ 1=ỹ. The data correspond to the local-conserved

discretization of the correlator using set 1 of improvement coefficients. Error bands are the results from the fit for each of the six lattice

spacings. The black line is the chiral extrapolation in the continuum limit. The black point is the result at the physical point. Right: the

same for the isoscalar contribution but using fchðỹÞ ¼ 0.

FIG. 2. Continuum extrapolation for the isovector quark contribution at the SUð3Þf -symmetric point. Left: using fπ rescaling. Right:
with t0 to set the scale. The blue and green points correspond to the two different sets of improvement coefficients (see Sec. III). For

clarity, the extrapolated results have been shifted to the left.
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the extrapolation as compared to the inclusion of higher-

order lattice artifacts. For the isoscalar and strange quark

contributions, we restrict ourselves to functions that are not

singular in the chiral limit: fchðXπÞ ¼ f0;X2
π;Xπ logXπg.

Again, the extrapolation using fchðỹÞ ¼ ỹ log ỹ with δ ≠ 0

and without any cut in the data is shown in the right panel

of Fig. 3.

Using the fit procedure described above, the AIC

estimator defined in Eq. (28) leads to the following results

for the isovector (I ¼ 1) and the isoscalar contribution,

charm excluded:

awin;I1μ ¼ ð186.30� 0.75stat � 1.08systÞ × 10−10; ð33Þ

a
win;I0;=c
μ ¼ ð47.41� 0.23stat � 0.29systÞ × 10−10; ð34Þ

where the first error is statistical and the second is the

systematic error from the fit form used to extrapolate our

data to the physical point. In Table II, we also provide the

derivatives

X
∂awin;fμ

∂X
; X ∈ fmπ; mK; fπ; fKg; f ∈ fI1; I0g;

ð35Þ

to translate our result to a different isosymmetric scheme.

We also note that both discretizations of the vector

correlator yield perfectly compatible results. For the iso-

vector contribution, and in units of 10−10, we obtain

186.14ð0.87Þstatð1.29Þsyst for the local-local discretization

and 186.47ð0.79Þstatð0.79Þsyst for the local-conserved discre-
tization, with a correlated difference of −0.33ð0.72Þ. For the
isoscalar contribution, we find 47.39ð0.24Þstatð0.36Þsyst for
the local-local discretization and 47.43ð0.20Þstatð0.19Þsyst for
the local-conserved discretization, with a correlated differ-

ence of −0.04ð0.10Þ.
As an alternative to the fit weights given by Eq. (27), we

have tried applying the weight factors used in Ref. [20]; see

the footnote below Eq. (27). While a major change occurs

in the subset of fits that dominate the weighted average, the

results do not change significantly. In particular, the central

value of the isovector contribution changes by no more than

half a standard deviation.

Finally, we have also performed an extrapolation to the

physical point using the second set of improvement

coefficients. Since our study at the SUð3Þf-symmetric point

shows curvature in the data, we exclude those continuum

extrapolations that are only quadratic in the lattice spacing.

The other variations are kept identical to those used for

the first set. The results are slightly larger but compatible

within one standard deviation. A comparison between the

two strategies to set the scale and the two sets of improve-

ment coefficients is shown in Fig. 4 for both the isovector

and isoscalar contributions.

In order to facilitate comparisons with other lattice

collaborations, we also present results for the light, strange

and disconnected contributions separately. For the light and

strange-quark connected contributions, we obtain

awin;udμ ¼ ð207.00� 0.83stat � 1.20systÞ × 10−10; ð36Þ

awin;sμ ¼ ð27.68� 0.18stat � 0.22systÞ × 10−10: ð37Þ

TABLE II. Derivatives of the window quantity awinμ (in units of

10−10), for both the isovector and isoscalar contributions, as

defined by Eq. (35).

X mπ mK fπ fK

I1 −7ð5Þ −11ð7Þ −66ð84Þ 7(5)

I0 2(1) −34ð2Þ −29ð9Þ 25(2)

FIG. 4. Comparison of the isovector and isoscalar contributions (without the charm) using different variations (either using fπ or t0 to
set the scale, and with both sets of improvement coefficients). The blue point is our final estimate obtained from the rescaling method

with set 1 of improvement coefficients.
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For the disconnected contribution, the correlation function

is very precise in the time range relevant for the inter-

mediate window, and a simple sum over lattice points is

used to evaluate Eq. (5). The data are corrected for finite-

size effects using the method described in Appendix C.

Since our ensembles follow a chiral trajectory at fixed

bare average quark mass, we can consider awin;discμ as being,

to a good approximation, a function of the SUð3Þf-breaking
variable Δ2 ¼ f8t0ðm2

K − m2
πÞ; ðm2

K − m2
πÞ=ð8πf2KπÞg

(respectively, for strategy 1 and 2), with the additional

constraint that the disconnected contribution vanishes

quadratically in Δ2 for Δ2 → 0. We apply the following

Ansatz:

awin;discμ ðXa;Xπ;XKÞ¼Δ
2
2ðαþγ0ðXK−X

phys
K Þþβ2X

2
aÞ

þγ1

�

1

X
phys
K −Δ2

−
Δ2

ðXphys
K Þ2

−
1

X
phys
K

�

:

ð38Þ

The ensembles close to the SUð3Þf symmetric point

(mπ ≈ 350 MeV) are affected by significant FSE correc-

tions and are not included in the fit. We obtain for the

disconnected contribution

awin;discμ ¼ ð−0.81� 0.04stat � 0.08systÞ × 10−10; ð39Þ

and the extrapolation is shown in Fig. 5. The extrapolation

using t0 to set the scale shows less curvature close to the

physical point. We use half the difference between the two

extrapolations as our estimate for the systematic error. It is

worth noting that the value for the intermediate window

represents roughly 6% of the total contribution to a
hvp;disc
μ .

As a cross-check, we note that using Eqs. (36), (37), and

(39) we would obtain a
win;I0;=c
μ ¼ ð47.57� 0.20stat�

0.26systÞ × 10−10, in good agreement with Eq. (34).

V. THE CHARM-QUARK CONTRIBUTION

In our calculation, charm quarks are introduced in the

valence sector only. A model estimate of the resulting

quenching effect is provided in Appendix D. The method

used to tune the mass of the charm quark has previously

been described in Ref. [17] and has been applied to

additional ensembles in this work. We only sketch the

general strategy here, referring the reader to Ref. [17] for

further details. For each gauge ensemble, the mass of

the ground-state cs̄ pseudoscalar meson is computed at

four values of the charm-quark hopping parameter.

Then the value of κc is obtained by linearly inter-

polating the results in 1=κc to the physical Ds meson

mass mDs
¼ 1968.35ð0.07Þ MeV [69]. We have checked

that using either a quadratic fit or a linear fit in κc
leads to identical results at our level of precision. The

results for all ensembles are listed in the second column of

Table X.

The renormalization factor Ẑ
ðcÞ
V of the local vector

current has been computed nonperturbatively on each

individual ensemble by imposing the vector Ward identity

using the same setup as in Ref. [58], but with a charm

spectator quark. To propagate the error from the tuning of

κc, both Ẑ
ðcÞ
V and awin;cμ are computed at three values of κ

close to κc. In the computation of correlation functions, the

same stochastic noises are used to preserve the full

statistical correlations. For both quantities, we observe a

very linear behavior and a short interpolation to κc is

performed. The systematic error introduced by the tuning

of κc is propagated by computing the discrete derivatives of

both observables with respect to κc (second error quoted in

Table X). This systematic error is considered as uncorre-

lated between different ensembles.

From ensembles generated with the same bare param-

eters but with different spatial extents (H105/N101 or

H200/N202), it is clear that FSE are negligible in the

charm-quark contribution. As in our previous work [17],

the local-local discretization exhibits a long continuum

extrapolation with discretization effects as large as 70%

between our coarsest lattice spacing and the continuum

limit, compared to only 12% for the local-conserved

discretization. Thus, we discard the local-local discretiza-

tion from our extrapolation to the physical point, which

assumes the functional form

FIG. 5. Extrapolation to the physical point for the quark-

disconnected contribution using Eq. (38). The vertical dashed

line represents the physical point in our isosymmetric QCD setup.

The black point is the result of the extrapolation, and the gray

band represents the extrapolation to the continuum limit with

XK ¼ X⋆
K . Points with dashed error bars are not included

in the fit.
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awin;cμ ðXa; Xπ; XKÞ ¼ awin;cμ ð0; Xexp
π ; X

exp
K Þ þ β2X

2
a þ β3X

3
a þ δX2

aXπ þ β4X
2
a logðXaÞ þ γ0ðXK − X

phys
K Þ þ γ1ðXπ − X

exp
π Þ:
ð40Þ

Lattice artifacts are described by a polynomial in Xa ¼
a=

ffiffiffiffiffiffiffiffi

t
sym
0

p

and a possible logarithmic term is included; recall

that t
sym
0 denotes the value of the flow observable at the

SUð3Þf-symmetric point. Only the set of proxies Xπ ¼ ϕ2

and XK ¼ ϕ4 is used. The light-quark dependence shows a

very flat behavior, and a good χ2=d:o:f: ¼ 0.9 is obtained

without any cut in the pion mass. The corresponding

extrapolation is shown on the right panel of Fig. 6.

Before quoting our final result, we provide strong

evidence that our continuum extrapolation is under control

by looking specifically at the SUð3Þf-symmetric point

where six lattice spacings are available. As for the isovector

contribution, we use Eq. (40) to correct for the small pion-

mass mistuning at the SUð3Þf-symmetric point. The data

are interpolated to a single value of X�
π using the same

strategy as in Eq. (30). Those corrected points are finally

extrapolated to the continuum limit using the Ansatz (31).

The result is shown in the left panel of Fig. 6 for the two

sets of improvement coefficients of the vector current.

Again, excellent agreement is observed between the two

datasets. Even for the charm-quark contribution, we

observe very little curvature when using set 1 of improve-

ment coefficients.

Having confirmed that our continuum extrapolation is

under control, we quote our final result for the charm

contribution obtained using the Ansatz (40). Using

Eq. (28), the AIC analysis described above leads to

awin;cμ ¼ ð2.89� 0.03stat � 0.03syst � 0.13scaleÞ × 10−10;

ð41Þ

where variations include cuts in the pion masses and in the

lattice spacing and fits where the parameters β3, β4 and δ

have been either switched on or off.

VI. ISOSPIN-BREAKING EFFECTS

As discussed in the previous Secs. III and IVA, our

computations are performed in an isospin-symmetric setup,

neglecting the effects due to the nondegeneracy of the up-

and down-quark masses and QED. At the percent and

subpercent level of precision it is, however, necessary to

consider the impact of isospin-breaking effects. To estimate

the latter, we have computed awinμ in QCDþ QED on a

subset of our isospin-symmetric ensembles using the

technique of Monte Carlo reweighting [86–90] combined

with a leading-order perturbative expansion of QCDþ
QED around isosymmetric QCD in terms of the electro-

magnetic coupling e2 as well as the shifts in the bare quark

masses Δmu;Δmd;Δms [90–94]. Consequently, we must

evaluate additional diagrams that represent the perturbative

quark mass shifts as well as the interaction between quarks

and photons. We make use of noncompact lattice QED and

regularize the manifest IR divergence with the QEDL

prescription [95], with the boundary conditions of the

FIG. 6. Left panel: study of the continuum extrapolation of the charm-quark contribution to awinμ at the SUð3Þf -symmetric point using

the local-conserved discretization of the correlation function. The black and green points are obtained using two independent sets of

improvement coefficients, as explained in Sec. III B. Right panel: example of a typical extrapolation to the physical point of the charm-

quark contribution. The error from the scale setting, which is highly correlated between ensembles, is not shown. The plain lines are

obtained from the fit function (40) without any cut in the pion mass.
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photon and QCD gauge fields chosen in accordance [93].

We characterize the physical point of QCDþ QED by the

quantities m2

π0
, m2

Kþ þm2

K0 −m2
πþ , m2

Kþ −m2

K0 −m2
πþ þ

m2

π0
and the fine-structure constant α [91]. The first three

quantities are inspired by leading-order chiral perturbation

theory including leading-order mass and electromagnetic

isospin-breaking corrections [67] and correspond to proxies

for the average light-quark mass, the strange-quark mass,

and the light-quark mass splitting. As we consider leading-

order effects only, the electromagnetic coupling does not

renormalize [90]; i.e., we may set e2 ¼ 4πα. The lattice

scale is also affected by isospin breaking, which we

however neglect at this stage. Making use of the isosym-

metric scale [55], we match m2

π0
and m2

Kþ þm2

K0 −m2
πþ in

both theories on each ensemble and set m2
Kþ −m2

K0 −

m2
πþ þm2

π0
to its experimental value.

We have computed the leading-order QCDþ QED

quark-connected contribution to awinμ as well as the pseu-

doscalar meson masses mπ0 , mπþ , mK0 , and mKþ required

for the hadronic renormalization scheme on the ensembles

D450, N200, N451 and H102, neglecting quark-

disconnected diagrams as well as isospin-breaking effects

in sea-quark contributions. The considered quark-con-

nected diagrams are evaluated using stochastic U(1) quark

sources with support on a single time slice whereas the all-

to-all photon propagator in Coulomb gauge is estimated

stochastically by means of Z2 photon sources. Covariant

approximation averaging [96] in combination with the

truncated solver method [97] is applied to reduce the

stochastic noise. We treat the noise problem of the vector-

vector correlation function at large time separations bymeans

of a reconstruction based on a single exponential function.

Amore detailed description of the computation can be found

in Refs. [91,92,98]. The renormalization procedure of the

local vector current in theQCDþ QEDcomputation is based

on a comparison of the local-local and the conserved-local

discretizations of the vector-vector correlation function and

hence differs from the purely isosymmetric QCD calculation

[58] described in Sec. III B. We therefore determine the

relative correction by isospin breaking in the QCDþ QED

setup. For fπ rescaling as introduced in Sec. IVA, isospin-

breaking effects in the determination of fπ are neglected.

We observe that the size of the relative first-order corrections

for awinμ is compatible on each ensemble and can in total be

estimated as a ð0.3� 0.1Þ% effect.

VII. FINAL RESULT AND DISCUSSION

We first quote our final result awin;isoμ in our isosymmetric

setup as defined in Sec. IVA. Using the isospin decom-

position, and combining Eqs. (33), (34), and (41), we find

awin;I1μ ¼ ð186.30� 0.75stat � 1.08systÞ × 10−10; ð42Þ

awin;I0μ ¼ a
win;I0;=c
μ þ awin;cμ

¼ ð50.30� 0.23stat � 0.32systÞ × 10−10; ð43Þ

awin;isoμ ¼ awin;I1μ þ awin;I0μ

¼ ð236.60� 0.79stat � 1.13syst � 0.05QÞ × 10−10;

ð44Þ

where the first error is statistical, the second is the

systematic error, and the last error of awin;isoμ is an estimate

of the quenching effect of the charm quark derived in

Appendix D. Overall, this uncertainty has a negligible

effect on the systematic error estimate. The small bottom

quark contribution has been neglected. For a
hvp
μ , this

contribution has been computed in Ref. [99] and found

to be negligible at the current level of precision.

As stressed in Sec. IVA, our definition of the physical

point in our isosymmetric setup is scheme dependent. To

facilitate the comparison with other lattice collaborations,

the derivatives with respect to the quantities used to define

our isosymmetric scheme are provided in Table II. They

can be used to translate from one prescription to another

a posteriori.

One of the main challenges for lattice calculations of

both a
hvp
μ and the window observable is the continuum

extrapolation of the light-quark contribution, which

dominates the results by far. To address this specific

point, we have used six lattice spacings in the range

[0.039,0.0993] fm in our calculation, along with two

different discretizations of the vector current (see the

discussion in Sec. IV C). Although this work contains

many ensembles away from the physical pion mass, we

observe only a mild dependence on the proxy used for the

light-quark mass. This observation is corroborated by

the fact that, in the model averaging analysis, most of

the spread comes from fits that differ in the description of

lattice artifacts rather than on the functional form fch that

describes the light-quark mass dependence.

In Fig. 7, we compare our results in the isosymmetric

theory with other lattice calculations. Our estimate for

awin;isoμ agrees well with that of the BMW Collaboration

who quote awin;isoμ ¼ 236.3ð1.4Þ × 10−10 using the stag-

gered quark formulation [20]. However, our result is

about 2.3σ above the published value by the RBC/

UKQCD Collaboration, awin;isoμ ¼ 232.0ð1.5Þ × 10−10,

obtained using domain wall fermions [13]. It is also

1.7σ above the recent estimate quoted by ETMC, based

on the twisted-mass formalism [22], which reads awin;isoμ ¼
231.0ð2.8Þ × 10−10. The difference with the latter two

calculations can be traced to the light-quark contribution

awin;udμ , which is shown in the second panel from the right.

In this context, it is interesting to note that, apart from

BMW, two independent calculations using staggered
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quarks (albeit with a different action as compared to the

BMW Collaboration) have quoted results for awin;udμ

[18,21,24] that are in good agreement with our estimate,

as can be seen in Fig. 7. The middle panel of the figure

shows that our estimate for the strange quark contribution

is slightly higher compared to other groups, but due to the

relative smallness of awin;sμ this cannot account for the

difference between our result for awin;isoμ and Refs. [13,22].

Good agreement with the BMW, ETMC and RBC/UKQCD

Collaborations is found for both the charm and quark-

disconnected contributions.

If one accepts that most lattice estimates for the light-

quark connected contribution awin;udμ have stabilized around

≈207 × 10−10, one may search for an explanation why the

results by RBC/UKQCD [13] and ETMC [22] are smaller

by about 2%. This is particularly important since awin;udμ

contributes about 87% to the entire intermediate window

observable. One possibility is that the extrapolations to the

physical point in Refs. [13,22] are both quite long. For

instance, the minimum pion mass among the set of

ensembles used by ETMC is only about 220 MeV, while

the result by RBC/UKQCD has been obtained from two

lattice spacings, i.e., 0.084 and 0.114 fm. Further studies

using additional ensembles at smaller pion mass and lattice

spacings are highly desirable to clarify this important issue.

In order to compare our result with phenomenological

determinations of the intermediate window observable,

we must correct for the effects of isospin breaking. Our

calculation of isospin-breaking corrections, described in

Sec. VI, has been performed on a subset of our ensembles

and is, at this stage, lacking a systematic assessment of

discretization and finite-volume errors. Furthermore, only

quark-connected diagrams have been considered so far. To

account for this source of uncertainty, we double the error

and thereby apply a relative isospin-breaking correction

of ð0.3� 0.2Þ% to awin;isoμ , which amounts to a shift of

þð0.70� 0.47Þ × 10−10. Thus, our final result including

isospin-breaking corrections is

awinμ ¼ ð237.30� 0.79stat � 1.13syst � 0.05Q

� 0.47IBÞ × 10−10: ð45Þ

Adding all errors in quadrature yields 237.30ð1.46Þ× 10−10

which corresponds to a precision of 0.6%. A comparison

with other lattice calculations is shown in Fig. 8. Since

corrections due to isospin breaking are small, the same

features are observed as in the isosymmetric theory: While

our result agrees well with the published estimate from

BMW [20], it is larger than the values quoted by ETMC

[22] and RBC/UKQCD [13]. Our result lies 3.9σ above the

recent evaluation using the data-driven method [48], which

yields awinμ ¼ 229.4ð1.4Þ × 10−10 and is shown in red in

Fig. 8. Our result for awinμ is also consistent with the

observation that the central value of our 2019 result for the

FIG. 8. Comparison of our result for awinμ including isospin-

breaking corrections with the estimates by ETMC [22], BMW

[20], and RBC/UKQCD [13]. The estimate based on the data-

driven method of Ref. [48] is shown in red.

FIG. 7. Comparison of our results (in units of 10−10) with other lattice calculations [13,18,20–24] in isosymmetric QCD. The four

panels on the left show compilations of the individual quark-disconnected, charm, strange and light-quark contributions. The total result

for awinμ in the isosymmetric case is shown in the rightmost panel. Our results are represented by green circles and vertical bands.
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complete hadronic vacuum polarization contribution [17]

lies higher than the phenomenology estimate, albeit with

much larger uncertainties. In Ref. [62] we observed a

similar but statistically much more significant enhancement

in the hadronic running of the electromagnetic coupling,

Δαhadð−Q2Þ relative to the data-driven evaluation, espe-

cially forQ2 ≲ 3 GeV2. As pointed out at the end of Sec. II,

the relative contributions from the three intervals of center-

of-mass energy separated by
ffiffiffi

s
p ¼ 600 MeV and

ffiffiffi

s
p ¼

900 MeV are similar for awinμ and Δαhadð−1 GeV2Þ, even
though the respective weight functions in the time-momen-

tum representation are rather different. The fact that the

lattice determination is larger by more than three percent

for both quantities, in each case with a combined error of

less than one percent, suggests that a genuine difference

exists at the level of the underlying spectral function,

RðsÞ=ð12π2Þ, between lattice QCD and phenomenology.

If one were to subtract the data-driven evaluation of awinμ

from the White paper estimate [3] and replace it by our

result in Eq. (45), the tension between the SM prediction

for aμ and experiment would be reduced to 2.9σ. This

observation illustrates the relevance of the window observ-

able for precision tests of the SM. Our findings also

strengthen the evidence supporting a tension between

data-driven and lattice determinations of a
hvp
μ .

In our future work we will extend the calculation to other

windows and focus on the determination of the full

hadronic vacuum polarization contribution, a
hvp
μ .
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APPENDIX A: MISTUNING OF THE CHIRAL

TRAJECTORY

The ensembles used in our work have been generated

with a constant bare average sea quark mass which differs

from a constant renormalized mass by OðaÞ cutoff effects.
When the sum of the renormalized quark masses is kept

constant, the dimensionless parameters ϕ4 and yKπ , which
have been introduced in Sec. IVA to define the chiral

trajectories toward the physical point, are constant to

leading order in chiral perturbation theory (χPT).

Therefore, ϕ4 and yKπ cannot be constant across our set

of ensembles due to cutoff effects and higher-order effects

from χPT.

We have to correct for the sources of mistuning of our

ensembles with respect to the chiral trajectories of strate-

gies 1 and 2. This can be done by parameterizing the

dependence of our observables on XK ∈ fyKπ;ϕ4g in the

combined chiral-continuum extrapolation. However, since

the pion and kaon masses are not varied independently

within our set of ensembles, the dependence on ΔXK ¼
X
phys
K − XK cannot be resolved reliably in our fits. A

different strategy has to be employed to stabilize our

extrapolation to the physical point.

Explicit corrections of the mistuning prior to the chiral

extrapolation have been used in Ref. [55] to approach the

physical point at constant ϕ4 ¼ ϕ
phys
4 . These corrections are

based on small shifts defined from the first-order Taylor

expansion of the quark mass dependence of lattice observ-

ables. The expectation value of a shifted observable is

given by

hOi → hOi þ
X

Nf

i¼1

Δmq;i

dhOi
dmq;i

; ðA1Þ

with the Nf ¼ 3 sea quark mass shifts Δmq;i. Within this

appendix, we work with observables and expectation values

that are defined after integration over the fermion fields;

i.e., the expectation values are taken with respect to the

gauge configurations. The total derivative of an observable

with respect to the quark masses is decomposed via

dhOi
dmq;i

¼
�

∂O

∂mq;i

�

−

�

O
∂S

∂mq;i

�

þ hOi
�

∂S

∂mq;i

�

: ðA2Þ
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The partial derivative of an observable with respect to a

quark mass of flavor i captures the effect of shifts of

valence quark masses. The second and third terms that

contain the derivative of the action S with respect to the

quark masses account for sea quark effects. The chain rule

is used to compute the derivatives of derived observables.

The chain rule relating the derivatives with respect to

the quark masses to those with respect to the variables Xj ¼
Xπ; XK can be written

X

Nf

i¼1

ni
dhOi
dmq;i

¼
X

j¼π;K

Δjðn⃗Þ
dhOi
dXj

; Δjðn⃗Þ≡
X

Nf

i¼1

ni
dXj

dmq;i

ðA3Þ

∀ n⃗ ¼ ðn1; n1; n3Þ, the condition n1 ¼ n2 being imposed to

remain in the isosymmetric theory. In particular, if the

direction of the vector n⃗ in the space of quark masses is

chosen such that Δπðn⃗Þ vanishes, the following expression

[71] for the derivative of an observable with respect to XK is

obtained:

dhOi
dXK

¼ 1

ΔKðn⃗Þ
X

Nf

i¼1

ni
dhOi
dmq;i

: ðA4Þ

In Ref. [55] the shifts ni have been chosen to be degenerate
for all three sea quarks. In Ref. [71] the same approach is

taken at the SUð3Þf-symmetric point and n⃗ ¼ ð0; 0; 1Þ is

used when amq;l ≠ amq;s. To stabilize the predictions for

the derivatives, they are modeled as functions of lattice

spacing and quark mass.

To improve the reliability of our chiral extrapolation, we

have determined the derivatives of awin;udμ and awin;sμ with

respect to light and strange-quark masses on a large subset

of the ensembles in Table I. Whereas the computation of the

first term in Eq. (A2) shows a good signal for the vector-

vector correlation function, the second and third term carry

significant uncertainties. In the case of fπ rescaling, a non-
negligible statistical error that has its origin in dfπ=dmq;i

enters the derivative of awinμ .

Our computation does not yet cover all ensembles in this

work and has significant uncertainties on some of the

included ensembles. Moreover, we have not computed the

mass derivative of awin;discμ that enters awin;I0μ . Therefore, we

have decided not to correct our observables prior to the

global extrapolation but to determine the coefficient γ0 in

Eq. (26) instead. We do not aim for a precise determination

here but focus instead on the determination of a sufficiently

narrow prior width, in order to stabilize the chiral-

continuum extrapolation.

FIG. 9. Derivatives of the isovector and the strange-connected contributions to the window observable with respect to Xπ . The gray

areas illustrate the priors that are used in the global extrapolation.
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We compute the derivatives with respect to XK as

specified in Eq. (A4) with the shift vector n⃗ chosen such

that Δπðn⃗Þ vanishes ensemble by ensemble; i.e., the shift is

taken in a direction in the quark mass plane where Xπ

remains constant. The derivatives are therefore sensitive to

shifts in the kaon mass. A residual shift of Xa is present at

the permille level.

We collect our results for the derivatives with respect to

ϕ4 and yKπ in Table III. Throughout this appendix, we use

units of 10−10 for awinμ , as well as for coefficient γ0. The

results are based on the local-local discretization of the

correlation functions and the improvement coefficients and

renormalization constants of set 1. As can be seen, the

derivative of the isovector contribution to the window

observable vanishes within error on most of the ensembles.

This is expected from the order-of-magnitude estimate in

Eq. (B33). No clear trend regarding a dependence on Xπ ,

XK or Xa can be resolved. We show the derivative of awin;I1μ

with respect to Xπ in the upper panels of Fig. 9. For the

corresponding priors for the chiral-continuum extrapolation

we choose

γ
win;I1;yKπ
0 ¼ 0ð50Þ; γ

win;I1;ϕ4

0 ¼ −2.5ð5.0Þ: ðA5Þ

The derivative of the strange-connected contribution of

the window observable with respect to XK is negative and

can be determined to good precision. Our results are shown

in the lower panels of Fig. 9. We choose our priors such

that their width encompasses the spread of the data. For

the strange-connected and the isoscalar contribution, we

choose

γ
win;s;yKπ

0 ¼ −100ð20Þ; γ
win;s;ϕ4

0 ¼ −12.5ð2.5Þ: ðA6Þ

These values are compatible with the estimate in Eq. (B26).

Discretization effects in the data may be inspected by

comparing the derivatives based on the two sets of improve-

ment coefficients. Such effects are largest for the two

ensembles at β ¼ 3.34 but are still smaller than the

spread in the data and therefore not significant with respect

to our prior widths. In our global extrapolations, we use

a single set of priors irrespective of the improvement

procedure.

APPENDIX B: PHENOMENOLOGICAL MODELS

In the first subsection of this appendix, we collect

estimates of the sensitivity of the window observables to

various intervals in
ffiffiffi

s
p

in the dispersive approach. The

observable awinμ can indeed be obtained from experimental

data for the ratio RðsÞ defined in Eq. (10) via

awinμ ¼
Z

∞

0

dsfwinðsÞRðsÞ; ðB1Þ

where the weight function is given by

fwinðsÞ ¼
α2

ffiffiffi

s
p

24π4

Z

∞

0

dte−t
ffiffi

s
p
K̃ðtÞ½Θðt; t0;ΔÞ−Θðt; t1;ΔÞ�:

ðB2Þ

In practice, since the integrand is very strongly suppressed

beyond 1.5 fm, we have used the short-distance expansion

of K̃ðtÞ given by Eq. (B16) of Ref. [10], which is very

accurate up to 2 fm.

The second and the third subsections contain phenom-

enological estimates of the derivatives of the strangeness

and the isovector contributions to awinμ with respect to the

kaon mass at fixed pion mass, as a cross-check of the lattice

results presented in Appendix A.

1. Sensitivity of the window quantity

In Ref. [49], a semirealistic model for the R ratio was

used for the sake of comparisons with lattice data generated

in the ðu; d; sÞ quark sector with exact isospin symmetry. In

particular, the model does not include the charm contri-

bution, nor final states containing a photon, such as π0γ. It

leads to the following values for the window observables

and their sum, the full a
hvp
μ :

ðahvpμ ÞSDjmodel ¼ 56.0 × 10−10; ðB3Þ

TABLE III. Derivatives of the isovector and the strange-

connected contributions to the window observable with respect

to XK in units of 10−10. The data are based on the local-local

discretization of the vector-vector correlation function and the

improvement coefficients of set 1.

Id
dawin;I1μ

dΦ4

dawin;I1μ

dyKπ

dawin;sμ

dΦ4

dawin;sμ

dyKπ

A653 5.0(1.1) 83(39) −10.0ð0.7Þ −80ð10Þ
A654 5.0(1.9) 96(47) −11.3ð0.5Þ −93ð10Þ
H101 −4.7ð3.9Þ 145(137) −13.4ð1.1Þ −68ð26Þ
H102 −12.2ð3.5Þ 46(118) −14.5ð1.0Þ −91ð27Þ
N101 −8.9ð12.9Þ −163ð143Þ −17.8ð2.1Þ −204ð51Þ
C101 2.6(8.3) −84ð93Þ −12.1ð1.6Þ −138ð27Þ
B450 −3.4ð2.6Þ 42(39) −12.5ð0.7Þ −93ð9Þ
N451 −5.3ð5.2Þ −68ð71Þ −12.8ð0.5Þ −122ð20Þ
D450 −4.9ð10.0Þ −85ð233Þ −11.1ð0.8Þ −116ð73Þ
H200 −0.3ð5.3Þ 241(198) −10.8ð1.3Þ −40ð40Þ
N202 −3.5ð9.2Þ 79(136) −14.5ð2.2Þ −95ð30Þ
N203 −3.5ð5.1Þ 125(106) −16.5ð1.6Þ −123ð25Þ
N200 3.3(7.2) 136(128) −14.0ð1.3Þ −119ð24Þ
D200 7.1(7.1) 121(93) −11.8ð1.4Þ −98ð26Þ
N300 0.4(4.3) 8(53) −11.4ð1.1Þ −98ð15Þ
J303 6.5(9.1) 197(148) −13.4ð1.2Þ −94ð32Þ
J500 −9.0ð5.3Þ −18ð68Þ −15.1ð1.5Þ −117ð19Þ
J501 −6.1ð9.4Þ 88(189) −12.5ð3.0Þ −92ð48Þ
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awinμ jmodel ¼ ðahvpμ ÞIDjmodel ¼ 231.9 × 10−10; ðB4Þ

ðahvpμ ÞLDjmodel ¼ 384.8 × 10−10; ðB5Þ

a
hvp
μ jmodel ¼ 672.7 × 10−10: ðB6Þ

Given the omission of the aforementioned channels, these

values are quite realistic.
4
Here we only use the model to

provide the partition of the quantities above into three

commonly used intervals of
ffiffiffi

s
p

, in order to illustrate what

the relative sensitivities of these quantities are to different

energy intervals. These percentage contributions are given

in Table IV, along with the corresponding figures for the

subtracted vacuum polarization:

Π̄ðQ2Þ≡ ΠðQ2Þ − Πð0Þ ¼ Q2

12π2

Z

∞

0

ds
RðsÞ

sðsþQ2Þ : ðB7Þ

The model yields for this quantity the value 385.5 × 10−4 at

Q2 ¼ 1 GeV2. We expect the fractions in the table to be

reliable with an uncertainty at the 5%–7% level.

The model value for the intermediate window is best

compared to the sum of Eqs. (33) and (34). The difference

is ð1.8� 1.4Þ × 10−10, which represents agreement at the

1.3σ level. The main reason the R-ratio model agrees better

with the lattice result than a state-of-the-art analysis [48] is

that the model does not account for the strong suppression

of the experimentally measured R ratio in the region 1.0 <
ffiffiffi

s
p

=GeV < 1.5 relative to the parton-model prediction.

This observation suggests a possible scenario where the

higher lattice value of awinμ as compared to its data-driven

evaluation is explained by a too pronounced dip of the R
ratio just above the ϕ meson mass. In such a scenario,

the relative deviation between the central values of a
hvp
μ

obtained on the lattice and using eþe− data would be

smaller than for awinμ by a factor of about 1.5, given the

entries in Table IV. Indeed, it has been shown [50] that the

central values of the BMW Collaboration [20] cannot be

explained by a modification of the experimental RðsÞ ratio
below s ¼ 1 GeV2 alone.

2. Model estimate of ð∂=∂m2
KÞawin;sμ ðm2

π;m
2
KÞ

In Ref. [62], we have used two closely related R-ratio
models for the strangeness correlator and the light-quark

contribution to the isoscalar correlator:

Rl

I¼0ðsÞ ¼
Aω

18
m2

ωδðs −m2
ωÞ þ

Nc

18
θðs − s0Þ

�

1þ αs

π

�

;

ðB8Þ

RsðsÞ ¼ Aϕ

9
m2

ϕδðs −m2
ϕÞ þ

Nc

9
θðs − s1Þ

�

1þ αs

π

�

;

ðB9Þ

with

ffiffiffiffiffi

s0
p ¼ 1.02 GeV;

ffiffiffiffiffi

s1
p ¼ 1.24 GeV; ðB10Þ

mω ¼ 0.78265 GeV, mϕ ¼ 1.01946 GeV and [100]

Aω

18
¼ 9π

α2
ΓeeðωÞ
mω

¼ 7.33ð24Þ
18

; ðB11Þ

Aϕ

9
¼ 9π

α2
ΓeeðϕÞ
mϕ

¼ 5.86ð10Þ
9

: ðB12Þ

The threshold values s0 and s1 have been adjusted to

reproduce the corresponding lattice results for a
hvp
μ . The

model R ratios of Eqs. (B8) and (B9) were used [62] in

the linear combination ð18Rl

I¼0 − 9RsÞ in order to model

the SUð3Þf-breaking contribution Π
08, which enters the

running of the electroweak mixing angle. Our model for

this linear combination also obeys an exact sum rule,
R

∞
0

dsð18Rl

I¼0 − 9RsÞ ¼ 0, within the statistical uncertain-

ties. We now evaluate the window quantity for the models

of Eqs. (B8) and (B9). For the strangeness contribution, we

have

awin;sμ ¼ ð27.6� 0.3statÞ × 10−10; ðB13Þ

TABLE IV. Fractional contributions in percent from different regions in
ffiffiffi

s
p

to a
hvp
μ and the partial quantities

ðahvpμ ÞSD;ID;LD, as well as the subtracted vacuum polarization at scale Q2 ¼ 1 GeV2, according to the R-ratio model

given in Ref. [49]. Note that this model includes neither the charm nor final states containing a photon, such as π0γ.

ffiffiffi

s
p

interval a
hvp
μ ðahvpμ ÞSD ðahvpμ ÞID ðahvpμ ÞLD Π̄ð1 GeV2Þ

Below 0.6 GeV 15.5 1.5 5.5 23.5 8.2

0.6 to 0.9 GeV 58.3 23.1 54.9 65.4 52.6

Above 0.9 GeV 26.2 75.4 39.6 11.1 39.2

Total 100.0 100.0 100.0 100.0 100.0

4
For orientation, the charm contribution to a

hvp
μ is 14.66ð45Þ ×

10−10 [17], and the π0γ channel contributes 4.5ð1Þ × 10−10 [3].
Adding these to Eq. (B6), the total is 691.9 × 10−10, con-
sistent within errors with the White paper evaluation of
693.1ð4.0Þ × 10−10.
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and for the full isoscalar contribution, the model predicts

awin;I0μ ¼ ð47.4� 0.5statÞ × 10−10: ðB14Þ

Given the modeling uncertainties, these values are in

excellent agreement with the lattice results presented in

the main part of the text, respectively, Eqs. (37) and (34).

We also record some useful values of the kernel:

fwinðm2
ϕÞ ¼ 29.5 × 10−10 GeV−2;

fwinðs1Þ ¼ 16.1 × 10−10 GeV−2; ðB15Þ

d

ds
ðsfwinðsÞÞs¼m2

ϕ
¼ −11.3 × 10−10 GeV−2: ðB16Þ

In the following, we evaluate the strange-quark mass

dependence of awin;sμ , based on the idea that the parameters

Aϕ, mϕ, and s1 only depend on the mass of the valence

(strange) quark. This general assumption is reflected in

Eqs. (B21), (B22), and (B24) below.

It was noted a long time ago [101] that the electronic

decay width of vector mesons, normalized by the relevant

charge factor, is only very weakly dependent on their mass:

18 · ΓeeðωÞ ¼ 10.8ð4Þ keV; ðB17Þ

9 · ΓeeðϕÞ ¼ 11.4ð4Þ keV; ðB18Þ

9

4
· ΓeeðJ=ψÞ ¼ 12.4ð2Þ keV: ðB19Þ

This suggests that, unlike in QED, ðAV ·mVÞ depends less
strongly on mV than AV itself for QCD vector mesons.

Therefore it is best to estimate the derivative of interest as

follows:

∂a
win;ϕ
μ

∂m2
K

	

	

	

	

m2
π

≃
∂

∂m2
K

�

Aϕmϕ

9

�

mϕfwinðm2
ϕÞ

þ
�

Aϕmϕ

9

�

∂m2
ϕ

∂m2
K

∂

∂m2
ϕ

ðmϕfwinðm2
ϕÞÞ: ðB20Þ

We estimate the following derivatives by taking a finite

difference between the ω and the ϕ meson properties:

∂

∂m2
K

�

Aϕmϕ

9

�

≃
1

9

Aϕmϕ − Aωmω

m2
K −m2

π

¼ 0.12ð10Þ GeV−1

ðB21Þ

and

∂m2
ϕ

∂m2
K

¼ 2mϕ

∂mϕ

∂m2
K

≃ 2mϕ

mϕ −mω

m2
K −m2

π

¼ 2.13: ðB22Þ

Thus

∂a
win;ϕ
μ

∂m2
K

	

	

	

	

m2
π

≃ ðð3.5� 3.1Þ − 36.1Þ × 10−10 GeV−2

¼ ð−32.6� 3.1Þ × 10−10 GeV−2: ðB23Þ

Next, we estimate the dependence originating from the

valence-mass dependence of s1:

∂s1

∂m2
K

≃ 2
ffiffiffiffiffi

s1
p ffiffiffiffiffi

s1
p

−
ffiffiffiffiffi

s0
p

m2
K −m2

π

¼ 2.4: ðB24Þ

Thus the derivative of the perturbative continuum awin;s;contμ

with respect to the squared kaon mass yields

∂awin;s;contμ

∂m2
K

¼−
Nc

9
ð1þαs=πÞfwinðs1Þ

∂s1

∂m2
K

¼−14.1×10−10:

ðB25Þ

Adding this contribution to Eq. (B23), we get in total

∂awin;sμ

∂m2
K

¼ ð−46.6� 3.1stat � 7.0modelÞ × 10−10 GeV−2:

ðB26Þ

To the statistical error from the electronic widths of the ω

and ϕ mesons, we have added a modeling error of 15%.

Using t0, the value above translates into

∂awin;sμ

∂ϕ4

	

	

	

	

ϕ2

≃ ð−10.9� 0.7stat � 1.6modelÞ × 10−10; ðB27Þ

which can directly be compared to the values from lattice

QCD listed in Table III. The agreement is excellent.

In Eq. (B9), we have written the perturbative contribu-

tion above the threshold s1 in the massless limit. We now

verify that the mass dependence of the perturbative con-

tribution is negligible for fixed s1. The leading mass-

dependent perturbative contribution to the R ratio well

above threshold is [see e.g., [102], Eqs. (11) and (12)]

Rs
pertðm2

s ; sÞ − Rs
pertð0; sÞ

¼ Nc

9

�

−6

�

m2
s

s

�

2

þ 12
αs

π

m2
s

s
þ � � �

�

: ðB28Þ

From here we have estimated ∂

∂m2
K

a
win;s;pert
μ ≈

0.5 × 10−10 GeV−2. Since this contribution to ∂

∂m2
K

awin;sμ

is about one-sixth the statistical uncertainty from the vector

meson electronic decay widths, we neglect the perturbative

mass dependence of awin;sμ .
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For future reference, we evaluate in the same way as in

Eq. (B26) the derivative of a
hvp;s
μ and find

∂a
hvp;s
μ

∂m2
K

	

	

	

	

m2
π

¼ ð−129� 6stat � 19modelÞ × 10−10 GeV−2:

ðB29Þ

Here, the dependence on s1 only contributes 18% of the

total. We have again assigned a 15% modeling uncertainty

to the prediction. Since we expect valence-quark effects to

dominate, the prediction (B29) can also be applied to the

full isoscalar prediction.

3. Model estimate of ð∂=∂m2
KÞawin;I1μ ðm2

π;m
2
KÞ

The influence of the strange quark mass on the isovector

channel is a pure sea quark effect and is as such harder to

estimate. Based on the Okubo-Zweig-Iizuka (OZI) rule,

one would also expect a smaller relative sensitivity than

in the strangeness channel addressed in the previous

subsection.

One effect of the presence of strange quarks on the

isovector channel is that kaon loops can contribute. No

isovector vector resonances with a strong coupling to K̄K
are known; therefore, we attempt to use scalar QED

(sQED) to evaluate the effect of the kaon loops. Note that

at the SUð3Þf-symmetric point, the sum of the K̄0K0 and

KþK− contributions to the isovector channel amounts to

half as much as that of the pions. We find, integrating in s

from threshold up to 4 GeV2 with mK ¼ 0.495 GeV,

awin;I¼1
μ ¼ 0.99 × 10−10; kaon loops in sQED; ðB30Þ

∂

∂m2
K

awin;I¼1
μ ¼ −7.0 × 10−10 GeV−2: ðB31Þ

A further, more indirect effect of two-kaon intermediate

states is that they can affect the properties of the ρ meson.

On general grounds, one expects the two-kaon states to

reduce the ρ mass, since energy levels repel each other.

However, for the window quantity it so happens that

sfwinðsÞ has a maximum practically at the ρ mass; there-

fore, the derivative of this function is extremely small:

2

fwinðsÞ
d

ds
ðsfwinðsÞÞ

	

	

	

s¼m2
ρ

¼ −0.043: ðB32Þ

The effect of a shift in the ρmeson mass is therefore heavily

suppressed.
5
Reasonable estimates of the order of magni-

tude of the derivative ∂mρ=∂m
2
Kjm2

π
lead to a contribution to

∂

∂m2
K

awin;I¼1
μ which is smaller than the sQED estimate. These

estimates are based on the observation that the ratio mρ=fπ
is about 5% higher at a pion mass of 311 MeV in the

Nf ¼ 2 QCD calculation [103] than if one interpolates

the corresponding Nf ¼ 2þ 1 QCD results [17,104] to the

same pion mass, though a caveat is that neither result is

continuum extrapolated. The effect of the kaon intermedi-

ate states on the ππ line shape is even harder to estimate, but

we note that even inNf ¼ 2QCD calculations [103], i.e., in

the absence of kaons, the obtained gρππ coupling is

consistent with Nf ¼ 2þ 1 QCD calculations [17,104]

carried out at comparable pion masses.

In summary, we use the sQED evaluation of Eq. (B31) to

provide the order-of-magnitude estimate:

∂

∂ϕ4

	

	

	

	

ϕ2

awin;I¼1
μ ≈ −1.6 × 10−10: ðB33Þ

We note that the statistical precision of our lattice-QCD

results for this derivative in Table III is not sufficient to

resolve the small effect estimated here.

APPENDIX C: FINITE-VOLUME CORRECTION

Corrections for finite-size effects (FSE) have been

estimated using a similar strategy to the one presented in

our previous publication on the hadronic contributions to

the muon g − 2 [17]. The main difference lies in the

treatment of small Euclidean times, where we have replaced

NLO χPT by the Hansen-Patella method as described

below. We have also investigated finite-size corrections

in χPT at NNLO [20,105]. Overall, we found it to be

comparable in size to the values found in Tables V and VI,

the level of agreement improving for increasing volumes

and decreasing pion masses. Given that the NNLO χPT

correction term is in many cases not small compared to the

NLO term, we refrain from using χPT to compute finite-

size effects in our analysis of awinμ (see [24] for a more

detailed discussion of the issue).

1. The Hansen-Patella method

In Refs. [106,107], finite-size effects for the hadronic

contribution to the muon (g − 2) are expressed in terms of

the forward Compton amplitude of the pion as an expan-

sion in exp ð−jn⃗jmπLÞ for jn⃗j2 ¼ 1; 2; 3; 6;…. Here, nk
schematically represents the number of times the pion

propagates around the kth spatial direction of the lattice.

Corrections that start at order exp ð−neffmπLÞ with neff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

3
pp

≈ 1.93 are neglected: They appear when at least

two pions propagate around the torus. The results for the

first three leading contributions (jn⃗j2 ≤ 3) can thus be used

consistently to correct the lattice data on each time slice

separately. We decided to use the size of the jn⃗j2 ¼ 3 term,

i.e., the last one that is parametrically larger than the

5
But note that this effect must be revisited when addressing the

strange-quark mass dependence of the isovector contribution to
the full a

hvp
μ .
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TABLE V. Finite-size effects in the isovector channel with fπ rescaling, in units of 10
−10, for our ensembles described in Table I. The

correction obtained using the HP method is given in the third and fourth columns. The MLL estimate in the long-distance region is listed

in the fifth column. The contribution of the kaon is given in column six, where dots for ensembles at the SU(3) symmetric point indicate

that this contribution is contained in the HP and MLL estimates. Our final estimate is given in the last column. Only statistical errors are

shown. We assign an uncertainty of 25% of the FSE on each ensemble (see text).

ID t⋆ (fm) HP ðt < t⋆Þ HP ðt > t⋆Þ MLL ðt > t⋆Þ Kaon loop Final estimate

A653 0.79 0.98(0.01) 0.81(0.03) 0.78(0.01) � � � 1.75(0.03)

H101 1.04 0.71(0.01) 0.03(0.00) 0.03(0.00) � � � 0.74(0.01)

H102 0.86 0.70(0.01) 0.40(0.02) 0.36(0.01) 0.19 1.25(0.10)

H105 0.69 0.58(0.03) 1.95(0.11) 1.87(0.08) 0.14 2.59(0.15)

N101 1.47 0.28(0.01) 0.00(0.00) 0.00(0.00) 0.01 0.29(0.01)

C101 1.21 0.75(0.02) 0.03(0.00) 0.03(0.00) 0.01 0.78(0.02)

B450 0.76 0.83(0.01) 0.77(0.02) 0.74(0.56) � � � 1.57(0.37)

S400 0.69 0.61(0.01) 1.55(0.05) 1.54(0.03) 0.34 2.50(0.18)

N451 1.22 0.51(0.01) 0.01(0.00) 0.01(0.00) 0.02 0.53(0.01)

D450 1.60 0.32(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.32(0.01)

D452 1.15 0.89(0.02) 0.10(0.01) 0.10(0.01) 0.00 1.00(0.03)

H200 0.58 0.68(0.02) 3.35(0.07) 3.17(0.09) � � � 3.84(0.16)

N202 1.22 0.38(0.01) 0.00(0.00) 0.00(0.00) � � � 0.38(0.00)

N203 1.03 0.56(0.01) 0.04(0.00) 0.03(0.00) 0.09 0.69(0.05)

N200 0.84 0.73(0.01) 0.64(0.02) 0.61(0.01) 0.07 1.41(0.05)

D200 1.09 0.95(0.01) 0.11(0.00) 0.10(0.00) 0.01 1.06(0.02)

E250 1.54 0.57(0.02) 0.00(0.00) 0.00(0.00) 0.00 0.57(0.02)

N300 0.75 0.89(0.01) 0.79(0.02) 0.75(0.01) � � � 1.64(0.03)

N302 0.65 0.61(0.01) 1.79(0.03) 1.73(0.02) 0.34 2.68(0.20)

J303 0.85 0.90(0.01) 0.71(0.02) 0.67(0.01) 0.05 1.62(0.06)

E300 1.25 0.76(0.01) 0.02(0.00) 0.02(0.00) 0.00 0.78(0.01)

J500 0.82 0.98(0.01) 0.41(0.01) 0.40(0.01) � � � 1.37(0.01)

J501 0.67 0.60(0.01) 1.52(0.04) 1.55(0.02) 0.29 2.44(0.16)

TABLE VI. The same as Table V using t0 to set the scale.

ID t⋆ (fm) HP ðt < t⋆Þ HP ðt > t⋆Þ MLL ðt > t⋆Þ Kaon loop Final estimate

A653 0.79 0.80(0.01) 1.19(0.04) 1.11(0.01) � � � 1.90(0.06)

H101 1.04 0.73(0.02) 0.13(0.00) 0.12(0.00) � � � 0.85(0.01)

H102 0.86 0.62(0.01) 0.57(0.02) 0.52(0.01) 0.19 1.33(0.11)

H105 0.69 0.54(0.01) 2.10(0.06) 2.01(0.02) 0.14 2.68(0.15)

N101 1.47 0.29(0.01) 0.00(0.00) 0.00(0.00) 0.01 0.30(0.01)

C101 1.21 0.73(0.02) 0.03(0.00) 0.03(0.00) 0.01 0.76(0.02)

B450 0.76 0.63(0.01) 1.21(0.03) 1.12(0.79) � � � 1.75(0.53)

S400 0.69 0.50(0.01) 1.87(0.04) 1.82(0.02) 0.34 2.65(0.19)

N451 1.22 0.54(0.01) 0.01(0.00) 0.01(0.00) 0.02 0.57(0.01)

D450 1.60 0.32(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.32(0.01)

D452 1.15 0.88(0.02) 0.07(0.00) 0.08(0.00) 0.00 0.95(0.02)

H200 0.58 0.45(0.01) 4.14(0.09) 3.77(0.12) � � � 4.22(0.28)

N202 1.22 0.44(0.01) 0.01(0.00) 0.01(0.00) � � � 0.45(0.01)

N203 1.03 0.57(0.01) 0.11(0.00) 0.10(0.00) 0.09 0.76(0.05)

N200 0.84 0.66(0.01) 0.81(0.02) 0.76(0.01) 0.07 1.49(0.06)

D200 1.09 0.96(0.01) 0.12(0.00) 0.11(0.00) 0.01 1.07(0.02)

E250 1.54 0.53(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.53(0.01)

N300 0.75 0.63(0.01) 1.37(0.03) 1.24(0.02) � � � 1.87(0.09)

N302 0.65 0.45(0.01) 2.29(0.05) 2.13(0.03) 0.33 2.91(0.25)

J303 0.85 0.81(0.01) 0.93(0.02) 0.87(0.01) 0.05 1.73(0.07)

E300 1.25 0.76(0.01) 0.02(0.00) 0.02(0.00) 0.00 0.78(0.01)

J500 0.82 0.74(0.01) 0.92(0.03) 0.85(0.01) � � � 1.60(0.05)

J501 0.67 0.43(0.01) 2.02(0.05) 1.97(0.01) 0.29 2.69(0.17)
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neglected neff ≈ 1.93 contribution, as an estimate of the

inherent systematic error.

In this work we follow the method presented in

Ref. [107], where the forward Compton amplitude is

approximated by the pion pole term, which is determined

by the electromagnetic form factor of the pion in the

spacelike region. Since the form factor is only used to

evaluate the small finite-volume correction, a simple but

realistic model is sufficient. Here we use a monopole

parametrization obtained from Nf ¼ 2 lattice QCD simu-

lations [108]:

Fðq2Þ ¼ 1

1þ q2=M2
;

M2ðm2
πÞ ¼ 0.517ð23Þ GeV2 þ 0.647ð30Þm2

π: ðC1Þ

The statistical error on the finite-size correction is obtained

by propagating the jackknife error on the pion and

monopole masses. The results obtained using this method

are summarized in the third and fourth columns of Tables V

and VI.

2. The Meyer-Lellouch-Lüscher formalism with

Gounaris-Sakurai parametrization

As an alternative, we also consider the Meyer-Lellouch-

Lüscher (MLL) formalism. The isovector correlator in both

finite and infinite volume is written in terms of spectral

decompositions:

GI¼1ðt;∞Þ ¼ 1

48π2

Z

∞

2mπ

dωω2

�

1 −
4m2

π

ω2

�

3=2

jFπðωÞj2e−ωt;

ðC2Þ

GI¼1ðt; LÞ ¼
X

i

jAij2e−Eit; Ei ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
π þ k2i

q

; ðC3Þ

where FπðωÞ is the timelike pion form factor. Following

the Lüscher formalism, the discrete energy levels Ei ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
π þ k2i

p

in finite volume are obtained by solving the

equation

δ1ðkiÞ þ ϕðqÞ ¼ nπ; q ¼ kiL

2π
; ðC4Þ

where ϕðqÞ is a known function [109,110], n is a strictly

positive integer and δ1 is the scattering phase shift in the

isospin I ¼ 1, p-wave channel. Strictly speaking, this

relation holds exactly only below the four-particle thresh-

old that starts at 4mπ. This is only a restriction at light pion

mass where many states are needed to saturate the spectral

decomposition in finite volume. We will see below how to

circumvent this difficulty. In Ref. [111], the overlap factors

Ai that enter the spectral decomposition in finite volume

were shown to be related to the form factor in infinite

volume through the relation

jFπðEiÞj2 ¼
�

qϕ0ðqÞ þ k
∂δ1

∂k

�

3πE2
i

2k5i
jAij2: ðC5Þ

The timelike pion form factor has been computed on a

subset of our lattice simulations [17,104]. Since the form

factor is only needed to estimate the small finite-volume

correction, an approximate model can be used. Here, we

assume a Gounaris-Sakurai (GS) parametrization that

contains two parameters: the gρππ coupling and the vector

meson mass mρ [112]. A given choice of those parameters

allows us to compute both the finite-volume and infinite-

volume correlation function in the isovector channel at

large Euclidean times using Eq. (C3). The difference

GI¼1ðt;∞Þ −GI¼1ðt; LÞ, when inserted into Eq. (5), yields

our estimate of the FSE. In practice, the GS parameters are

obtained from a fit to the isovector correlation function

GI¼1ðt; LÞ at large Euclidean times, using Eqs. (C3)–(C5).

Statistical errors on the GS parameters can easily be

propagated using the jackknife procedure.

Since this method is expected to give a good description

only up to the inelastic threshold, Eq. (C4) being formally

valid below 4mπ, we opt to use the MLL formalism only

above a certain cut in Euclidean time, given by t� ¼
ðmπL=4Þ2=mπ . Below the cut, we always use the HP

method described above. Above the cut, the lightest few

finite-volume states in the spectral decomposition saturate

the integrand. The results using the MLL formalism are

summarized in the fifth column of Tables V and VI.

3. Corrections applied to lattice data

In Tables V and VI we summarize the FSE correction

applied to the raw lattice data. We find that finite-size

corrections computed using either the HP or the MLL

method for (t > t⋆) show good agreement within their

respective uncertainties. Our final estimates, shown in the

rightmost column, are obtained by adding the result from

the HP method at short times (t < t⋆) to that of the MLL

method above t⋆ and the kaon loop contribution. The latter
has been computed in χPT at NLO (see for instance [113])

on ensembles without SU(3) flavor symmetry. At the SU(3)

symmetric point, the kaon loop contribution has been

accounted for by scaling the HP and MLL corrections

by a factor of 3=2. We have included the scale factor in the

respective entries in Tables V and VI.

The uncertainty quoted in the rightmost column is given

by the statistical error computed as described in the two

previous sections. It includes the statistical error on the

GS parameters and on the monopole mass that appears in

the parametrization of the form factor in Eq. (C1). The

systematic error on the HP contribution is estimated as

described in Appendix C 1.
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For our final estimates of finite-volume corrections, we

adopt a more conservative approach regarding the overall

uncertainty. As in our earlier paper [10], we base our

uncertainty estimate on the comparison to the NLO χPT

correction, which leads us to assign an error of 25% of the

estimated correction for each ensemble, which replaces

the uncertainties quoted in the last column of Tables V

and VI. For example, the finite-size correction applied

to awin;I1μ in the case of ensemble J303 with fπ rescaling

is ð1.62� 0.405Þ × 10−10.

APPENDIX D: QUENCHING OF THE CHARM

QUARK

The gauge configurations used in this work contain the

dynamical effects of up, down and strange quarks. As for

the charm quarks, we have only taken into account the

connected valence contributions. In this appendix, we

estimate the systematic error from the missing effect of

charm sea-quark contributions. The question we are after

can be formulated as, “What is the charm-quark effect on

the R ratio in a world in which the charm quark is

electrically neutral?”

As in Ref. [62], we adopt a phenomenological approach.

There, we evaluated the perturbative prediction for the

charm sea-quark effect and found it to be small for the

running of the electromagnetic coupling from Q2 ¼ 1 to

5 GeV2. Alternatively, we considered D-meson pair crea-

tion in the electromagnetic-current correlator of the ðu; d; sÞ
quark sector. The contribution of the DþD− channel to the

R ratio reads

RDþD−ðsÞ ¼ 1

4

�

1 −
4m2

Dþ

s

�

3=2

jFDþðsÞj2; ðD1Þ

and similar expressions hold for the D0D̄0 and Dþ
s D

−
s

channels. Since the form factor FDþ is not known precisely

and our goal is only to estimate the order of magnitude of

the effect, we will approximate it by its value at s ¼ 0,

which amounts to treating D mesons in the scalar QED

framework and replacing their form factors by the relevant

electromagnetic charges: fFD0ðsÞ; FDþðsÞ; FDþ
s
g →

f2=3;−1=3;−1=3g. Note that up, down, or strange quarks
play the role of the valence quarks giving the mesons their

respective charges.

The corresponding contributions to a
hvp
μ are evaluated

using the expression

Δ
c-seaa

hvp
μ ¼

Z

∞

0

dsfhvpðsÞðRD0D0 þ RDþD− þ RDþ
s D

−
s
ÞðsÞ;

ðD2Þ

fhvpðsÞ ≔
�

α2
ffiffiffi

s
p

24π4

�
Z

∞

0

dte−t
ffiffi

s
p
K̃ðtÞ ¼

�

αmμ

3π

�

2 K̂ðsÞ
s2

;

ðD3Þ

where mμ is the muon mass and the analytic form of K̂ðsÞ
can be found e.g. in Ref. [114], Sec. IV 1. Similarly, the

counterpart for the intermediate window reads

Δ
c-seaawinμ ¼

Z

∞

0

ds fwinðsÞðRD0D0 þ RDþD− þ RDþ
s D

−
s
ÞðsÞ;

ðD4Þ

where fwinðsÞ is defined in Eq. (B2).

For the D-meson masses, we use the values provided by

the Particle Data Group 2020 [100]. Our results are

Δ
c-seaa

hvp
μ

a
hvp
μ

¼ 0.314

720.0
ð∼0.04%Þ; ðD5Þ

Δ
c-seaawinμ

awinμ

¼ 0.015

236.60
ð∼0.006%Þ; ðD6Þ

where we have inserted the a
hvp
μ ¼ 720.0 value from

Ref. [17]. The charm sea-quark contributions are thus

negligible at the current level of precision.

We notice that Δc-seaa
hvp
μ =a

hvp
μ is much smaller than the

effects found in the HVP contributions to the QED running

coupling, namely ∼0.4% [62]. We interpret the difference

as follows: The typical scale in a
hvp
μ is given by the muon

mass, which is well separated from the D-meson masses.

Therefore the D-meson effects are strongly suppressed. In

comparison, the running coupling was investigated at the

GeV scale and the suppression is less strong.

In the intermediate window, the charm sea quarks are

even more suppressed, as seen in the tiny value of

Δ
c-seaawinμ =awinμ . This results from the following fact:

Creating D-meson pairs requires a center-of-mass energy

of ∼4 GeV, corresponding to t ∼ 0.05 fm, which is much

smaller than the lower edge of the intermediate window,

t0 ¼ 0.4 fm. Therefore, the D-meson pair creation con-

tributes mostly to the short-distance window ðahvpμ ÞSD. In
fact, the effect in the intermediate window Δ

c-seaawinμ

amounts to at most 5% of the total Δc-seaa
hvp
μ .

Charm sea quarks lead not only to on-shell D mesons in

the RðsÞ ratio, but also to virtual effects below the threshold

for charm production. This is seen explicitly in the

perturbative calculation [115], where the two effects are

of the same order. At present, we do not have a means to

estimate these virtual effects on the quantity awinμ , in which

they are less kinematically suppressed. Therefore, we will

conservatively amplify the uncertainty that we assign to the
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neglect of sea charm quarks by a factor of 3 relative to the

prediction of Eq. (D6). This estimate also generously

covers the effect on awinμ which follows from adopting

the perturbative charm-loop effect on RðsÞ down to

s ¼ 1…1.5 GeV2. Thus, rounding the uncertainty to one

significant digit, we quote

Δ
c-seaawinμ ¼ 0.05 × 10−10 ðD7Þ

as the uncertainty on awinμ due to the quenching of the charm

in the final result Eq. (44) for the isosymmetric theory.

APPENDIX E: LIGHT PSEUDOSCALAR

QUANTITIES

In Table VII, we provide our results for the light

pseudoscalar masses and decay constants, in lattice units,

for all our lattice ensembles.

The pseudoscalar decay constant on ensembles with

open boundary conditions is computed using the same

procedure as in Ref. [55]. We construct the ratio

Rðx0; y0Þ ¼
ffiffiffiffiffiffiffi

2

mP

s

�

CAðx0; y0ÞCAðx0; T − y0Þ
CPðT − y0; y0Þ

�

1=2

ðE1Þ

as an estimator for the (improved, but unrenormalized)

decay constant, with mP the pseudoscalar mass. The two-

point correlation functions are

CPðx0; y0Þ ¼ −
a6

L3

X

x⃗;y⃗

hPðx0; x⃗ÞPðy0; y⃗Þi; ðE2Þ

CAðx0; y0Þ ¼ −
a6

L3

X

x⃗;y⃗

hA0ðx0; x⃗ÞPðy0; y⃗Þi; ðE3Þ

with P ¼ ψ̄ rγ5ψ r0 and Aμ ¼ ψ̄ rγ0γ5ψ r0 þ acA∂μðψ̄ rγ5ψ r0Þ
the local OðaÞ-improved interpolating operators for the

pseudoscalar and axial densities, respectively. The coef-

ficient cA has been determined nonperturbatively in

Ref. [116] and the valence flavors are denoted by r and

r0, with r ≠ r0. In practice we average the results between

the two source positions y0 ¼ 2a and y0 ¼ T − 2a, close to
the temporal boundaries. As shown in Ref. [55], a plateau

Ravg is obtained at large x0 where excited state contribu-

tions are small. On ensembles with periodic boundary

conditions, we use the estimator

Ravg ¼
2ZP

m2
P

×mPCAC
rr0 ; ðE4Þ

where mPCAC
rr0 is the average partial conservation of the

axial current (PCAC) quark mass of flavors r and r0, and
ZP the overlap factor of the pseudoscalar meson. The

average PCAC mass is defined from an average in the

interval ½ti; tf � via

mPCAC
rr0 ¼ a

tf − ti þ a

X

tf

x0¼ti

∂̃0CAðx0; y0Þ
2CPðx0; y0Þ

; ðE5Þ

where the source position y0 is fixed as specified above for

open boundary conditions and randomly chosen for peri-

odic boundary conditions. The interval is chosen such that

deviations from a plateau which occur at short source-sink

separations and close to the time boundaries are excluded

from the average.

From the bare matrix element Ravg, the renormalized and

OðaÞ-improved pseudoscalar decay constant is given by

fPðXa; XπÞ ¼ ZAðg̃0Þð1þ 3b̄Aam
av
q þ bAamq;rr0ÞRavg:

ðE6Þ

In this equation, ZA is the renormalization factor in the

chiral limit and bA and b̄A are improvement coefficients of

the axial current. These quantities are known from

Refs. [117–119]. The average valence-quark mass mq;rr0 ¼
ðmq;r þmq;r0Þ=2 and the average sea-quark mass mav

q ¼
ð2mq;l þmq;sÞ=3 are defined in terms of the bare subtracted

quark masses mq;r ≡ ð2κrÞ−1 − ð2κcritÞ−1, with κcrit the

critical value of the hopping parameter at which all three

PCAC masses vanish. In practice, we use the relation [60]

mq;rr0 ¼
mPCAC

rr0

Z
−
ðrm − 1Þ
Zrm

mPCAC
av þ OðamPCAC

rr0 ; amPCAC
av Þ;

ðE7Þ

where mPCAC
av ¼ ðmPCAC

ll0 þ 2mPCAC
ls Þ=3 is the average sea

PCAC quark mass and the coefficients Zðg̃0Þ ¼ ZmZP=ZA

and rmðg̃0Þ have been determined nonperturbatively in

Refs. [120,121].

The lattice data for the light pseudoscalar masses and

decay constants are corrected for finite-size effects using

chiral perturbation theory (χPT) as described in Ref. [77].

Those corrections are small (the negative shift is at most

1.3σ) and we find that they correctly account for FSE on

the ensembles H105/N101, which are generated using the

same action parameters but different lattice volumes.
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APPENDIX F: TABLES

1. Pseudoscalar observables

TABLE VII. Pseudoscalar masses and decay constants in lattice units, including finite-size corrections. Value of the gluonic

observable t0=a
2 and the two dimensionless variables ỹ and ϕ2 used in the extrapolation to the physical point.

ID amπ amK afπ afK t0=a
2 ỹ ϕ2

A653 0.21193(91) 0.21193(91) 0.07164(23) 0.07164(23) 2.171(08) 0.1108(06) 0.7803(70)

A654 0.16647(121) 0.22712(89) 0.06723(33) 0.07206(23) 2.192(11) 0.0777(08) 0.4860(77)

H101 0.18217(62) 0.18217(62) 0.06377(26) 0.06377(26) 2.846(08) 0.1034(09) 0.7557(56)

H102 0.15395(71) 0.19144(57) 0.06057(30) 0.06365(23) 2.872(13) 0.0818(08) 0.5445(54)

H105 0.12136(124) 0.20230(61) 0.05800(110) 0.06431(29) 2.890(08) 0.0555(26) 0.3405(70)

N101 0.12150(55) 0.20158(31) 0.05772(31) 0.06418(20) 2.881(03) 0.0561(07) 0.3403(32)

C101 0.09569(73) 0.20579(34) 0.05496(31) 0.06330(15) 2.912(05) 0.0384(07) 0.2133(33)

B450 0.16063(45) 0.16063(45) 0.05674(15) 0.05674(15) 3.662(13) 0.1015(06) 0.7559(48)

S400 0.13506(44) 0.17022(39) 0.05394(38) 0.05675(32) 3.691(08) 0.0794(10) 0.5387(37)

N451 0.11072(29) 0.17824(18) 0.05228(13) 0.05789(08) 3.681(07) 0.0568(03) 0.3610(19)

D450 0.08329(43) 0.18384(18) 0.04989(21) 0.05766(12) 3.698(06) 0.0353(03) 0.2052(21)

D452 0.05941(55) 0.18651(15) 0.04827(49) 0.05704(08) 3.725(01) 0.0192(04) 0.1052(19)

H200 0.13535(60) 0.13535(60) 0.04799(27) 0.04799(27) 5.151(33) 0.1008(15) 0.7549(86)

N202 0.13424(31) 0.13424(31) 0.04821(17) 0.04821(17) 5.140(26) 0.0982(08) 0.7410(53)

N203 0.11254(24) 0.14402(20) 0.04645(14) 0.04907(12) 5.146(08) 0.0744(05) 0.5214(24)

N200 0.09234(31) 0.15071(23) 0.04424(16) 0.04901(16) 5.163(07) 0.0552(05) 0.3522(25)

D200 0.06507(28) 0.15630(15) 0.04226(13) 0.04910(11) 5.181(11) 0.0300(04) 0.1755(16)

E250 0.04170(41) 0.15924(09) 0.04026(19) 0.04864(06) 5.204(04) 0.0136(03) 0.0724(14)

N300 0.10569(23) 0.10569(23) 0.03819(14) 0.03819(14) 8.545(33) 0.0970(09) 0.7636(38)

N302 0.08690(34) 0.11358(28) 0.03663(15) 0.03860(15) 8.524(25) 0.0713(09) 0.5150(43)

J303 0.06475(18) 0.11963(16) 0.03444(12) 0.03872(16) 8.612(23) 0.0448(04) 0.2888(18)

E300 0.04393(16) 0.12372(10) 0.03255(09) 0.03832(17) 8.622(06) 0.0231(02) 0.1331(10)

J500 0.08153(19) 0.08153(19) 0.02989(10) 0.02989(10) 13.990(69) 0.0942(08) 0.7439(51)

J501 0.06582(23) 0.08794(22) 0.02882(15) 0.03059(15) 13.992(67) 0.0661(09) 0.4850(41)
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2. Isovector contribution

TABLE VIII. Values of the isovector contributions, with and without fπ rescaling, in units of 10
−10, for the local-local (LL) and for the

local-conserved (CL) discretizations of the correlation function, as described in the main text. The finite-size correction has been

applied.

Scale t0-set 1 Scale fπ-set 1 Scale t0-set 2 Scale fπ-set 2

ID ðLLÞ ðCLÞ ðLLÞ ðCLÞ ðLLÞ ðCLÞ ðLLÞ ðCLÞ
A653 173.94(36) 176.25(37) 185.71(28) 189.09(32) 142.15(35) 151.27(37) 150.38(21) 162.53(26)

H101 172.10(39) 173.35(39) 185.49(47) 187.48(49) 150.16(39) 155.36(39) 161.03(40) 168.34(46)

H102 178.54(52) 179.75(52) 186.34(56) 187.95(58) 157.27(53) 162.26(53) 163.73(51) 169.87(56)

H105* 184.82(50) 186.01(49) 188.15(189) 189.51(199) 164.28(53) 169.09(51) 167.07(159) 172.35(187)

N101 186.31(43) 187.56(42) 188.94(60) 190.28(61) 165.61(44) 170.48(43) 167.80(54) 173.07(58)

C101 192.19(41) 193.40(41) 190.56(62) 191.69(64) 172.25(43) 176.94(42) 170.87(57) 175.33(62)

B450 168.12(38) 168.82(38) 182.47(35) 183.62(36) 152.53(38) 155.68(38) 165.14(33) 169.63(34)

N451 183.40(28) 184.05(28) 188.25(29) 189.04(29) 168.49(27) 171.40(27) 172.83(27) 176.17(28)

D450 189.36(26) 190.03(27) 189.80(46) 190.49(47) 174.95(26) 177.79(26) 175.35(43) 178.28(45)

D452 194.96(33) 195.61(33) 192.97(101) 193.58(104) 181.21(34) 183.97(34) 179.42(93) 182.00(101)

H200* 165.17(91) 165.44(91) 179.46(90) 179.92(90) 155.70(89) 157.21(89) 169.07(86) 171.19(87)

N202 168.14(68) 168.45(69) 182.46(52) 182.97(53) 158.36(67) 159.92(68) 171.77(50) 173.98(52)

N203 173.75(43) 174.11(43) 183.80(44) 184.25(44) 164.22(43) 165.77(43) 173.65(43) 175.60(44)

N200 180.17(43) 180.43(42) 185.21(50) 185.53(50) 171.02(44) 172.41(43) 175.77(49) 177.37(50)

D200 188.37(38) 188.69(37) 189.03(38) 189.36(38) 179.52(39) 180.91(38) 180.14(37) 181.56(38)

E250 194.75(26) 194.96(26) 191.77(45) 191.96(46) 186.36(27) 187.61(26) 183.54(44) 184.66(45)

N300 160.99(59) 161.08(59) 177.99(61) 178.15(60) 156.34(59) 156.89(59) 172.86(60) 173.65(60)

J303 179.51(54) 179.57(55) 184.77(56) 184.84(56) 175.24(55) 175.67(55) 180.39(56) 180.88(56)

E300 188.05(49) 188.13(49) 188.14(47) 188.21(47) 183.96(49) 184.38(50) 184.05(47) 184.47(47)

J500 162.00(72) 162.04(72) 178.03(65) 178.07(65) 159.69(72) 159.97(72) 175.52(65) 175.86(65)

J501 170.16(98) 170.15(98) 182.04(83) 182.07(83) 167.92(98) 168.13(98) 179.68(83) 179.98(83)
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3. Isoscalar contribution

TABLE IX. Values of the isoscalar contributions, with and without fπ rescaling, in units of 10−10, for the local-local (LL) and for the

local-conserved (CL) discretizations of the correlation function, as described in the main text. The finite-size correction has been

applied.

Scale t0-Set 1 Scale fπ-Set 1 Scale t0-Set 2 Scale fπ-Set 2

ID ðLLÞ ðCLÞ ðLLÞ ðCLÞ ðLLÞ ðCLÞ ðLLÞ ðCLÞ
A653 57.98(12) 58.75(12) 61.90(9) 63.03(11) 47.38(12) 50.42(12) 50.13(7) 54.18(9)

H101 57.36(13) 57.78(13) 61.83(16) 62.49(16) 50.05(13) 51.78(13) 53.68(13) 56.11(15)

H102 55.30(16) 55.71(16) 58.28(19) 58.82(20) 47.94(16) 49.70(16) 50.38(17) 52.53(18)

H105* 53.16(16) 53.57(15) 54.65(81) 55.12(84) 45.83(15) 47.61(15) 47.05(66) 49.01(76)

N101 53.55(11) 53.97(11) 54.70(25) 55.16(26) 46.18(11) 47.99(11) 47.12(21) 49.06(24)

C101 52.67(11) 53.08(11) 51.89(26) 52.27(27) 45.39(11) 47.18(11) 44.74(22) 46.46(24)
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