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1 Introduction

Thermonuclear fusion of deuterium and tritium promises to be a clean energy source [1]
with the possibility to provide great amounts of energy [2]. For this, the deuterium and
tritium need to be heated to a sufficiently high temperature around 15keV to start the
fusion process [3].

Several different ways to achieve fusion are being pursued like for example the Magnetic
Confinement Fusion (MCF) [3] and Inertial Confinement Fusion (ICF) [4]. MCEF, as the
name already states, uses magnetic fields to confine the deuterium and tritium (D-T)
which, at the needed temperatures, are in the form of a plasma. Heating can for example
be achieved by inducing a current inside the plasma, that by Ohmic heating, increases
the temperature. The MCF approach with Ohmic heating is for example used at the
International Thermonuclear Experimental Reactor (ITER) [3].

ICF on the other hand works by compressing a pellet of deuterium and tritium and heating
it, in order to start a fusion reaction. The density of the so-called hot-spot, where fusion
initially occurs, needs to be sufficiently high for the alpha particles, that are formed in
the fusion reaction, to deposit their energy inside the confined plasma, thereby further
increasing the plasma temperature and enabling more fusion reactions to occur. This
dynamic is called ignition and can be achieved at ion temperatures of 10 keV with an
aerial density of pR > 0.3 g/ cm? where p is the mass density and R the radius of the
hot-spot [4].

The compression is achieved by heating the shell of the millimeter sized D-T pellet with
high intensity laser pulses [5]. The shell is made of carbohydrates and turns into a plasma
due to the laser pulse depositing its energy in the shell [4]. It then rapidly expands
and in turn, due to conservation of momentum, compresses the D-T fuel to the needed
densities [2]. In the so-called direct drive ICF the laser is directly incident on the pellet
whereas in indirect drive the laser heats a high-Z material that surrounds the pellet [6].
The high-Z material then emits x-rays that in turn heat the pellet shell [7].

Indirect drive ICF is used at the National Ignition Facility (NIF) in Livermore [5] or the
Laser Mégajoule (LMJ) facility in France [8], for example.




Using thermonuclear fusion as an energy source requires a reactor that is economically
viable which means that a positive energy gain in the fusion reaction is needed [2]. This
has proven to be a challenging task as the laser plasma interaction is subject to instabilities,
so-called laser-plasma instabilities (LPI), reducing the efficiency of the energy transfer
from the laser to the pellet shell [1,9].

In recent years an important milestone has been reached as the energy released by a
fusion reaction at NIF was twice the peak kinetic energy of the imploding shell of the
pellet [10]. The energy yield is, however, still several orders of magnitude below the total
energy that is needed to achieve fusion [10]. In order to yield enough energy to achieve
an overall positive gain of the system, the laser plasma coupling in particular needs to be
improved upon [11] which we will discuss in the following.

At first, an efficient energy transfer from the laser to the pellet shell, which is turned
into a plasma by the laser, is necessary for efficient thermonuclear fusion [11]. It has
been found that the efficiency with which the laser energy is absorbed by the plasma
significantly increases for shorter wavelengths below 530 nm and longer pulse durations
above 2ns [11,12]. For Nd:glass lasers at 1053 nm wavelength, which are commonly
used in ICF experiments [4, 5, 8], it is thus beneficial to use harmonic conversion. This
is a non-linear optical process that takes place in specific crystals and creates waves of
half [13], a third [14], a fourth [15] or a fifth [16] the fundamental wavelength. Of these
we will be mainly concerned with the wavelength halving (or frequency doubling), the
so-called Second-Harmonic Generation (SHG), for pulses with a duration in the order of
nanoseconds.

As mentioned before, one of the challenges in ICF experiments is the occurrence of
instabilities in the laser plasma interaction [1,9]. The Stimulated Raman and Brillouin
Scattering (SRS and SBS), for example, are instabilities that cause part of the incident light
from the laser to be back reflected thus reducing the efficiency of the energy transfer from
the laser to the plasma [4,7]. SRS and SBS are parametric instabilities where an incident
photon decays into a back reflected photon and an electron- or ion-wave, respectively [7].
In the so-called Two Plasmon Decay (TPD), a photon decays into two electron waves [4,17].
The electron waves created by SRS and TPD generate fast electrons, that preheat the
pellet core before the pellet is compressed. An increased temperature of the pellet core
increases the energy needed to compress it to the intended densities [17].

During the compression itself, another instability can arise, the so-called Rayleigh-Taylor
Instability (RTI). It is a hydrodynamic instability, which arises at the interface between
two fluids exerting pressure onto each other and amplifies any imperfection in this
interface [18]. In ICF, RTI arises between the ablator and the pellet core and limits
the maximum compression that can be achieved [19]. The instability is seeded by non-




uniformity in the spatial laser profile incident on the pellet shell [20].

Beam non-uniformity and RTI can be mitigated with the indirect drive ICF approach
because the heated high-Z material surrounding the pellet generates an x-ray pulse that
is more uniform than the incident laser pulse. The drawback is a lower energy coupling
efficiency from the laser to the pellet since energy is lost to heating the surrounding
material [6]. Direct drive ICF can achieve more efficient laser plasma energy coupling but
is also more sensitive to non-uniformity of the laser pulse, and thus RTI, [5] since thermal
smoothing is weaker than in indirect drive ICF [4].

Several developments have been made to control instabilities. The beam non-uniformity,
which for example seeds RTI, is improved by beam smoothing techniques [17].

This can for example be done by sending the laser beam through a random phase plate.
The phase plate splits the laser beam into multiple beamlets with a different phase each
which, upon focusing the laser beam, create a speckle pattern. This speckle pattern has
a variation in intensity that is on the scale of a focus created without the random phase
plate. The lateral small scale of the intensity variation also generates intensity variation in
the propagation direction. Since the beam propagates through a plasma as it is absorbed,
the varying intensity in propagation direction smoothes the distribution of the absorbed
energy at each point along the surface of the pellet [21]. Smoothing only occurs along
the propagation direction because lateral smoothing from thermal effects is small for the
short wavelengths that are used in order to achieve efficient energy absorption [22].

For cases of small propagation depths of the laser in the plasma, the smoothness can
be further increased by temporally varying the speckle pattern. This can for example
be achieved by reducing the coherence time of the laser to below the temporal delay
between the beamlets. In this case, the so-called Induced Spatial Incoherence (ISI), a
phase plate is utilized that generates equal temporal delays between neighboring beamlets.
Measurements with this technique have shown a decrease in SRS by up to three orders of
magnitude when reducing the coherence time from 2 ns to 2 ps [23].

Temporal variation of the speckle pattern could also be achieved with the so-called
Smoothing by Spectral Dispersion (SSD). Here a broadband beam is spectrally dispersed
before it is sent through a random phase plate. The beamlets created by the phase plate
thus have different frequencies which causes their phase difference to vary over time. With
the random phase delay between the frequency components caused by the phase plate,
the laser beam produces a speckle pattern that varies over time [20].

Since instabilities like SRS, SBS or TPD are parametric instabilities that rely on coherent
lasers [1], a widely pursued approach is to use broadband, and thus temporally less
coherent [24], lasers to suppress the growth of these instabilities [1,25,26].
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Numerical simulations have shown that increasing the bandwidth of a laser to Aw/w ~ 1%
can increase the threshold intensities, above which SRS and TPD occur, by a factor between
2 and 5 depending on the instability and wavelength of the laser [27].

In order to achieve suppression of instabilities and to increase the energy transfer efficiency
from a laser pulse to the plasma, efforts have gone into frequency conversion of incoherent
broadband laser pulses [25, 28, 29].

This is challenging since efficient frequency conversion requires the so-called phase match-
ing condition to be fulfilled which relates the incidence angle of the pulse on the mixing
crystal to its wavelength. The angle at which phase matching is achieved is also called the
phase matching angle. In general, phase matching is not fulfilled for wavelengths other
than the central wavelength which can, depending on the crystal thickness, lead to SHG
bandwidths far below the ~ 1% needed to suppress laser plasma instabilities. Several
ways to extend the bandwidth of the frequency conversion have thus been investigated.

Gao et al. [25] have theoretically investigated the collinear frequency conversion of
incoherent broadband pulses. Collinear in this means that all laser pulses involved in the
conversion process propagate in the same direction. They propose to use a 15% deuterium
doped DKDP crystal, which has a bandwidth of 12nm (1.1% at 1053 nm), for efficient
frequency doubling with a predicted conversion efficiency of up to 80%.

DKDP (Potassium Dideuterium Phosphate) is a crystal that is similar to KDP (Potassium
Dihydrogen Phosphate) with the difference that some hydrogen atoms in the lattice are
replaced with deuterium atoms. Varying amounts of deuterium can be specified by the
deuterium doping or deuteration level.

In particular, a DKDP crystal with a deuteration level of 15% allows for a phase matching
that is in the first order insensitive to the wavelength of the input laser pulse. This increases
its acceptance bandwidth for frequency doubling.

The frequency doubling of incoherent broadband laser pulses was investigated with a
small aperture 15% DKDP crystal and shows conversion efficiencies up to 70% with a loss
in bandwidth from 1% in the fundamental pulse to 0.6% in the harmonic pulse. This
measurement is planned to be repeated and verified with a large aperture crystal once it
is delivered [25].

A different approach is chosen by Szabd et al. [30] in which the laser pulse is angularly
dispersed before frequency conversion. In this way, the change in the phase matching
angle with the wavelength can be compensated which increases the acceptance bandwidth
of the frequency conversion process from 0.52 nm to 20 nm [30].

Another approach is pursued by Dorrer et al. [28] where an incoherent broadband pulse is
mixed with a coherent narrowband pulse of twice the frequency. The resulting laser pulse
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is an incoherent broadband pulse with three times the frequency of the original incoherent
pulse. To achieve this, the broadband pulse is, like in the approach by Szabd et al., angularly
dispersed to compensate for the variation in the phase matching angle. Additionally, a
small offset to the phase matching angle of the central frequency is introduced by which an
even broader spectrum can be achieved with only slight losses to the conversion efficiency
of the central wavelength. This is because the maximum conversion efficiency for the
wavelengths around the pulses central wavelength is reached by detuning the phase
matching angle in the same direction from the central wavelength’s phase matching angle.
With this scheme the bandwidth of frequency tripling can be extend from 0.35nm to
28 nm [28].

The work on this thesis is done at the PHELIX laser facility. PHELIX is the Petawatt High
Energy Laser for Heavy Ion Experiments located at GSI (Gesellschaft fiir Schwerlonen-
forschung) in Darmstadt. It will be a platform for future experiments concerning the
interaction of an incoherent broadband laser pulse with a plasma. An extension of the
PHELIX laser to be capable of generating these incoherent pulses is however still needed.
The goal of this work is to develop a simulation tool that is capable of simulating incoher-
ent broadband SHG which should in particular be able to simulate the second-harmonic
conversion at the PHELIX laser facility.

The theoretical basis for calculating narrowband frequency conversion has been laid
by Armstrong et al. [31] in 1962. Extensions to this theory in order to accommodate
broadband laser pulses can be found in [32].

In this thesis I will lay the foundation to simulating SHG for incoherent broadband pulses.
I start by developing a tool to simulate coherent monochromatic light and will extend this
to also include broadband and incoherent pulses in the further proceedings of this thesis.
The assumed setup for the simulations will be collinear SHG since that is also the setup at
PHELIX for SHG. I will also solely focus on KDP and DKDP crystals since 70% deuterated
DKDP crystals are implemented at PHELIX. These crystals are also the only type of crystal
that can currently be grown large enough for the apertures needed for the PHELIX laser
and high energy lasers that are used in ICF experiments [28].

I will start in chapter 2 by outlining the physical foundations and notations needed
for the simulation of the SHG, taking a look at the mixing equations that describe SHG
and the most important parameters in these equations. It is followed in chapter 3 by a
short overview over laser systems that focus on the study of laser plasma interactions,
including the PHELIX laser and its parameters as these represent the input parameters to
the SHG simulations in this thesis. Chapter 4 deals with the description of the solutions
of the aforementioned mixing equations. This includes analytical solutions of the mixing
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equations and a discussion of numerical ways to solve them. In particular I will examine
the numerical solutions developed in this work and study their results. In chapter 5 I will
benchmark the here developed code against the results of the other mentioned solutions
to the mixing equations as well as compare the code’s results to the measured conversion
efficiency at the PHELIX laser facility. Finally, in chapter 6 I will summarize the work
done in this thesis and shortly outline the work following this thesis concerning broadband
SHG and laser plasma instabilities.
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2 Fundamentals

Firstly, we want to take a look at the physics underlying the simulations in this thesis,
namely the Second-Harmonic Generation (SHG). We will discuss the equations describing
this process and take a closer look at important parameters in these.

The SHG is a second order nonlinear optical effect that occurs in a nonlinear crystal
when a laser pulse propagates through it. Similar to other nonlinear optical effects, the

second order nonlinear polarization " €0 X(Q)EQ of the crystal, which is the nonlinear
response of the crystal to the electromagnetic field of the laser, can cause an energy transfer
between electromagnetic fields of different frequencies. The parameters here are the
total electric field E, the second order dielectric susceptibility tensor x(?) and the vacuum
permittivity €y [32].

In the case of SHG the transfer occurs between light waves of frequencies w and 2w where
the first will be referred to as fundamental or input and the latter as frequency doubled
or harmonic wave.

2.1 Narrow Band Second-Harmonic Generation - The Baseline

2.1.1 Mixing Equations

The derivation of the mixing equations for the SHG shall be shortly outlined here starting
with the wave equation for a light wave in a medium with a finite nonlinear susceptibility

[33] 2 92 2
ne 0%\ - 0% —S(NL)

using the index of refraction n, the magnetic vacuum permeability yy and the vacuum
speed of light c. The next step is to insert the superposition of three electric fields

15



E = E’wl + EwQ + Ew;; of frequencies w;, j = 1,2, 3 into equation (2.1.1) [33]. This yields
the general equation for all second order nonlinear optical effects, which in particular
includes the SHG where the frequencies are chosen to satisfy ws = wy + ws with w; = ws.
The term representing SHG in the nonlinear equation has the form [32]

- (NL) N
Pgng = cox P E1 Es. (2.1.2)

The next step is to make the ansatz
E; (7 t) = € Ej(2)¢ ==t (2.1.3)

with the unit vectors €;, the complex field envelopes E;, the wave numbers k;, in the
z-direction and the frequencies w; for j = 1,2, 3 [32]. The propagation direction is set
to the z-axis with which the Laplace operator in equation (2.1.1) can be simplified to
0%/022.

The slowly varying envelope approximation is used where the envelope is assumed to
have a slow variation in the propagation direction or more specifically a small derivative
with respect to z. The second derivative of the field envelope is thus smaller than the first
derivative and can thus be neglected [32].

From this, three differential equations can be extracted by comparison of the coefficients
of the temporal waves e~*i’. These equations have the form [33]

OF3 w3deff

0z nsc

8(;51 _ w1deffE~ * fyeiAkz (2.1.4)
z nic

OFy _ Z.WQdeff Fy* Fye—itks

0z nacC

where the effective nonlinearity d.¢ and the phase mismatch Ak are introduced. These
are defined as [32]

deff = 51 (dggég) and Ak = ]{73 — kQ — kl (215)

using the third order tensor 2d = ¥ and the notations ki, = ki, ko, = ko and ks, = ks.
For SHG it suffices to write only two equations if the waves F; and F, are the same
wave [33]. We will, however, use three equations instead, since this allows the study
of SHG setups with distinguishable waves, as can be the case in birefringent crystals. A
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common use case is that the input wave is split into an extraordinary and an ordinary
wave, which in general have different indices of refraction [33].

Using the mixing equations we want to take a quick look at the energy flow between the
three waves. From the equation for intensity

1

~ 12 1 ~ o~
Ij = 206071]- ‘E]‘ = iceonjEjEj* (2.1.6)

we can derive the Manley-Rowe relation for the energy flow between waves:

gzill = ;ZZ = —gzi‘z = —eoxPIm(E, Ey" Ege A%, (2.1.7)
Besides highlighting the pairwise conversion of photons from the fundamental waves to
the harmonic wave [33] we can observe that, in the case of perfectly aligned phases of
the three waves, the energy flow rate is proportional to the field amplitudes of all three
waves. Energy flow is however always restricted when one or more of the waves have low
intensity and thus field amplitude.
In the following we will use the term conversion strength for the energy flow rate between
the waves to prevent ambiguity.

We can extend the equations (2.1.4) to also include linear absorption of the waves in the
crystal by adding a linear term to each of the equations. They take the form [31]

OF; _ wgdeffE Fyeidhs _ %Eg

0z nac 2

OE _ wldeffE Fae—ikz _ B (2.1.8)
0z nic 2

0E, _ w2deffE E eszkz . %EQ,

0z nac 2

with the linear absorption coefficients «; for the respective waves. An integration of the
differential equations (2.1.8) without the mixing terms over the propagation distance
2 yields the solutions E;(z) = E;(0)e~%%/2. The factor 1/2 in the exponent vanishes if
the intensity is calculated from this. This represents the typical formulation of linear
absorption.

It of course also breaks the Manley-Rowe relation as now the change in every wave intensity
is proportional to the intensity itself and is thus generally not equal to the other changes
in intensity.
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2.1.2 Nonlinear Susceptibility

We will now take a look at the properties of the nonlinear susceptibility which governs
the strength of a nonlinear interaction. It is a 3 x 3 x 3 tensor x(?) = XEJQ% (w1, w2, ws)
that, for all combinations of +w,, with m = 1,2, 3, has 324 components for all different
second order mixing processes This number can however be reduced to 10 independent
components using the following symmetries [34].

First, the nonlinear polarization p (equation (2.1.2)) is a measurable and thus a real
quantity. Second, the first two indices can be exchanged, since the indices of the cor-
responding waves are interchangeable. When using lossless or nearly lossless media all
three indices are interchangeable. This is assumed to be true for this work. The nonlinear
susceptibility, or more commonly the nonlinear tensor d, is then denoted in a 3 x 6 matrix
that is multiplied with a 6-dimensional vector depending on the polarization of the electric
fields [34]

€31€21
€39€
din di2 diz dsg dis dis 62:23622
déséy = | dig doo dozs dos dzs di2 esreas | 33690 | (2.1.9)
dis dog dzz doz diz dss

e31€23 1 e33e21
€31€22 + €32€21

Taking the crystal symmetry group into account, more coefficients are dependent on each
other or equal to zero [35].

As mentioned in the introduction we are mainly concerned with KDP and DKDP crystals
as they are used at PHELIX and are the only crystals that can be grown large enough for
the large apertures needed for ICF lasers. These crystals belong to the symmetry group
42m [36], for which only the coefficient dsg is non-zero [35].

Now, using the principal axes of the crystal as a coordinate system, with the z-axis being
the optical axis, the vectors €; can be represented as polar vectors with the angle § between
the propagation direction and the optical axis of the crystal and the azimuthal angle ¢
between the propagation direction and the z-axis. Depending on whether the electric
field is ordinarily (o, § = 0) or extraordinarily (e, § # 0) polarized, the vector €; takes the
form [36]

—sin¢ cos 0 cos ¢
€jo(¢,0)= | cos¢ and €;¢(¢,0) = | cosfsing |. (2.1.10)
0 —sin 6
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Depending on the polarization of the three waves involved in the frequency mixing process,
equation (2.1.5) for dq can be evaluated using equations (2.1.9) and (2.1.10). For a
crystal in the 42m symmetry group, like for example a DKDP crystal, and assuming
collinear propagation of the laser beams, the effective nonlinearity computes to [35]
dr — {d36 sinfsin2p  typel 2.1.11)
dsgsin 20 cos2¢  type II,

where type I and type II denote phase matching schemes with specific polarizations.
Type I has the fundamental wave polarized ordinarily and the harmonic extraordinarily,
whereas type II has one fundamental in ordinary polarization and the other fundamental
as well as the harmonic wave in extraordinary polarization.

For the nonlinear matrix element ds of KDP and DKDP the literature provides different
values (see table 2.1).

The value of dsg for a KDP crystal ranges from 0.376 to 0.46 pm/V with more recent sources
giving preference to 0.39 pm/V [37,38]. An overview over the different published values
is given in table 2.1 sorted from top to bottom by the year of publication.

The values given in papers published before 1972 [39,40] were converted from Gaussian
units to SI units using the conversion factor [34,41,42]

4
T _ 4192104V

—_— _—. 2.1.12
c-10—4 cm/ergl/? ( )

These two oldest measurements (see table 2.1) differ by more than their respective
uncertainty from the more recently measured value 0.39 pm/V. An explanation is given by
Eimerl [43] suggesting a possible systematic error due to the use of focused laser beams in
older measurements. Their evaluation is more difficult as walk-off has a greater influence
at the focus and the focal spot is more sensitive to beam non-uniformities and diffraction.
Since the values measured since 1986 starting with [43] all lie around 0.39 pm/V and
papers such as [37, 38] recommend this value as well, it will be assumed as correct
disregarding the two deviating values described above.

For the DKDP crystal there are significantly fewer measurements. Most values used in the
literature [38,42-45] refer to the relative measurement in [46] giving d3s for DKDP as
0.92 d36(KDP). Using dss(KDP)= 0.39 pm/V coincidences with the absolute measurements
of ds(DKDP) giving 0.367 [44] and 0.37 pm/V [38] within the error margin.

A difficulty is that some literature [42,47] uses the 0.44 pm/V and 0.46 pm/V value for
ds36(KDP) and thus obtains a value of 0.4 pm/V for d3s(DKDP). This value is utilized by the
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SNLO software [47], a commonly used numerical tool to calculate nonlinear processes,
but will be disregarded in this work following the above discussion. SNLO confirms this as
it uses d3g(KDP) = 0.39 pm/V for KDP itself.

An additional difficulty with the effective nonlinearity is that the literature [38,44,46]
does not state the deuteration level of the DKDP crystals measured. A DKDP crystal
of an arbitrary deuteration level might thus have a dss differing from the three values
presented above. A dependence of the effective nonlinearity on the deuteration level was
not described in the surveyed literature.

For this work we will assume that the 70% deuterated DKDP crystals implemented at
PHELIX have the same effective nonlinearity as the measured crystals at dss(DKDP) =
0.37 pm/V.

ds¢(KDP) in pm/V | d3s(DKDP) inpm/V | source
0.92 + 0.04 d36(KDP) | [46]
0.46 4 0.04 [39]
0.44 + 0.02 [40]
0.39 [43]
0.376 + 0.005 0.367 + 0.012 [44]
0.39 +£0.02 [14]
0.39 [15]
0.39 0.37 [38]
0.39 + 0.03 [48]
0.398 [49]

Table 2.1: List of measured dzg values found in the literature sorted chronologically from
top to bottom.

2.1.3 Phase and Group Velocity Mismatch and the Index of Refraction

The phase mismatch Ak is the most important parameter in the SHG since it directly
influences the maximum efficiency that can be achieved by an experimental setup [32].
Efficiency is simply the ratio of the output energy at the doubled frequency and the input
energy at the fundamental frequency. The phase mismatch is a measure for the speed in
which the harmonic wave gets out of phase with the polarization generated by the two
fundamental waves and thus destructively interferes with itself (see figure 2.1.1). This is
called back conversion. Maximum conversion efficiency is achieved for Ak = 0 where the
phase relation between polarization and harmonic wave is constant [32]. This is called
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perfect phase matching or just phase matching and corresponds to the case in which the
frequency doubled wave and the nonlinear polarization have the same phase velocity and
thus always constructively interfere.

phasors

-
FEret

Figure 2.1.1: Phasors Ej —E exp(z;Ak) at equidistant positions z; accumulating a phase
due to a phase mismatch Ak and thus resulting in destructive interference
and a smaller net electric field amplitude of the harmonic wave. The phasors
represent the complex field amplitude of the generated wave at different
points along the propagation direction.

Because of the possibly vanishing conversion efficiency due to destructive interference, a lot
of effort is put into minimizing the phase mismatch. For different crystals and wavelengths
different phase matching techniques have been developed, for example the angular phase
matching, the temperature phase matching and the quasi-phase-matching [33].

We will focus on the so-called type I and type II phase matching configurations defined
above. These are angular phase matching techniques that are used with birefringent
crystals. More specifically, these schemes operate with collinear input and output beams
and have only one adjustable angle # for phase matching, which is (equivalent to the angle
9 defined in section 2.1.2) the angle between the k-vectors and the optical axis of the
crystal.

In order to better understand the phase matching schemes, let us take a look at the
mathematical form of the phase mismatch. With the dependence of the wave number on
the index of refraction it can be written as [36]

n3ws  Nawz MWl w

Ak:kﬁg—k‘z—kl = — — = *(2723—712—7%1) (2.1.13)
C C Cc C
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with the indices 1,2 representing the two fundamental waves and 3 representing the
harmonic wave. In the case of SHG, the relation w3 = 2ws = 2w; =: 2w holds and perfect
phase matching is achieved, if the difference 2n3 — ns — n; equals zero.

If we take three waves with the same polarization, two of which having the same wave-
length, like in SHG, the phase matching condition will only be fulfilled for some special
wavelengths for which the indices of refraction of the fundamental and harmonic waves
coincide. In order to achieve phase matching for any wavelength, some way of changing
the indices of refraction independently of each other is necessary.

The type I and II phase matching schemes therefore make use of both ordinary and
extraordinary polarization in birefringent crystals, so that the angle dependence of the
extraordinary index of refraction can be used to achieve phase matching.

As a reminder, in type I phase matching the two fundamental waves are set in ordinary
polarization and the harmonic wave is in extraordinary polarization. Type II has one
fundamental wave in ordinary and one in extraordinary polarization respectively and the
harmonic wave in extraordinary.

When plotting the index of refraction over the angle 6 (the angle between the propagation
direction of the pulse and the optical axis of the crystal), perfect phase matching can, in the
case of type I phase matching, be achieved at the point of intersection of the extraordinary
ellipse and ordinary circle (see figure 2.1.2). In type II phase matching an intersection of
the ellipses 2 - na,, () and ng, ¢(0) + n,, () is needed. If the two shapes do not intersect,
perfect phase matching cannot be achieved.
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OA

Figure 2.1.2: Scheme of the indices of refraction for type I phase matching depending
on the angle between the k-vector and the optical axis (OA). The phase
matching condition is fulfilled at the intersection of the ellipse of ng, . = n3
with the circle of n,, = n; = ny. Here, the phase mismatch vanishes
and the wave vectors fulfill k1 = ko = 2k3 = k. The corresponding phase
matching angle is denoted as Opp,.

A phase mismatch of zero can in theory [33] lead to a conversion efficiency of one, but
the highest efficiencies achieved in experiments are around 0.87 [16].

There are several factors limiting the maximum conversion efficiency in an experiment.
The intensity distribution of a beam is never a perfect flat top, thus showing regions of
low intensity. Since the change of the harmonic field amplitude in equation (2.1.4) is
proportional to the electric field amplitude of the fundamental wave, these regions of
lower intensity have an energy conversion at lower rates than regions of higher intensity.
Because of this, the energy in the fundamental wave may not be fully converted to energy
in the harmonic wave after the propagation through a finite crystal.

Additionally the phase matching may be imperfect leading to a nonzero phase mismatch.
This can be caused by non planar wave fronts, for example, leading to deviations in
k-vector angles and thus nonzero phase mismatch Ak [16]. This can significantly reduce
the maximum achievable conversion efficiency down to zero as discussed at the beginning
of section 2.1.3 [32].

Longer crystals may lead to better conversion of low intensity regions in the laser beam, but
back conversion due to imperfect phase matching can occur at smaller phase mismatches
and limit the total output energy in the harmonic wave [32].
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2.1.4 Group Velocity Mismatch

As stated in the introduction, phase matching or near perfect phase matching with efficient
frequency conversion is typically only fulfilled for a frequency band narrower than the
~ 1% bandwidth needed to suppress laser plasma instabilities. A way to achieve more
broadband conversion efficiency is to set the second order term in the Taylor expansion of
the phase mismatch to zero [25]:

77777 Lo. (2.1.14)

This is equivalent to the group velocity mismatch Av, being zero, where v, ; is the
group velocity of the respective wave j = 1,2,3. This condition is fulfilled in different
crystals for only specific wavelengths, which are called retracing points. An example is
a 15% deuterated DKDP crystal with type I phase matching where the group velocities
of a 1053 nm ordinarily polarized and a 526.5 nm extraordinarily polarized wave are
equal [25]. Other examples for retracing points include a wavelength of 1.5 um for a
BBO crystal [50] or 1.3 um for an LBO crystal [51]. Group velocity matching can also be
achieved with temperature phase matching [33] or the angular dispersion of the input
laser pulse [29].

2.1.5 Spatial Walk-Off

Spatial walk-off is the result of a gradient of the refractive index over the propagation
direction of a crystal. This causes the Poynting vector and the wave vector of the pulse to
point in different directions [33]. This effect arises in anisotropic crystals, like for example
in birefringent crystals for extraordinarily polarized beams. As an illustration we can again
look at the ellipse of the extraordinary index of refraction in a birefringent crystal shown
in figure 2.1.2. Depending on the angle of incidence 6, the index of refraction and thus
the phase velocity of the wave varies. In the image of the Huygens-Fresnel principle this
causes each wavelet to expand as an ellipsoid resulting in a Poynting vector not parallel
to the wave vector and thus in an overall shift of the intensity distribution.

Due to spatial walk-off, a laser pulse’s intensity distribution thus drifts perpendicular to
the wave vector in the direction of the gradient of the refractive index. In birefringent
crystals this direction lies in the plane spanned by the wave vector and the optical axis.
The speed of the walk-off is determined by the angle between the wave and Poynting vector,
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which can be calculated based on the angle of incidence 6 and the index of refraction of
the crystal [33]

2
o _ 1> tan ¢

Te

5
1+ <no tan9>
Ne

In a 70% deuterated DKDP crystal we find walk-off angles between 1.25° and 1.5°, de-
pending on the angle of incidence, for beams with the wavelengths 526.5 nm and 1053 nm.
This results in an overall walk-off in the order of single millimeters for crystals with a
length in the order of centimeters.

tan (ewalk-off) = (2.1.15)

2.1.6 Sellmeier Equations

Since the phase mismatch and the group velocity mismatch and the walk-off are dependent
on the indices of refraction, we want to take a look at their wavelength dependence. This
is described by the so-called Sellmeier equations [52], which are empirical equations
interpolating measurements at specific wavelengths [37,53, 54]. For a different set of
measurements this naturally leads to different Sellmeier equations for the same crystal.

Specifically for KDP and DKDP crystals Lozhkarev et al. [37] examined the group velocity
mismatch and fitted the Sellmeier equation to represent it correctly. Since group velocity
mismatch is of interest for broadband SHG, we will make use of the Sellmeier equations
given in [37] which have the following form:

0.008637494 A2 25
ne(\) = (2.132668 + + 3.2279924 ) <1 - D)

A2 —0.012281043 A2 — 400 24
N (2'126019 v (10(?.?)517189[;2224 07834045 55— 12A32.4034o7> ' %
0.010089562 A2 25 (2-1.16)
no(A) = (2.259276 + 37 o.0130a3655 T 1390522 3505 400) (1 — 241))
* (2'240921 e (10(?.%61752%?53 2:2469564 A2 — 12A62.920659> g

with the deuteration level D. The input wavelength ) is given in micrometers. These are,
of course, the Sellmeier equations for both KDP and DKDP since KDP is just a DKDP with
a deuteration D = 0.
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2.2 Extension to Broadband Second-Harmonic Generation

A spectrally coherent laser pulse has the property that all their spectral components have
a fixed phase relation. With this property a broadband pulse can have a single short
high intensity peak at points in time and space where all spectral components interfere
constructively. An incoherent laser pulse on the other hand has a spectral phase that is
random, especially no fixed phase relation can be found between two spectral components
of the pulse. This has the effect that at no point, or rather very unlikely, all components
interfere constructively and thus no single intensity peak emerges. The resulting temporal
intensity profile is a temporal speckle with multiple intensity peaks.

In both cases this means that the approximation of a slowly varying amplitude of the laser
pulse, i.e. a long pulse with a homogeneous intensity over the entire pulse duration, is no
longer satisfied. We therefore need to revisit the mixing equations established for coherent
narrow band laser pulses in section 2.1.1. We will this time approach the problem in the
frequency domain.

Afterwards we will shortly investigate the dispersive effects that influence a broadband
laser pulse as well as further discuss incoherence.

2.2.1 Mixing Equations

In broadband mixing there are multiple frequency components that all interact with
each other. We therefore need a way to incorporate all possible frequency component
interactions into the mixing equations. This can for example be achieved by integrating
the mixing equation for all possible frequency combinations in the frequency domain [32].
The equations also incorporate the phase propagation of the pulses in the crystal. For the
harmonic wave we find the following equation, the other two waves again having similar
forms:
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where E;(Aw, z) is the electric field with the frequency difference Aw from the central
frequency of the respective wave. In contrast to the formulas in the book Crystal Nonlinear
Optics [32], we choose E;(Aw, z) as the electric field and not as the complex electric
field amplitude F;(Aw, z) = E;(Aw, z)e'*ie* of the wave with the wave number of the
carrier frequency kj. = k;j(w;). This adds the first term in equation (2.2.1), representing
the zeroth order phase propagation, and in turn removes the exponential function with
the phase mismatch e’2%<* from the last term, the wave mixing term, as found in the
book [32]. The leading terms in each of the three equations now incorporate the phase
mismatch of the carrier waves into the simulation.

In my opinion, the form chosen in the book, obscures the fact, that the phase mismatch
is not constant and can be different at any point in space and time during mixing. This
is caused by the higher order dispersive effects, described by the first and higher order
phase propagation terms. The physics is, of course, not changed by the different definition
of the electric field symbol chosen in this thesis, but the mixing term does not suggest a
wavelength independent phase mismatch.

We now want to make a few approximations in order to transform the mixing equations
into the temporal domain. The effective nonlinearity is in general not constant over the
entire bandwidth, but we will approximate it as constant for the bandwidths we use in this
thesis. This simplifies the mixing equations as we can now write the effective nonlinearity
outside the integral and the latter thus has the form of a convolution. We will additionally
approximate

(wj + Aw) = w; and nj(w; + Aw) = nj(w;) =: nje (2.2.2)
for j = 1,2, 3. Fourier transforming equation (2.2.1) with the above approximations we

can use the convolution theorem to rewrite the mixing equations in the time domain.

We thus have the electric field amplitudes £ (¢, z) dependent on time ¢ and the propagation
distance in the nonlinear medium z. The mixing equations derived by Fourier transforming
equation (2.2.1) using the given approximations have the form [32]
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(2.2.3)
with the wave vectors k. and indices of refraction n;., the group velocities v,;, the group
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velocity dispersions D; and the effective nonlinearity d.¢, each on the respective central
wavelengths.

The nonlinear mixing is again described by the rightmost term in each of the equations
(2.2.3). In this form, in the time domain, they have the same form as the narrow band
mixing equations (2.1.4) under the assumption of perfect phase matching, with the
addition that the electric field is time dependent. Imperfect phase matching is incorporated
more generally by the leading phase propagation terms instead of the complex phase from
the phase mismatch in equation (2.1.4).

2.2.2 Dispersive Effects and Temporal Walkoff

The behavior of a laser pulse in a medium is governed by the dispersion relation n(w) of
the medium. In equation (2.2.1) the leading terms describe these dispersion effects on
the pulses split into the different order effects such as the group velocity. They represent
a Taylor series and can be rewritten to

i,Aw" 0"k3(w)
! n! ow™

n=0

Eg(AUJ,Z) = ikg(w)Eg(Aw,z). (2.2.4)

w=ws3

The book Crystal Nonlinear Optics [32] chooses the Taylor series in the equation in order
to highlight the different dispersive effects taking place in broadband frequency conversion.
In the form of equation (2.2.4) we can however more easily understand it as the phase
propagation term of a wave. If we integrate the differential equation

O0E;(w, 2)

5 = ikj(w)Ej(w, z) (2.2.5)

with only the term from equation (2.2.4) we find the phase propagation of the wave over
a propagation distance Az as the exponential function

Ej(w,z+ Az) = Ej(w, z) exp (zwnjc(w)Az> (2.2.6)

with the index of refraction or dispersion relation n;(w) and j = 1,2, 3.

For the understanding, however, of dispersive effects in broadband mixing, we will turn
back to the form of equation (2.2.3) with the Taylor expansion terms of the phase prop-
agation. These terms, of course, directly give us the different order dispersive effects
occurring in broadband laser pulse propagation. We will quickly look at the three lowest
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order effects, in order to better understand their impact on broadband frequency mixing
later on.
The lowest or zeroth order phase propagation is simply the approximation that the index
of refraction is constant for different laser frequencies. This implies that all frequency
waves have the same phase velocity. It is a sufficient approximation if the bandwidth is
sufficiently small as is the case in narrow band or monochromatic lasers. However, the
different waves involved in frequency mixing can still have different phase velocities. In
monochromatic SHG the phase velocity difference between the mixing waves is accounted
for with the phase mismatch which we discussed in section 2.1.3.
For a laser pulse with a broad spectrum, we however need to take higher orders of
the dispersion relation into account. Dispersion in the first order is called the group
velocity [32]:
Lok (2.2.7)
vy  Ow
with the wave number k. As the name suggests, a wave packet will move with the group
velocity v, when propagating. If several wave packets are present, as is the case in
broadband frequency doubling, unequal group velocities lead to a temporal walk-off of
the pulses. Group velocities are typically different for pulses with different wavelength or
polarization, but crystals with matching group velocities of the fundamental and harmonic
pulses exist and are used to make efficient broadband SHG possible [55, 56].
The second order dispersion is called the Group Velocity Dispersion [34]
0%k

GVD = P2 (2.2.8)
which generates a so-called chirp in the laser pulse. A chirp, in this case linear, causes
the instantaneous frequencies at the start and end of a pulse to differ from the central
frequency. This breaks the phase matching condition, as it is solely fulfilled for the central
frequencies of the laser pulses. A reduction of conversion efficiency is thus expected if a
significant chirp arises.

2.2.3 Incoherent Laser Pulses

Since the simulation of incoherent laser pulses is the topic of this thesis, I want to shortly
define and outline the properties of incoherent laser pulses.

Coherence, as the opposite of incoherence is defined by the ability to generate interference.
In order to do so, the phase difference of the wave at any two points in space must change
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less than 27 for the duration of the observation [57]. We will call this a fixed phase
relation. The important detail is, that we need a fixed phase relation for all combinations
of two points in space. Coherence thus means, that, if we know the phase difference of
the wave at two points in space at some time ¢, we know the phase difference of the wave
at the same two points at the time ¢ &+ At, has changed less than 27. The time difference
At,., also called the coherence time, is defined as the maximum time for which the above
property holds, that is, we find a fixed phase relation for all two-point combinations. The
coherence time At is linked to the width of the frequency spectrum Av of the laser pulse

by [58] .

At ~ N (2.2.9)
The fact that the phase difference may change for 2 might seem like a lot, but it is the
value at which a maximum in the interference pattern decays to 1/e of its maximum
amplitude [57].
With this, we can now define an incoherent pulse as a laser pulse which has a coherence
time that is much smaller than the pulse length. Incoherence is thus not a binary property,
as in, a pulse is either incoherent or not, but rather measured by the scale of the coherence
time relative to the length of the pulse itself.

With the definition of coherence we can now take a look at the notions of spatial and
temporal coherence. In both cases we take a look at the wave at two points restricted to
an affine subspace in the mathematical sense. In spatial coherence this affine subspace is
any plane perpendicular to the axis of propagation, meaning we choose two points that
lie in the same plane. Temporal coherence is concerned with the affine subspaces parallel
to the axis of propagation itself.

A spatially coherent laser pulse can for example be used to create interference patterns
in a double slit experiment, where the two slits serve as the two spatial points chosen to
observe the wave at. The measurement result is then seen on the screen as the interference
pattern.

Temporal coherence on the other hand can for example be measured in a Michelson
Interferometer. The spatial distance between two points along the axis of propagation is
given by the path difference in the interferometer arms. As the wave propagates, any two
points along the propagation axis with this distance will reach the screen to be measured.

In this thesis we will be concerned with pulses that are spatially coherent, that is, points in
the planes perpendicular to the propagation axis have a phase relation that is fixed over the
entire pulse length, but the pulses may be temporally incoherent, that is, their coherence
time for points along the propagation axis is much shorter than the temporal length of the
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pulse. Such pulses are for example be generated by amplified spontaneous emission (ASE)
in rare-earth doped fiber lasers [59] or by superluminescent LEDs [60]. These types of
light sources are also used by other groups investigating incoherent broadband frequency
conversion [25,61].

In order to produce incoherent laser pulses for the simulations we will numerically generate
spectra with a random phase and amplitude for each frequency component [62]. The
amplitude is bounded by an envelope and the phase is a random number between 0 and
27r. The resulting beam profile shows a temporal speckle with features around the size of
the coherence time [57].
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3 Laser Systems

In order to simulate SHG and verify the simulation and its results, we need physical mea-
surements of SHG and more specific SHG with broadband laser pulses. The measurements
used for this thesis have been conducted at the PHELIX facility. We will thus examine the
details of the PHELIX laser relevant to the simulations. In order to get a broader view of
the worldwide development of incoherent frequency mixing, we will however first look at
other facilities conducting research in this field.

One of these facilities is the Laboratory for Laser Energetics (LLE) in Rochester. It is home
to the OMEGA laser which is used for the study of laser plasma interaction and inertial
confinement fusion. Current efforts in the field of incoherent frequency mixing include the
development of the Fourth-generation Laser for Ultrabroadband eXperiments (FLUX) [63].
This laser is set to achieve a bandwidth greater than 10 THz and a pulse energy of around
100J. The technology is based on the development of high-energy incoherent broadband
optical parametric amplification [61] and the sum-frequency generation of spectrally
incoherent pulses [28]. After completion, the FLUX beam will be transported to the target
chamber of the OMEGA laser in order to conduct experiments concerning laser plasma
instabilities [63].

The research setups, on which the FLUX is based, use ASE around a wavelength of 1053 nm
from a doped fiber laser as an input. This is the seed pulse, which is then pumped in
the OPA process by a monochromatic 1053 nm laser, frequency doubled to 526.5 nm. The
pumping is done using a non-collinear preamplifier OPA stage and a second, collinear
OPA stage to achieve energies up to 400 mJ in pulses with a length of single nanoseconds
and bandwidths up to around 16 THz. The conversion efficiency from the pump to the
signal pulse reaches up to 70% [61].

Near ultraviolet light is thereafter generated by mixing the incoherent broadband signal
with another monochromatic frequency doubled laser at 526.5 nm. Simulations yield an
overall efficiency of this process up to 71% [28]. At this point only experiments with low
intensities have been conducted, so high energy verification is still pending.
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Another facility developing a low coherence laser with frequency conversion is the Kunwu
facility in Shanghai [64]. The laser used here, the KUNWU laser, is an Nd:Glass laser
operating at around 1053 nm. It is seeded by the ASE from a superluminescent diode which
is preamplified in a fiber amplifier and subsequent Nd:glass rods. The main amplifier uses
flash lamp pumped Nd:glass slabs, reaching energies up to the kilojoule regime with a
bandwidth of 13 nm or 3.5 THz.

After that, the laser pulses are frequency doubled in a 15% deuterated DKDP crystal. The
conversion efficiency is around 63% limiting the output energy to the upper 100J to lower
1kJ regime. The bandwidth after frequency conversion is nearly unchanged at 3.2 nm or
3.4THz [64]. Measurements using a low aperture 15% DKDP crystal showed an efficiency
up to 75% [55] implying potential improvements to the conversion efficiency at KUNWU
and its output laser energy.

3.1 The PHELIX Laser

As stated in the introduction, this thesis is written in the context of the PHELIX laser.
We will therefore use this chapter to also take a brief look at the parts important for the
topic of this thesis in order to get a better understanding of the measurements and data
presented here.

A schematic setup of the PHELIX laser is shown in figure 3.1.2. The laser pulses, which
we will be concerned with, are nanosecond pulses which are generated in the nanosecond
frontend. After pulse shaping and amplification in the pre- and main amplifier they are
redirected to the designated beamlines and experimental areas. We will be concerned
with the Z6 and HHT beamlines since both incorporate a nonlinear crystal for SHG. As
diagnostic tools we will use the Main Amplifier Sensor (MAS) located after the main
amplifier and the HHT Sensor located after the SHG crystal in the HHT beamline. Both
these diagnostic systems make use of leaking light that passes a mirror in the main
beamlines.

All measured data from PHELIX is subject to uncertainty. In order to retrieve reliable data
from a simulation with this data as input we need to discuss these uncertainties.

The laser energy measurements at MAS and the HHT sensor have uncertainties of 3.2%.
This is the combination of a 3% uncertainty of the detectors [65,66] and a 1% uncertainty
of the measurement interfaces [67,68].

The camera at MAS measuring the near field of the laser pulse has a systematic error of
1.58% consisting of a nonlinearity of 0.5% and a photo response non uniformity of 1%.
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These two errors affect the resulting spatial intensity profile of the pulse calculated from
the near field image and the measured energy. Any pixel’s intensity value can thus be
over- or underestimated by this amount which results in an over- or underestimation of all
other pixel values as well, since the pixel intensity values are normalized to the pixel sum.

3.1.1 Temporal and Spatial Parameters

The PHELIX laser has an Nd:glass main amplifier and thus operates at a wavelength of
1053 nm. With the nanosecond frontend, PHELIX can generate pulse lengths in the range
of 0.7 to 20 ns with an energy up to 400J [69]. We will mainly use pulse lengths around
one nanosecond either assuming a flat top pulse profile or using the measured temporal
profiles of the pulse. The MAS also provides measurements of the laser pulse intensity
profiles (see figure 3.1.1 (a)) and their wavefront (see figure 3.1.1 (b)), which will be
used for the simulations of harmonic conversion at the PHELIX facility.
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Figure 3.1.1: Intensity distribution (a) and angle deviation due to the wavefront imper-
fection (b) from shot number 18964.
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Figure 3.1.2: Schematic of the PHELIX laser system (extended, based on the sketch by
J.B. Ohland [70]). The beam is created in the fs or ns frontend respectively,
shaped by the pre-amplifier and then sent through the main amplifier. After
traversing the main amplifier, the laser pulse is diagnosed at the Main
Amplifier Sensor (MAS). An array of mirrors then redirects the laser pulse
to its designated experimental area which is the Z6 or HHT area in our case
since the beamlines to these areas incorporate a frequency doubling crystal
each. The HHT beamline is equipped with another diagnostic setup, the
HHT Sensor (HHTS), where for example the frequency converted energy is
measured. Both the MAS and the HHT Sensor make use of leaking light
from a mirror in the beamline.
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3.1.2 Beamlines

The second-harmonic conversion of the laser pulses to 526.5 nm wavelength takes place in
the beamlines to the experiment areas, namely the Z6 and HHT experiment areas.

The crystal in use at the Z6 beamline is a 70% deuterated DKDP crystal in type II phase
matching configuration with a length of 25 mm. The laser pulses have a diameter of
around 25.8 cm at the crystal. Efficiency measurements of the frequency conversion have
been conducted in the P203 experiment for several input energies, the results of which
will be used in section 5.2 as a comparison to simulations.

The beamline to the HHT experiment area has been recently built and features a conversion
crystal that is also a 70% deuterated type II DKDP crystal, but shorter at 17 mm length.
The beam diameter lies around 15 cm at the crystal.

A part of the beamline commissioning was to measure the conversion efficiency of the
implemented crystal, including measurements of beamline losses. The beamline allows
for a placement of a power meter directly in front of the crystal, enabling the direct
comparison between the energy measured at the MAS and the energy arriving at the
crystal. This was used to measure beamline losses.

Final investigations and the data analysis concerning the topic of this work will constitute
the next step after this thesis. Together with the measurement of the harmonic energy
after the nonlinear crystal we can obtain a more detailed picture of the SHG that can then
be reconstructed with the simulation code developed in this work.

36



4 SHG Simulation Tools

We will now discuss how to solve the mixing equations (2.1.4) for SHG in the case
that all involved waves propagate collinearly. This can be done analytically [33,36] or
by numerically solving the equations. The numerical solutions I present here are the
simulation with the SNLO software [47] and the code written in the context of this thesis.
The code developed in this thesis is capable of simulating SHG for monochromatic plane
waves, monochromatic waves with arbitrary spatial intensity distributions and plane waves
with an arbitrary spectrum.

4.1 Analytical Solutions

The monochromatic nonlinear mixing equations (2.1.4) can be solved analytically in the
plane wave approximation [31]. Here we assume that the harmonic wave has zero energy
before second-harmonic conversion, since that is the case in the setup at for example
PHELIX and KUNWU. Additionally we want both fundamental waves to have the same
input intensities. The intensities of the fundamental waves, as a side note, then stay
equal throughout the entire mixing process, as photons of the fundamental waves are
annihilated pairwise to create a photon in the harmonic wave (see Manley-Rowe relation
in section 2.1.1). With these two assumptions the solution for the conversion efficiency
takes the form [33]

(L) = ('y(‘))2 sn? [”)’(HL (7(‘))2] (4.1.1)

)
Ly,
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where sn is the Jacobi elliptic function [71] and the following symbols are used:

AEL
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(4.1.2)
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with the effective nonlinearity d.f, the fundamental wavelength A, the input intensity
at the fundamental wavelength 7,,(0) (both waves added) and the indices of refraction
for the two fundamental waves n,, ; and harmonic wave ny,,. The length Ly, is the scale
length of the nonlinear interaction [33].

This general solution translates into the analytical solutions in the two limits commonly
mentioned in literature [33, 36]. On the one hand this is the limit of perfect phase
matching, that is Ak = 0. With this we get a = 0 and thus 4(*) = 1 in equation (4.1.2).
When the second parameter of the Jacobi elliptic function is one, it equals the hyperbolic
tangent [36] resulting in the form

n(L) = tanh?®(L/Lyy). (4.1.3)

This function shows a saturation for large propagation distances and tends towards 1 for
distances tending to infinity. In the lowest order, the efficiency is quadratically dependent
on the propagation length L and linearly dependent on the input intensity.

The other limit is that of a large phase mismatch Ak > 1/Lyy. This leads to a > 1 and
therefore v(*) — @ + a. The second parameter in the Jacobi elliptic function is now zero,
which brings it into the form of the sine function [36]. We use (=) = 1/~(*) — 1/2a to
find the conversion efficiency in the form [33]

2
n(L) = (LLNL> sinc?(AkL/2). (4.1.4)

In this case the frequency conversion does not saturate. We instead find an oscillation of
energy between the fundamental and harmonic waves, its frequency depending on the
phase mismatch and the amplitude depending on the input intensity.

We also want to take a quick look at the analytic solution if we assume one of the
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fundamental waves to be stronger than the other, that is
El < EQ. (4.1.5)

We can herewith assume that the amplitude of wave E5 does not change during mixing,
dFEs

0z
the mixing equations 2.1.4 to a simple set of two coupled differential equations

that is 0. We will also call this the partial pump depletion scenario. This simplifies

aﬁEl = iK1E3€—iAkz
4 (4.1.6)
ng = iKgElezAkz
0z

with the real, positive constants K, and K3 proportional to E». Under the assumption
that the fundamental wave is zero at input the equations 4.1.6 are solved by

E~3(Z) = —El(O)\/ESiH(\/ Klng). (417)

Especially we find an oscillation of energy between the weaker fundamental wave and
the harmonic wave with the oscillation period proportional to the electric field amplitude
of the stronger fundamental wave.

4.2 Numerical Tools

In this section we will take a look at some numerical tools for solving the mixing equations,
namely the implementation in the SNLO software [47] and the tool developed in this
thesis.

SNLO is a software, that offers numerical solutions to the nonlinear mixing equations
(2.1.4) for several scenarios such as Gaussian or Super-Gaussian intensity profiles and
pulse shapes. In section 5.1 we will use the solution offered by the SNLO software for the
plane wave approximation to benchmark the code developed in this work.

The numerical code developed in this thesis works as follows. The mixing equations (2.1.4)
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are ordinary differential equations as they can be written as

dy _

== 1(u,2). 4.2.1)

An approach to solve such ordinary differential equations are the so-called finite difference
methods, which is a general term for methods using a set of points zg, 21, ..., 2m, ... and
progressively calculating v, := y(z,,) from the values obtained at z,,_; [72].

We now use a fixed step size Az to define this grid as z; = jAz. The simplest finite
difference method is the Euler method defined by

Ym+1 = Ym + Azf(ymy Zm)- (422)

It uses the tangent dy/dz|,—.,, as an approximation of the function between z,, and z,,+1
assuming a linear interpolation between these two points [72].

The Euler method is a first order method, which means, that the analytical error is of the
order O(Az?). A higher order can be achieved by the classical Runge-Kutta method that
is evaluated as

Az
Ym+1 = Ym + o Vi +Vo+ V54 Vy) (4.2.3)
with
Az Az
‘/vl:f(ymazm)7 ‘/2:f<ym+‘/l27zm+2),
Az Az (4.2.4)
VS:f(l/m"i‘V22azm+2>7 Vi = f(ym + V3Az, 2, + Az).

This method is of the order O(Az°) needing only linearly more evaluations of f than
the simpler Euler method [72]. The code developed here thus uses the higher order
Runge-Kutta method for solving the mixing equations (2.1.4).

The implementation is done with the so-called split-step method. In this method, the SHG
is simulated by alternately calculating nonlinear wave mixing and linear wave propagation
for each step of the computation. In the different simulations we consider different types
of wave propagation. The narrow band simulation only considers spatial walk-off, which
is only relevant in the two-dimensional case. The broadband simulation does not consider
spatial propagation, but instead incorporates the phase propagation and its effects like for
example group velocities.

The details will be further discussed in the sections concerning the respective simulations.
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4.2.1 One-Dimensional Narrow Band Simulation - The Baseline

First, we want to look at SHG in the monochromatic plane wave approximation, the
one-dimensional case. In this approximation we neglect all spatial properties of a laser
beam that can have an influence on the SHG, like diffraction, walk-off or wavefront
imperfections. We can therefore describe the entire laser pulse with a single intensity
value at every point in the propagation direction.

We will consider absorption in the mixing process. The absorption is linear and is modeled
with I(z) = I(0)e~“* for some absorption coefficient a.. In 70% deuterated DKDP crystals,
which are used at PHELIX, the absorption coefficient is 0.4% cm~! for both ordinary and
extraordinary waves at 1053 nm and 526.5nm [73].

The implementation of the absorption is done as described in equation (2.1.8) as a linear
term in the differential equation. A calculation via the split-step method is in this case
thus not necessary and is done only with the Runge-Kutta method.

Two exemplary calculations using the parameters of the crystal at the HHT beamline at
PHELIX (see section 3.1) are presented in figure 4.2.1. Figure 4.2.1 (a) assumes perfect
phase matching and 4.2.1 (b) has a non-vanishing phase mismatch. The parameters used
to calculate the intensity are a wavelength of 1053 nm in a pulse of 400J energy, 15cm
beam diameter and 1 ns pulse length in a spatial and temporal flat top shape. Fringe effects
are not considered. The crystal is a 70% deuterated DKDP crystal in type II configuration
with a length of 17 mm.

The simulation with perfect phase matching (see figure 4.2.1 (a)) shows a saturation of the
harmonic wave energy while simultaneously depleting the fundamental wave energy. In
the case of non-vanishing phase mismatch, the harmonic wave energy shows an oscillating
behavior, the period of which is dependent on the magnitude of the phase mismatch.
These examples reflect the expected behavior of the analytical solutions of the mixing
equations, namely the saturation by the hyperbolic tangent for perfect phase matching
and oscillation of the sine function in imperfect phase matching (see section 4.1).

In order to quantify the effect of imperfect phase matching on the conversion efficiency of
a crystal, we simulate this exemplarily with the same parameters as before by varying the
input angle and thereby also the phase mismatch. The results show a clear peak at the
phase matching angle of § = 55.48° which is set to zero in figure 4.2.1 ().

The crystal at HHT has an acceptance angle FWHM of 737 urad which is larger than the
acceptance angle of the longer crystal at Z6 with 245 urad. This is because the longer
crystal allows for back conversion of light from the harmonic to the fundamental wave for
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smaller phase mismatch values as more total phase can be accumulated by the phasors
over the length of the crystal.
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Figure 4.2.1: Intensities of the == fundamental and harmonic waves over the length
of the crystal with perfect phase matching in (a) and a mismatch of 2mm~!
(b). The crystal is a 70% deuterated DKDP crystal in type II configuration
like the crystal used in the HHT beamline. In plot (c) the output conversion
efficiency for varying angle of incidence and thus implicitly phase mismatch
is shown.

42



4.2.2 Extension to Two-Dimensional Simulation

Now, we will expand our simulation from a plane wave to a beam with a two-dimensional
intensity distribution perpendicular to the propagation direction of the beam. This is in
particular interesting for simulating the second-harmonic output energy for PHELIX laser
pulses. Besides the intensity distributions in the near field, PHELIX also provides other
data on beam properties such as the wave front and the laser pulse energy, both of which
we will use as input to the simulations of PHELIX laser pulses.

In this simulation we consider spatial walk-off, which will be calculated in the split-step
method alternately with nonlinear mixing (see section 4.2). The nonlinear wave mixing is
implemented in the same way as in the plane wave approximation, that is, the mixing
equations (2.1.8) including linear absorption are solved, now however with electric wave
amplitudes depending on the coordinates perpendicular to the propagation direction.
This is equivalent to solving the mixing equations in the plane wave approximation for
each point in the perpendicular plane.

In this simulation we will not take diffraction into account due to it significantly increasing
computation times. As crystal lengths are in the order of centimeters or below, e.g. the
crystal at Z6 is 25 mm long, and beam diameters can reach up to decimeters, e.g. the beam
diameter at Z6 is around 26 cm, we cannot use the paraxial approximation to simplify
the diffraction integral to the form of a convolution. Calculating the diffraction integral
for high resolution electric field distributions is thus very time consuming in the order
of minutes per step on a normal PC. In order to obtain short calculation times, we thus
neglect diffraction entirely.

Spatial walk-off creates a shift of the intensity profile of the beam in the direction of the
optical axis. The effect is implemented by shifting the image, that represents the intensity
distribution of the beam, in the walk-off direction. Shifting in this case means moving
the intensity distribution in the image relative to the image boundary. If the shift is not a
whole number of pixels, the pixel data are interpolated with a third order spline.

In a 70% deuterated DKDP crystal the walk-off angles are between 1.25° and 1.5° for
the fundamental and harmonic waves. This results in an overall walk-off of less than a
millimeter for the crystals used at PHELIX.

A walk-off can in principle lead to a harmonic pulse with an intensity distribution, that is
elongated in the walk-off direction compared to the fundamental wave [32]. Since the
walk-off distance is much smaller than the diameter of the beam at PHELIX with around
15 cm, it has negligible effect on the geometry of the beam. It can however lead to reduced
conversion efficiency if we take imperfect wavefronts into account.

The wavefronts incorporated into the simulations are wavefronts measured at PHELIX.
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These are typically not perfectly flat wavefronts. This has two effects. Firstly, as by
definition of a wavefront, the phase of the electric field in a plane perpendicular to the
wave vector is not constant. Secondly, it leads to a slight distortion of the wave vector
directions through the gradient of the wavefront.

The non constant phase is multiplied to the electric field amplitudes derived from the
intensity distribution of the laser pulse’s near field at the start of the simulation. This, in
of itself, has no effect on the SHG except for creating a non flat wavefront in the harmonic
output wave. If we combine this with spatial walk-off, we find areas of not matching
phases drifting atop each other, effectively creating a phase mismatch.

An imperfect wavefront also results in wave vectors being slightly skewed in the direction
of the gradient of the wavefront. Assuming that the incidence angle of the laser pulse is set
such that the wave vector in a perfectly flat wavefront is perfectly phase matched, these
skewed wave vectors evidently have a non-perfectly phase matched angle of incidence. As
discussed in section 2, a deviation from the phase matching angle leads to a non-vanishing
phase mismatch which, in turn, limits the maximum achievable conversion efficiency of
the laser pulse.

In the simulation, we implement this by calculating the phase mismatch at every point of
the intensity distribution depending on the gradient of the wavefront at the corresponding
point. The code then uses this phase mismatch distribution with the intensity distribution
for the simulation of second-harmonic wave mixing.

Wavefronts that are measured at PHELIX show an amplitude in the wavefront of at most
several microns over the entire beam profile. The resulting deviations from the perfect
phase matching angle have a standard deviation of less than 2.5 urad (see figure 4.2.2).
Around 96% of wave vector angles are thus within +5 prad of the perfect phase matching
angle. At 5urad deviation from the phase matching angle the achievable conversion
efficiency is around 0.2% below the maximum efficiency achieved at the phase matching
angle.

We can also estimate the effect of the wavefront combined with walk-off. The gradient of
the wavefront in the walk-off direction multiplied with the walk-off speed can be used
to calculate a phase mismatch equivalent of the combined effect. For a typical PHELIX
wavefront we find values for this quasi phase mismatch with a standard deviation of
around 2 m~! and thus around 96% of values within a spread of 4m~!. A phase mismatch
of 4m~! reduces the maximum achievable conversion efficiency by around 0.2%.

These estimates are consistent with simulation results. The difference in conversion
efficiency between a simulation with and one without the two discussed effects lies below
0.1%.
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Figure 4.2.2: Histogram of the angle distribution of the wave vectors skewed by an
imperfect wavefront in a typical wavefront at PHELIX. The gradient of the
wavefront, and thereby the incidence angle, is calculated at each pixel in
the image that represents the wavefront.

We will now take a look at an example of a two-dimensional simulation. The intensity
distribution and wavefront used for this calculation were measured at the Main Amplifier
Sensor (MAS) at PHELIX (see section 3.1).

As expected, the intensity distribution of the frequency doubled output (figure 4.2.3 (b))
shows similar features to the input distribution (figure 4.2.3 (a)). This is because the
two-dimensional simulation can be viewed as quasi one-dimensional at every point in
the intensity distribution. Walk-off in this case is significantly smaller than the beam
diameter, thus not leading to a distortion of the harmonic intensity distribution. The
output harmonic intensity is therefore correlated to the input fundamental intensity.

In fact, features in the input intensity distribution, such as ripples, are expected to be more
pronounced in the harmonic distribution. This is because points of lower input intensity
achieve a lower conversion efficiency than the points of higher intensity and thus also
have a relatively lower intensity in the output intensity profile.
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Figure 4.2.3: Intensity distributions for the input fundamental wave (a) and the second-
harmonic wave after conversion (b). The simulation uses the intensity
distribution from shot 19739 from the PHELIX database, assuming a 400 J
and 1.2ns long rectangle pulse converted with a 70% deuterated DKDP
crystal of 25 mm length.

4.2.3 Extension of the Baseline to Broadband

With the toolset to simulate frequency doubling of narrow band laser pulses we will now
turn toward simulations of pulses with non-zero bandwidth, which we will call broadband
in this thesis. This extension of the one-dimensional simulation will enable us to investigate
a large variety of laser pulses, as the initial spectral phase can be chosen deliberately
to produce, for example, coherent pulses with a single temporal intensity peak or fully
incoherent pulses with a randomly generated spectral phase.

The simulation is again using the plane wave approximation, enabling us to reduce the
wave to a single value in space. However, broadband pulses are temporally structured, we
thus need to consider a temporal window in which to simulate the laser pulses and their
nonlinear interaction.

We will of course also be able to simulate narrow band laser pulses in this extension, as the
initial spectrum can be chosen to be arbitrarily narrow. Combined with a short temporal
window this generates an electric field that has constant amplitude to an arbitrary precision.
This will serve as a way to verify the solutions we find for the differential equations 2.2.3
in this broadband case.

As described in section 2.2 we use the split step method for these simulations. The propa-
gation part of the split step method will in contrast to the two-dimensional simulations
not be the spatial walk-off but the phase evolution of the spectral components resulting
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in dispersive effects including e.g. the temporal walk-off. The accuracy of this phase
evolution solely relies on the accuracy of the Sellmeier equation used for the specific
crystal. In our case for DKDP crystals we use an equation that is optimized for higher order
terms [37]. The phase evolution is calculated using equation (2.2.6) in the frequency
domain.
Nonlinear mixing is described in the time domain by equations (2.2.3) again with the
terms for linear absorption added as in equations (2.1.8). The leading terms are ignored,
as they are replaced with the phase propagation part of the split-step method.
Since the two parts are calculated in different domains, two Fourier transforms are nec-
essary in every step of the simulation. This segues perfectly into a short description of
the calculations done in each of the domains. Firstly, we find that the discrete Fourier
transform directly links the frequency and time domains to each other. The number of
data points in both domains is the same and they are linked by
1 1

T = Ay and N = AL (4.2.5)
with the total width of the temporal domain 7" and frequency domain N and the distance
between two points in the temporal domain At¢ and the frequency domain Av. For
clarification the total number of data points in each domain is n = Alt = %.
The waves are defined initially by their spectra. The code can in principal use any spectral
shape, but we typically take either Gaussian curves or spectra from PHELIX shots as the
initial spectra. If the coherence of the pulse needs to be lowered, a randomized phase can
be applied to each of the spectral components in the frequency domain. In order to tune
coherence continually, the random phase can be limited to have a phase difference below
some maximum between neighboring spectral components.
The temporal profile, generated by Fourier transforming the spectrum, is then used to
determine and rescale the pulse energy. Two possibilities for this are implemented in
the code. The pulse can either be rescaled to have a certain peak intensity or a certain
mean intensity. Peak intensity scaling is useful for comparing conversion properties of
coherent pulses of different spectral widths. Mean intensity scaling on the other hand is
more useful for comparing incoherent pulses, since the maximum intensity is subject to
randomness.

In this section we will use the described simulation to survey different setups for broadband
SHG using angular phase matching and determine the most promising one. For this we
will first look at a number of different scenarios used in narrow band SHG and understand
the effects that arise when applying them to broadband SHG. We will end on a type I
scheme with matched group velocities of all involved waves, which is also the scheme
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recommended by Gao et al. [25].

We start the investigation by examining the phase matching configurations type II and type
I without and with group velocity matching. As a short reminder, type I uses an ordinarily
polarized beam that is converted to an extraordinarily polarized harmonic beam. Type II
has both an ordinary and an extraordinary fundamental beam, the harmonic beam again
being extraordinary. The relevant aspect discerning the configurations in the context of
broadband SHG is the mixture of group velocities of the involved waves.

4.2.3.1 SHG with Type Il Phase Matching

In type II configurations all three waves, the ordinary and extraordinary fundamental
waves as well as the harmonic wave, have different group velocities. This results in a
temporal walkoff between each pair of waves. Due to this the conversion efficiency will be
significantly reduced because the conversion strength is instantaneously proportional to
the local field amplitudes of the fundamental waves (see Manley-Rowe Relation in section
2.1.1). Once the peak positions no longer coincide, the conversion strength decreases.

In the case of coherent broadband laser pulses we have a single peak in each of the
fundamental waves. After some propagation distance through the crystal, the fundamental
waves will have drifted apart such that they do not overlap (see figure 4.2.4 (a)). Here
frequency conversion to the second-harmonic ceases as can be seen in figure 4.2.4 (b).

Another effect that can be observed in the simulation of type II SHG is back conversion. In
this case the back conversion does not however stem from a non zero phase mismatch but
from unequal intensities of the fundamental laser pulses along the temporal axis of the
pulses. When the fundamental pulses drift apart, there is always only exactly one point at
which both waves have equal intensities. At every other point the intensities differ.

An analogous case with unequal intensities in the fundamental waves is described by
the partial pump depletion scenario (see section 4.1). Here one fundamental wave is
assumed to have a much weaker electric field than the other, leading to an oscillation of
energy between the fundamental and harmonic waves with the period of the oscillation
proportional to the amplitude of the stronger wave’s electric field.

The same behavior can be observed in type II SHG where we can see both conversion from
the harmonic to the fundamental waves with unequal intensities and depletion of the
weaker fundamental wave leading to an amplification of the harmonic wave. An example
of back conversion in the described scenario can be seen in figure 4.2.4 (b) as the decay
of second-harmonic energy after conversion ceases. The smaller peak of the blue curve on
the right is the product of this back conversion phenomenon.
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Figure 4.2.4: Simulation results for a broadband simulation in a type II phase matching
setup with the temporal intensity profiles of the three involved pulses after
propagation through a 20 mm crystal (a) and the energy balance of the
pulses over the propagation distance (b). The input energy is 0.34J at a
bandwidth of 5 nm. The pulse is assumed to have a circular flattop as the
spatial profile with a 15 cm diameter. The crystal used is a 70% DKDP.

4.2.3.2 Type | Phase Matching and Bandwidth Narrowing

In type I configurations, as compared to type II, the fundamental wave is solely ordinarily
polarized in the crystal. We thus only have one fundamental wave and do not need to
consider drifting of fundamental waves relative to each other. We can thus focus on the
group velocity mismatch between the harmonic and fundamental wave.

We will first look at a crystal in which the group velocity mismatch is non-zero. This is for
example the case for a 70% DKDP crystal at a central wavelength of 1053 nm.

As stated in the Manley-Rowe relation (equation (2.1.7)), the change in the harmonic
wave’s electric field amplitude is proportional to the local amplitude of the fundamental
wave. The maximum change in the harmonic field amplitude thus takes place at the
position of the temporal intensity peak of the fundamental wave. However, while conver-
sion takes place, the harmonic wave drifts away from the fundamental peaks position,
producing a widened temporal pulse profile.

For low peak intensities the resulting harmonic wave has a relatively flat but slanted tem-
poral profile (see figure 4.2.5 (a)). At higher intensities, once significant energy depletion
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of the fundamental wave occurs, the slope of the harmonic wave becomes steeper with a
trailing flank as can be seen in figure 4.2.5 (b). The lower ends of these flanks lie close to
the remaining intensity peak of the fundamental wave.

The broadening of the harmonic pulse profile compared to the input fundamental wave’s
pulse profile has the effect that the output wave has a narrower spectrum than the input
wave, since it has a lower Fourier limit. This effect of bandwidth narrowing is also described
by A. V. Smith [32].

In the context of laser plasma interactions this is unfavorable. It has been shown, that
spectrally broader laser pulses reduce or suppress the onset of laser plasma instabilities
[27]. A reduction of bandwidth in turn increases the strength of laser plasma instabilities.
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Figure 4.2.5: Simulation results for a type I phase matching configuration in a crystal with
group velocity mismatch with pulse input energy of 0.4J (a) and 16J (b).
The rest of the parameters are equal for both cases, namely a bandwidth
of 10 nm, a circular flattop profile with 15 cm diameter and a 70% DKDP
crystal with a length of 50 mm.

4.2.3.3 Group Velocity Matched and Phase Matched SHG
If we now assume, that the group velocities of fundamental and harmonic waves are equal,

we can find SHG with high conversion efficiencies and stable bandwidths. Efficiencies of
55% [741, 56% [75] and 58% [56] have been reported experimentally in broadband SHG.
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As stated in section 2.1.4, group velocity matching is achieved when a crystal has a
vanishing first derivative of the phase mismatch

OAk(w,0(w.))

R =0 (4.2.6)

W=we

at the phase matching angle of incidence @ for the central frequency w.. The wavelength at
which the group velocity mismatch and the phase mismatch vanish is called the retracing
point.

The above condition is met by different crystals for different wavelengths. For DKDP crystals
with different levels of deuteration it is possible to reach wavelengths from 1034 nm up to
1172nm [76] or 1034 nm up to 1204 nm [37] depending on the Sellmeier equations used.
For the PHELIX laser operating at 1053 nm the optimal crystal can be found to be a 15%
deuterated DKDP crystal with type I phase matching [25].

We will again take a look at the relative positions of the intensity peaks of the laser
pulses involved in the SHG mixing process. With matching group velocities these relative
positions stay approximately constant over the propagation with only third or higher order
dispersion terms having an influence. At each point along the temporal profile of the
pulses the conversion thus approximately behaves like a one dimensional narrow band
frequency conversion which we discussed and simulated before in section 4.2.1. If we
assume phase matching and neglect higher order dispersion, the output wave can thus be
calculated with the analytical solution to SHG (see section 4.1):

IQw(t) = w,O(t) tanh2 <47TLdeff\/ Iw’o(t) ) s (427)

2 2
260N, M2uwe CAL,

with the input fundamental intensity profile I, o(¢), the length of the crystal L, the
effective nonlinearity d.¢ and the indices of refraction of the central wavelengths n,, ;.
We especially find that depletion of the fundamental wave and thus efficient conversion
can occur.

In regions with higher intensity the conversion strength is higher than at points of lower
intensity. This leads to an earlier depletion of high intensity areas leaving a dip in the
residual pulse at the position of the input peak. It also leads to a slight increase of
bandwidth as the output harmonic pulse is temporally slightly shorter than the input
fundamental pulse.

An example of the full simulation is shown in figure 4.2.6 (a). Here a pulse with a FWHM
length of 161 fs and bandwidth of 3.8 THz is input into a 20 mm long, 15% deuterated
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type I DKDP crystal. At a conversion efficiency of 81%, the output pulse has a length of
149 fs and a bandwidth of 4.4 THz. The residual pulse is left with two peaks at either side
of the initial Gaussian pulse and a dip in the middle.

A calculation with equation (4.2.7) of the same parameters yields results that deviate
around 1% from the simulation results.
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Figure 4.2.6: Simulation results for type I conversion with a 15% DKDP (a) and a 50%
DKDP (b). The other parameters used are in both cases a pulse energy of
69 mJ, a bandwidth of 2.4 THz, a circular flattop profile with 15 cm diameter
and a crystal length of 20 mm.

At this point, it can also be mentioned, that there is a tolerance to non-zero group velocity
mismatch depending on the temporal width and intensity of the laser peaks. This is of
course equivalent to the scenario discussed in section 4.2.3.2, but we find that under
certain circumstances we can still achieve efficient conversion.

In order to achieve efficient conversion despite having group velocity mismatch, most
energy needs to be converted before the packet of energy in the harmonic wave has drifted
outside of the fundamental wave’s peak. Otherwise conversion strength will be reduced,
as it is also proportional to the harmonic wave amplitude (see Manley-Rowe Relation in
section 2.1.1). A higher intensity pulse thus yields higher conversion efficiencies than a
lower intensity pulse of the same bandwidth, since the higher intensity pulse undergoes
conversion in shorter propagation distances.

As an example, a simulation with a 40% deuterated DKDP crystal is shown in figure 4.2.6
(b). This crystal has a group velocity mismatch of 8.29 fs/ mm which results in an overall
temporal delay of 166 fs after a 20 mm propagation. This is larger than the used FWHM

52



temporal width of 162 fs of the fundamental pulse. However, the conversion efficiency is
still at 77% since the pulse intensity is high enough to quickly enough convert most of the
energy.

4.2.4 Incoherent Broadband Pulses in Second-Harmonic Generation

After discussing broadband pulses in SHG in the case of coherent pulses we can now turn
towards incoherent broadband laser pulses and the different behaviors they exhibit.

We will again look at all three setups discussed in the previous section. This includes, of
course, type I SHG with matched group velocities, as this is the most promising setup for
efficient broadband SHG. The other two setups, type II and non group velocity matched
type I SHG, show some differences in their behavior as compared to coherent pulses.
These differences are due to the pulses being incoherent and can even lead to efficient
frequency conversion in the latter two setups.

4.2.4.1 Incoherent Pulses in Non Group Velocity Matched SHG

Incoherent pulses in principle behave very similar to the coherent pulses discussed before.
Their relative temporal positions are mainly dependent on the group velocities of the
involved waves or rather the group velocity mismatch. The difference however is that
incoherent pulses typically have multiple intensity peaks and troughs along the pulse
length, the so-called temporal speckle (see figure 4.2.7 (a) for an example). Combined
with the fact, that two points further apart than the coherence time have no fixed phase
relation, we get two effects that cause the frequency conversion to have significantly
different properties with incoherent pulses.

We will this time start with type I SHG, as only one of the effects we will discuss in this
section is present in that case. Similar to coherent pulses, the peaks of the incoherent
harmonic and fundamental pulses drift apart due to group velocity mismatch. Now
however, after some more propagation through the crystal, a peak can start overlapping
with an adjacent peak of the fundamental pulses again and increase the conversion
strength. What we find, is that the conversion process can also transfer energy from the
harmonic wave to the fundamental waves, if their phase relation changes. This can happen
because of the temporal incoherence of the laser pulse.

As described in section 2.2.3, temporal incoherence means, that two points in time along
the temporal axis of the laser pulse, which are further apart than the coherence time, have
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no fixed phase relation. When drifting apart, the phase relation of the mixing waves at
each point along the temporal profile thus changes. This is equivalent to areas of different
phases overlapping due to spatial walk-off and hereby creating a phase mismatch (see
two-dimensional simulation in section 4.2.2). This can lead to a transfer of energy back
to the fundamental waves.

An example of this effect can be seen in figure 4.2.7 (b). The energy flow direction inverts
after the temporal walkoff has surpassed the coherence time of 390 fs, which happens
after a propagation distance of around 21 mm.
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Figure 4.2.7: Intensities of fundamental and second-harmonic pulses over the temporal
axis after conversion (a) and over the propagation distance (b) for a band-
width of 10 nm. The crystal used in the simulation is a type I DKDP with a
deuteration level of 70%.

We will continue by taking a look at SHG in a type II crystal. Here we have different group
velocities for all three involved waves. Thus, the peaks of the fundamental waves as well
as the emerging harmonic drift apart.

We find the same effects as in type I SHG, that is a decrease of conversion strength when
peaks drift apart and an increase of it when peaks overlap with neighboring peaks of a
different wave. This is also combined with the non fixed phase relation of peaks in the
incoherent pulse, which can lead to a transfer of energy from the harmonic wave back to
the fundamental waves.

We however find another effect that is due to the drift of the two fundamental waves
against each other. Because of this we can encounter a situation where the harmonic
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peak overlaps with a peak of one of the fundamental pulses and a trough of the other
one. This situation is equivalent to the back conversion effect described in section 4.2.3.1
for coherent broadband type II SHG. That means, depending on the phases of the three
waves, we can observe a transfer of energy from the harmonic to the fundamental waves
or the other way around.

Results of broadband type II simulations including all described effects can be seen in
figure 4.2.8. The mean pulse intensity is herein subject to the effects happening at several
peaks along the pulse simultaneously. As phases may vary along the temporal axis of the
pulses, these effects can overlap constructively or destructively, arbitrarily leading to an
increase, decrease or constancy of the mean pulse intensities. Depending on the exact
pulse we can thus for example find stepwise increasing harmonic energy as in figure 4.2.8
(@) or decreases as in figure 4.2.8 (b). Overall these effects make for an unpredictable
output of incoherent SHG in type II phase matching.
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Figure 4.2.8: Pulse energies of fundamental and second-harmonic pulses over the propa-
gation distance for bandwidths of 10 nm (a) and 5 nm (b). The crystal used
in the simulation is a type II DKDP with a deuteration level of 70%.

4.2.4.2 Incoherent Pulses in Group Velocity Matched Type | SHG

As a finale we will look at a very promising setup for incoherent broadband SHG, as it
eludes all of the efficiency limiting effects described before in this chapter: Group velocity
matched type I SHG. Experiments with this type of SHG yielded up to 70% conversion
efficiency for incoherent laser pulses [55].
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The difference from this setup to before is, that the peaks do not drift apart. The conversion
at each point along the temporal axis behaves approximately like in the one dimensional
narrow band SHG. Up to the second order in the dispersion relation the conversion process
can thus be described by equation 4.2.7. We find that this description can be useful at
the start of the conversion process up to saturation. For example in a 15% deuterated
DKDP crystal, SHG with pulses at a central fundamental wavelength of 1053 nm and a
bandwidth up to around 10 nm fulfills the approximation quite well. The simulation yields
a conversion efficiency up to 98% if the maximum intensity in the temporal speckle equals
the damage threshold of the crystal of 18 GW/ cm? at 1 ns pulse duration [77].

The approximation is no longer applicable after the conversion is fully saturated. At
this point the instantaneous frequencies v(t) of the laser pulse in the temporal axis have
changed due to chirp induced by Group Velocity Dispersion (GVD), which is dispersion
in the second order. This leads to a time dependent but in particular non zero phase
mismatch Ak(v(t)).

We will again use narrow band SHG to explain the occurring effects. If we assume a
marginally small but non-zero phase mismatch, SHG will exert a behavior where the
conversion efficiency will almost reach one before inverting its behavior and transferring
all the energy back to the fundamental waves. The propagation distance after which
this inversion occurs depends on the magnitude of the phase mismatch. Since chirp
generates different instantaneous frequencies along the temporal axis of the pulse, the
phase mismatch is also different along this axis and thus back conversion will set in after
different propagation distances for different points along the temporal axis. This way back
conversion is averaged out and the harmonic pulse does not reach zero energy. If we use
pulses that have a larger bandwidth, back conversion due to chirp will of course set in
earlier, reducing the maximum efficiency reachable.

An example is given in figure 4.2.9 (a) where the mean intensity is around half the laser
damage threshold of the crystal at 1 ns pulse duration. As can be seen, we have efficient
frequency conversion in the first 9 mm of propagation after which back conversion sets
in. The harmonic pulse does not however reach zero intensity due to the averaging effect
described before. In fact, if linear absorption is neglected, the mean harmonic intensity
in this example will settle to a fluctuation around a mean of (4.6 4 0.1) GW/ cm? after
around 50 mm propagation.

An interesting phenomenon appearing in the simulation alongside back conversion is
bandwidth broadening. Back conversion will start in the regions where the instantaneous
frequencies are furthest from the central frequency and thus where the phase mismatch
is largest. These regions and the therefrom emerging peaks are shorter in time than the
coherence time of the initial fundamental pulse. Because of the Fourier limit the resulting
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harmonic peak thus needs to have a wider spectrum, which is exactly what the simulation
results show.

The spectra for the above example of the output harmonic wave with a FWHM bandwidth
of 7.6 THz as well as the input fundamental wave with a FWHM bandwidth of 2.2 THz are

shown in figure 4.2.9 (b).
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Figure 4.2.9: Mean pulse intensities of fundamental and second-harmonic pulses over
the propagation distance (a) and the spectra of the fundamental input
and harmonic output waves (b). The fundamental pulse has a central
wavelength of 1053 nm and a bandwidth of 8.2nm (2.2 THz) and is input
into a 15% deuterated type I DKDP crystal. The harmonic output spectrum
has a FWHM bandwidth of 7.6 THz.
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5 Simulation Verification

In this chapter we will take a look at the physical validity of the simulations done in this
thesis. We will thus compare simulation results obtained in this thesis against results
obtained by other means. For the one-dimensional narrow band simulation, these means
are the SNLO software and the analytical solutions described in chapter 4.1. The two-
dimensional simulation will be compared to actual measurements conducted at the PHELIX
facility. Finally, the broadband simulations will be compared to the one-dimensional narrow
band simulation of this thesis and also to the measurements carried out at the PHELIX
facility.

5.1 Benchmarking of the One-Dimensional Narrow Band
Simulations

We start by validating the one-dimensional narrow band simulations. For this we will
utilize the results given by SNLO and the analytical solutions to the mixing equations
2.1.4. All three methods are input with the same parameters and the differences in the
outputs will be investigated.

The simulation results from SNLO will likely have a comparably larger difference to this
thesis’ simulation results, as SNLO outputs its results only to an accuracy of around 1-107°.
The analytical formulas (see equation 4.1.1) were fed with the exact same numerical
values as the simulations from this thesis.

Simulation results of all three methods with exemplary physical parameters from PHELIX
are shown in figure 5.1.1. The step size for the two numerical methods was chosen to
be 5 um with phase mismatches of Ak € {0mm~*,0.2mm~!, 10mm~!}. The difference
between the three curves in figures 5.1.1 (a) and (b) is smaller than the width of the lines
in the plot. In particular, the SNLO results differ less than 0.2% from the results of this
thesis. The analytical solutions have a deviation of 1 - 10~ for perfect phase matching
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and around 1% for large phase mismatch.

We find a significantly larger deviation from our results in the case of a small non-vanishing
phase mismatch. Here the error is visible in the plot. The reason for this deviation has not
been determined yet, but it might stem from the analytical solution itself. A parameter
fit of the analytical solution (equation 4.1.1) to the numerical curves has shown that the
numerical results could be obtained analytically by taking the fourth power of the second
parameter of the Jacobi elliptic function. This would then have the form

n(L) = (7<—>)2 o [W) LLNL 7 (7(‘))4] (5.1.1)

with the symbols defined in section 4.1. The deviation from the code developed in this
work are reduced to below 1 - 10~ by this formulation for the phase mismatch cases.
Why this different analytical formula appears and whether this could be the correct
analytical solution has not been resolved yet. An analysis of the original paper by Armstrong
et al. [31] and the book by R. L. Sutherland [33] could not uncover any mistakes or
differing assumptions. For this thesis we will however neglect the analytical solution in this
particular case since we find a good coincidence with the SNLO solutions. As, in the other
two cases, the analytical solutions and the SNLO solutions coincide with the solutions
given by the code from this work, we will assume the one-dimensional simulations from
this work to be physically correct. This is not surprising as the limit cases are not affected
by the exponent of the second term in the Jacobi elliptic function. In either case this factor
tends to 1 for vanishing phase mismatch and to 0 for the limit of infinite phase mismatch
leading to the same results.
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Figure 5.1.1: SHG calculations for perfect phase matching (a), phase mismatch of
0.2mm~"! (b) and 10mm™"' (). The plotted curves are for = w and — 2w
of the code from this work, == 2w of the analytical solutions and == 2w of
the results given by the SNLO software. The pulse parameters are an input
intensity of 2.3 GW/ cm? and a fundamental wavelength of 1053 nm. The
crystal used is a DKDP crystal with a deuteration of 70% and a length of
25mm in a Type I configuration.
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5.2 Two-Dimensional Simulations in Comparison to PHELIX Shots

The two-dimensional simulations allow for spatial intensity distributions in the plane
perpendicular to the propagation direction of the laser beam. These can for example be
the nearfield images measured at the PHELIX laser. With this simulation we can implement
spatial effects like walk-off and imperfect wavefronts. Both the SNLO software and the
analytical approach only provide solutions for simpler configurations. SNLO only solves
the frequency doubling for certain spatial profiles such as a flat top or a perfect Gaussian.
The analytical solution does not account for walk-off and imperfect wavefronts. They will
thus inevitably return different solutions than the two-dimensional simulation done in
this thesis.

For the comparison we will therefore use SHG efficiency measurements from the new
HHT beamline instead. These measurements can be seen in figure 5.2.2 with the plain
error bars.

The measurements are divided into the following three categories.! The blue marks
represent the first measurements as part of the beam time preparation. These include
a pedestal in the temporal profile as well as an ASE background in the spectral profile.
Both these features are shown in figure 5.2.1 (a) and (b) for clarification.The

marks are a different set of measurements after the temporal pedestal was eliminated but
the ASE background still present. Finally, the green marks were measured after both the
pedestal and the ASE background were eliminated. For comparison, the temporal profile
and spectrum of shots from these sets are also shown in figure 5.2.1.

The conversion efficiency values were calculated from the harmonic energy at the HHT
sensor (HHTS), which is located after the crystal (see section 3.1.2), and the fundamental
energy at the input face of the crystal. A prior measurement of the beamline transmission
yielded a value of 0.9 that can be used to calculate the input energy from the fundamental
energy value measured at the Main Amplifier Sensor (MAS).

The simulations use the calculated laser energy at the SHG crystal’s input face as input.
Additionally we need the temporal pulse profile, nearfield and wavefront of a laser pulse.
These data are measured at the MAS but are used unchangedly as input data to the SHG
simulation. Even though this does not take the propagation of the laser pulse through the
beamline into account, the data from the MAS is the best available estimate for the actual

1The PHELIX database shot numbers of the measurement series are as follows:
blue series: 21478 — 21484, 21487, 21489, 21490, 21508, 21509, 21513 — 21526, 21528, 21530
series: 21729 — 21731, 21733 - 21741
green series: 21747, 21748, 21751, 21754, 21758, 21763, 21767, 21769, 21772, 21773, 21777, 21780,
21782 - 21799, 21803, 21805, 21807, 21808, 21810, 21813
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wavefront, nearfield and temporal profile of the pulses at the crystal’s location.

The wavefront and nearfield are input into the simulation as described in section 4.2.2.
The temporal pulse profile is not considered in the simulation itself but is used to define
a set of input intensities. The calculation of the conversion efficiency for each PHELIX
shot is thus comprised of multiple simulations for the different instantaneous intensities
given by the temporal pulse profile. The overall efficiency is then calculated by adding the
harmonic energy of all single simulations and comparing it to the total input energy. The
underlying assumption is, that every point in the temporal profile can be represented by a
temporally infinite pulse with constant intensity.

The simulation results are also included in figure 5.2.2 as the "corresponding simulations"
to the measured sets of data. They are also plotted with the corresponding error bars.
As can be seen, the results match the measured data points within the respective errors
for the third (green) set without temporal pedestal and ASE background. The other two
sets could not be entirely matched by the narrow band two dimensional simulation. The
temporal pedestal was included in the calculations, the ASE background was not. For
lower input energies, the simulation mostly aligns with the measurements within the
respective error bars or lies within the fluctuation of the measurements among themselves.
However above 53 J for the blue dots and above 63 J for the data, the simulation
yields significantly higher conversion efficiency than measured. A possible reason for this
behavior is the fact, that the ASE background, which is present for the blue and

data points, was not included in this simulation. This might significantly influence the
SHG conversion efficiency at higher energies.

The reason for the disparity in SHG efficiency appearing only at higher energy is that, at
higher energies, the conversion strength is increased, which also leads to back conversion
appearing after shorter propagation distances. For lower energies the back conversion also
exists, but it would only set in at a propagation distance that is longer than the crystal itself.

The error bars of the measured data points consist of the errors of the measurement
devices. As stated in section 3.1 these are 3.2% for a single energy measurement and
thus 4.5% for the efficiency values. In the simulation we determine an uncertainty for the
simulation results based on the same input energy error by simulating both the lower and
upper end of the uncertainty of the input.

Also there is measured data that does not have a corresponding simulation result in the
plot. In these cases the parameter set required to run a simulation was not complete or
unusable for example due to noise in the temporal pulse profile.
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Figure 5.2.1: Examples of temporal beam profiles (a),(c),(e) and spectra (b),(d),(f) mea-

sured at PHELIX. These are exemplary for the three sets of measurements
in the corresponding colors. Plots (a) shows the temporal pedestal and plot
(b) the spectral ASE background from shot 21517 of the blue set. Plots (c)
and (d) show the measurements for shot 21740 of the orange set, without
temporal pedestal but with ASE. Plots (e) and (f) show the measurements
without both temporal pedestal and ASE for shot 21813 of the green set.
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Figure 5.2.2: Measurements at HHT (plain, bold error bars) and corresponding two-
dimensional narrow band simulations including temporal profile (error bars
with serifs) where data is available. The plots display the same data in
logarithmic (a) and linear scale (b).
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5.3 Broadband Simulations in Comparison to PHELIX Shots

For the broadband case we will start by comparing the results of the simulation against
the one dimensional narrow band simulation which we already verified. The spectrum
in this case is chosen to be all zero except for one non zero point at a wavelength of
1053 nm. This produces a pulse with temporally constant intensity which matches the
assumptions of the one dimensional case. We can thus compare these two cases and find
that the intensities during conversion equal each other. Examples can be seen in figure
5.3.1 for an input intensity of 2.26 GW/ cm? and a 70% deuterated DKDP crystal in type
I configuration. The curves differ from each other by less than 5 - 107 W/ cm? which is
around 15 orders of magnitude smaller than the intensity of the input beam. We will thus
assume the simulation to have a correct baseline.
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Figure 5.3.1: Wave intensities over propagation distance for perfect phase matching (a)
and a phase mismatch of 0.4mm~"! (b). The plotted curves are for =— w
and 2w of the broadband simulation code and = 2w of the narrow
band simulation. The broadband simulation uses the single point spectrum
described above and simulates in a temporal window 6 ps wide.

Further verification of the other scenarios covered by this simulation code is however
necessary as the previous statement does not prove the broadband implementation correct.
Currently no dedicated measurements have been conducted for broadband frequency
conversion.

As stated in the above section 5.2 some measurements have however been done where an
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ASE background was observed. Until further measurements will be conducted, these will
be the measurements we will try to reproduce by simulation in this thesis.

The measured data is the same as in the comparison of two-dimensional narrow band in
the section above (section 5.2). The corresponding simulations to the measurements are
displayed in figure 5.3.2.

With the one-dimensional broadband simulation we take the pulse spectrum into account
but neglect the nearfield and wavefront of the pulse. Since the measured spectrum does not
contain phase information and is subject to measurement uncertainty, the temporal profile
generated by Fourier transforming the spectrum does not resemble the measured temporal
profile. We thus need to consider the measured temporal profile in the simulation, which
we again do by simulating individually for every intensity point given by the temporal
profile. Since the intensity along the temporal axis of each individual simulation is not
constant, the given intensity is set to equal the mean intensity along the temporal axis. The
resulting conversion efficiency has an uncertainty due to the randomness of the temporal
speckle. For the simulations displayed in figure 5.3.2 we find an uncertainty of 2.6%.

As can be seen in figure 5.3.2 the broadband simulation was not able to reproduce
most measurement data within the respective errors. The simulation results consistently
underestimate the conversion efficiency. This is not expected as some aspects like the
spatial pulse profile or imperfect wavefronts are not included in the simulation. Typically
one would expect a higher conversion efficiency, if not all effects, that could lead to a
reduced conversion efficiency, are included. This therefore suggests that some parameters
are subject to systematic errors, which lead to a dramatic reduction of conversion efficiency.
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Figure 5.3.2: Measurements at HHT (plain, bold error bars) and corresponding one-

dimensional broadband simulations including temporal pulse profile (error
bars with serifs) where data is available. The plots display the same data in
logarithmic (a) and linear scale (b).
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A candidate for an improvable parameter is the input spectrum. The assumed coherent
peak above the ASE background in the measured spectrum is expected to be far narrower
than the measurement suggests. For a coherent pulse with a length in the order of single
nanoseconds the spectral width calculates to an order of GHz. This is more than one
order of magnitude below the minimal peak width measured at PHELIX of around 30 GHz.
A possible explanation for this can be given by the fact that any measured spectrum is the
convolution of the actual spectrum with the response function of the measurement device.
If the response function is far broader than the spectral peak width, the measurement will
also suggest a broader spectral width.

A correction of this fact was implemented into the simulation. The measured spectrum is
fitted to a function that is the sum of two Gaussian curves. The broader Gaussian curve
in this fit is herein assumed to represent the ASE background, that is present in some of
the PHELIX shots, as described before. The narrower Gaussian curve on the other hand
is assumed to represent the coherent part of the spectrum. This coherent part is then
transformed to a peak with a narrower width but the same total energy. This changes
the ratio between the field amplitudes in the coherent part of the spectrum and the
incoherent ASE as the electric field amplitude, being the relevant factor in the simulation,
is proportional to the square root of the intensity.

The simulation results with this correction implemented can be seen in figure 5.3.3. The
width chosen for the narrowed peak is 6 GHz. The blue series is entirely matched by the
simulation within the respective uncertainties. In the we find a coincidence for all
but the two highest energy shots, which are slightly overestimated by the simulation. The
discrepancy is however much smaller than without the spectral correction (see figure 5.3.2)
or in the two-dimensional simulation results (see figure 5.2.2). Lastly the green series
is overestimated in all shots up to an input energy of 60 J. Above this input energy the
error bars of the measurements and simulations overlap. With most measured data points
matched by the simulation results, we will conclude that the simulation with the correction
of the spectral width yields physically correct results. Moreover we can conclude that the
shots with ASE are more accurately replicated by the broadband than the two-dimensional
simulation.
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dimensional broadband simulations, where data is available, including
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and linear scale (b).

69



6 Summary & Outlook

In this thesis a tool for simulating Second-Harmonic Generation (SHG) with narrow band
and broadband, especially incoherent broadband, laser pulses was successfully developed.
The narrow band code is able to incorporate pulse properties such as the the spatial shape
and the wavefront together with effects such as spatial walkoff in birefringent crystals. In
the broadband case the spectrum of the pulse is included and simulated with the occurring
dispersive effects. Both codes can be used to simulate the temporal profile of a pulse.

The code developed in this thesis was verified to yield physically correct results. Firstly
the narrow band simulations were compared to established solutions to the SHG mixing
equations (2.1.4), namely the analytical solutions and the SNLO software. Both were
found to have a deviation of less than 1% to the results of this thesis’ simulation.

The two-dimensional narrow band as well as the broadband simulation were compared
to a set of measurements that were conducted at the HHT beamline at the PHELIX laser
facility. These measurements included laser shots, that incorporated an ASE background,
and shots without ASE. The two-dimensional narrow band simulation was able to match
the measurement data of the shots without ASE within the respective uncertainties. The
shots with ASE could be reproduced with the broadband simulation within the respective
uncertainties. The broadband simulation was moreover capable of matching the measure-
ment data of the narrow band PHELIX shots with energies above 60 J.

We can thus conclude that both the narrow band and broadband simulations yield physi-
cally valid results and that the broadband simulation can also be useful in narrow band
cases.

The thesis discussed different effects occurring in the SHG with broadband lasers in type I
and II phase matching setups in more detail. Various effects leading to conversion of energy
from the harmonic wave back to the fundamental waves were discussed. These effects
stem from group velocity mismatch with and without incoherence as well as frequency
chirp and limit the overall conversion efficiency of broadband SHG. This discussion is
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concluded by investigating the properties of the type I phase matching setup with matching
group velocities, which is a very promising setup for incoherent broadband SHG [25].

There is a need to conduct further experiments with broadband and incoherent broadband
laser pulses in order to better understand and verify the existence of the various occurring
effects described in this thesis. For this another SHG crystal will be ordered, specifically a
type I phase matched 17% deuterated DKDP crystal. This crystal sufficiently fulfills the
criterion of matched group velocities for a central wavelength of 1053 nm which, supported
by the simulation, enables high efficiency broadband SHG.

Additionally the capability to generate high energy incoherent broadband laser pulses
needs to be implemented into the PHELIX laser system. A possibility for this is a free
running, or not seeded, regenerative amplifier, that outputs high intensity ASE. Other
possibilities discussed in the literature are superluminescent LEDs [64] rare-earth doped
fiber amplifiers [59].

A dedicated ASE generating capability and the described crystal will enable the PHELIX
laser to generate incoherent broadband second-harmonic laser pulses, that can then be
used to further investigate laser plasma instabilities and their suppression with broadband
lasers. This is an important step towards enabling stable and efficient laser-plasma coupling
which can for example smooth the path toward ICF.
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