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Abstract Decay properties known in neutral atoms can
be altered significantly if all or most bound electrons
are removed. Straightforwardly, in fully-ionised nuclei, the
decay channels involving electrons are simply disabled. Also
decay modes, that are hindered or completely blocked in
neutral atoms, may, respectively, become dominant or open
up in highly charged ions. Few-electron ions are by them-
selves clean systems with well-defined quantum numbers,
in which the interactions within the remaining electrons can
either be excluded or treated precisely, thereby allowing for
investigations of the influence of atomic shell on nuclear
decay properties. Violent stellar environments characterised
by high temperatures and densities lead to high ionisation
degrees of nuclides involved in nucleosynthesis processes. In
spite of the rich motivation for studying radioactive decays of
highly charged ions, intensive measurements became possi-
ble only after heavy-ion storage rings coupled to radioactive-
ion beam facilities became available. Presented here is a
compact review of the relevant experimental techniques and
experiments.

1 Introduction

The discussion on whether decay rate of a nucleus is its
fundamental constant or it can be manipulated by external
means goes back to the beginning of the last century, when
the discovery of radioactivity went hand-in-hand with the
first attempts to alter its properties [1–3]. The motivations for
finding ways to change nuclear rates are manyfold. Indeed,
if such alchemy was possible, the impact on our daily life
would be immense. One could then dream about production
and enrichment of low-abundance elements or about chang-
ing waste composition, as well as about many other appli-
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cations in astronomy, geology, biology, medicine, chemistry,
etc.

However, in numerous experiments on atoms, aiming at
modifying nuclear decay probabilities by varying tempera-
ture, pressure, electric and magnetic fields, chemical envi-
ronments, acceleration and other parameters, only tiny mod-
ifications of below about 1% were observed, which were
attributed to changes of the electron density at the nucleus.

A perturbation of the orbital electron capture (EC) rate by
implanting atoms in different media was addressed by Segrè
in 1947 [4]. This has independently been suggested also by
Daudel [5], who in addition indicated that internal conversion
(IC) de-excitation of nuclear isomeric states can as well be
affected. Soon after, Segré and Wiegand found small changes
in the EC probability of 7Be by comparing its half-life in a
pure metal sample and in BeO or BeF2 compounds [6]. In this
context, 7Be is probably the most intensively studied case, see
e.g. [7–11]. Apart from basic understanding of radioactivity,
it is valuable for solar physics, where the EC decay of 7Be,
ionised in solar plasmas [12,13], affects the electron neutrino
flux [14,15].

A huge number of implantation experiments have been
conducted to date. Although light atoms are the best-
suited probes, effects were also found in heavy atoms
up to 235mU [16]. It is impossible to mention here all
studies accomplished. The interested reader is referred to
reviews [17,18] and references cited therein.

It is clear that the largest modifications of electron den-
sities are achieved in highly charged ions (HCI). This is
obviously true for fully-ionised atoms, where the electron
density at the nucleus is just zero and all decays involving
bound electrons are disabled. Extensive systematic studies of
decays of HCIs became possible in the 1990 s with the advent
of heavy-ion storage rings coupled to radioactive-ion beam
facilities [19]. We note that exciting plans exist for measur-
ing radioactive decays of HCIs in electron-ion beam traps
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(EBIT) [20–22]. First results on charge-bred 124In and 124Cs
were reported [23].

Stellar nucleosynthesis is one of the major motivations
for decay studies of HCIs. It proceeds in environments char-
acterised by huge densities and temperatures [24,25]. Beta
decay (β-decay) alters the proton number and thus plays a
decisive role in all nucleosynthesis processes [26–28]. The
main routes, responsible for the synthesis of about 99% of
chemical elements heavier than iron, are the slow (s) and
rapid (r ) neutron capture processes. The respective thermal
energies at the corresponding sites reach several keV to about
hundred keV. In such violent conditions, involved nuclei are
highly ionised and their decay properties can differ from the
ones established in neutral atoms [29–32].

Another important motivation is to understand the cou-
pling of the atomic and nuclear degrees of freedom [33–36].
Here, the HCIs offer the possibility to investigate decays
of systems with involved leptons being in a well-defined
quantum-mechanical state. For example, the parent nuclides
can be prepared as bare, hydrogen- (H-like), helium- (He-
like), or lithium-like (Li-like) ions. In this way, the compli-
cated interactions of the many bound electrons in atoms, like
partial screening of the nuclear charge by the electron cloud,
can be treated exactly in few-electron systems [37].

In this work, we review experimental results on the
radioactive decays of HCIs obtained at heavy-ion storage
rings to date and give an outlook on future research. In 2011,
a compilation of then available results has been published
in [38]. It is updated here.

2 Beams of highly charged radioactive ions

The prerequisite for decay studies of radioactive HCIs is their
production in a nuclear reaction and in a (high) atomic charge
state of interest, separation from inevitable contaminants, and
injection and storage in an ultra-high vacuum environment
of a storage ring [39].

There are two complementary methods to produce radioac-
tive ions in high atomic charge states. One of them is the
Isotope Separation On-Line (ISOL), which delivers, except
for some chemical elements, intense beams of low charged
(typically q = 1+) radioactive ions [42]. Thick targets are
utilised, in which high-energy light projectiles lead to cre-
ation of short-lived nuclei through target spallation or fission
nuclear reactions [43]. Diffused to an ion source particles
are extracted at low energies. The ISOL beams have small
emittances and are thus well suited for charge breeding in
an Electron Beam Ion Source/Trap (EBIS/T) [44–46]. The
resulting HCIs have low kinetic energies ideal for their sub-
sequent incarceration in an ion trap [47–49]. The overall HCI
production chain can be as fast as a few tens of milliseconds.
This is the basic procedure utilised for decay spectroscopy
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Fig. 1 Calculated with the GLOBAL code equilibrium charge state
distributions of different projectiles emerging the 9Be metal foil at
400 AMeV exit energy [40]. The figure is adopted from [41]

in traps mentioned in Sect. 1 as well as in low-energy stor-
age rings, which are being considered at ISOL facilities, see
Sect. 7.

Another approach is the in-flight production and separa-
tion of exotic nuclei. This method is presently employed at all
operating heavy-ion storage ring facilities, that are discussed
in Sect. 3. All of them are coupled to in-flight fragment sep-
arators [50,51]. Different nuclear reactions can be utilised
for production of radioactive nuclei in various regions of the
nuclidic chart. In our context, fragmentation of relativistic
heavy primary beams and fission of uranium beams on thin
targets of light elements are the most commonly used nuclear
reactions [43,52]. Projectiles at relativistic energies of about
100–600 MeV/u are typically employed.

HCIs are produced through stripping of bound electrons
by sending energetic fragments through matter [40,52,53].
Here, the production target is simultaneously used for the
electron stripping. Calculated equilibrium charge state frac-
tions, the ones independent from the initial charge state of the
projectile entering the matter, as a function of proton number
(Z ) are plotted in Fig. 1 for fragments leaving 9Be target at
400 AMeV energy. By choosing a proper stripper material
as well as its thickness, one may enhance population of a
specific charge state [54–57].

Distinct from the ISOL beams, the in-flight ones have
broad momentum distributions of a few percent [52,58,59].
The fragments are transported by a fragment separator, typi-
cally an achromatic device [60], from the target to the experi-
ment, which in our case is the injection into a storage ring. The
separator has planes with large dispersion, which are used for
magnetic rigidity Bρ = mvγ /q analysis. Here B is the mag-
netic flux density, ρ bending radius, andm, v, q, and γ are the
mass, velocity, charge, and relativistic Lorentz factor of the
ion, respectively. The high kinetic energies of the fragments
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Fig. 2 Schematic illustration of the secondary-ion beam facility at GSI.
The heavy-ion synchrotron SIS receives beams from the linear accel-
erator UNILAC. Secondary ions are produced either in the production
target in front of the in-flight fragment separator FRS or in the direct
transfer line in the stripper-foil station. Two stages of magnetic rigidity

analysis and energy loss degrader positions in the FRS are indicated.
The main components in the storage ring ESR, including the extraction
towards HITRAP, are labeled. Shown also is the location of the recently
installed low-energy storage ring CRYRING@ESR with its local ion
source and injection line. The figure is updated from [64]

allow for adding special solid degraders [60,61]. Since the
energy loss (�E) is charge dependent, the Bρ − �E − Bρ

analysis enables high purification power, such that mono-
isotopic beams can be prepared. It is also possible to use
different charge states in the first and second Bρ stages and
the degrader for changing the charge state distribution in
between [62,63].

3 Heavy-ion storage ring facilities

There are three heavy-ion storage ring facilities in operation
today [51,64].

The radioactive ion beam facility at GSI in Darm-
stadt is a combination of the high-energy heavy-ion syn-
chrotron SIS [65], the in-flight fragment separator FRS [61],
and the cooler-storage ring ESR [66]. Except for poisonous
source materials like Be, Cd, Tl etc, intense beams of any
(semi-)stable nuclide from protons up to uranium can be
accelerated by the SIS to the maximum magnetic rigid-
ity Bρ = 18 Tm. The ESR can vary the energy of
the stored beam within 3 Tm ≤ Bρ ≤10 Tm. Deceler-
ated beams can either be ejected towards a dedicated low-
energy storage ring CRYRING@ESR, which has recently
been commissioned [67,68], or towards the trapping facility,
HITRAP [69]. The GSI facility is schematically illustrated in
Fig. 2.

The flight time of secondary beams from the target through
the FRS until the exit of the separator is a few hundred
nanoseconds. This sets the minimal lifetimes of nuclei that
can be addressed in the ESR, where the time required for
the measurement itself needs to be considered in addition.

By employing only the Bρ analysis, cocktail beams can effi-
ciently be transmitted to the ESR, which is frequently used
for broadband mass measurements [59]. The Bρ −�E − Bρ

separation is used to prepare mono-isotopic beams either
for lifetime spectroscopy discussed here or for the in-ring
reaction studies [70–75]. In addition, radioactive HCIs can
be produced in the direct SIS-ESR beam-line bypassing the
FRS [76–78], which is often overbooked with non-ring exper-
iments.

The concept of the Heavy Ion Research Facility in
Lanzhou (HIRFL) [79,80] is very similar to the one of GSI.
The core of the high energy part of HIRFL is the main
cooler-storage ring CSRm, which functions as a heavy-ion
synchrotron with a maximum Bρ = 11 Tm. The fragment
separator, the second radioactive ion beam line in Lanzhou,
RIBLL2, operates as a pure Bρ analyser to transmit cocktail
beams of radionuclides to the experimental cooler-storage
ring CSRe [81]. The CSRe has a maximum magnetic rigidity
Bρ = 8.4 Tm. The present accelerator chain allows efficient
acceleration of beams up to about xenon, which limits the
range of secondary systems to be studied. The situation will
dramatically improve with the installation of a new linear
accelerator as a primary injector of the CSRm [82].

Of utmost importance for lifetime measurements in stor-
age rings is the ability to cool hot secondary beams [83].
Three cooling methods are utilised in storage rings. The elec-
tron [84] and stochastic [85] methods are applicable to any
types of stored ions and are routinely used [86–89]. A signifi-
cant progress has been achieved in laser cooling, though it can
only be utilised for a limited number of ions [90–92]. More-
over, beam cooling facilitates broad and rapidly developing
research programs in atomic and nuclear physics. These can-
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not be covered here and the reader is referred to reviews [93–
103] and references cited therein.

The driver accelerators at GSI and HIRFL are syn-
chrotrons, which are pulsed machines. Therefore, the beam
transmission chain to the storage ring is a synchronised
bunch-to-bunch procedure. The facility at RIKEN Nishina
Center for Accelerator-Based Science is built on a very dif-
ferent principle. The storage ring, Rare-RI Ring (R3) [104],
is basically a weak focusing synchrotron. It is composed only
of dipole magnets and is run solely in isochronous optics at a
fixed rigidity of 5.5 Tm, see Sect. 4.1. The driver accelerator
is a superconducting cyclotron, which as of today delivers
the most intense primary beams worldwide and as a conse-
quence gives access to the most exotic nuclides. It is there-
fore attractive to store them in a ring. However, due to the
(quasi-)DC characteristics of the cyclotron beams, the injec-
tion and investigation of only individual particles one by
one is possible [105–107]. Apart from the highest intensi-
ties, the strongest advantage of the setup is that each parti-
cle is identified within the large-acceptance BigRIPS frag-
ment separator [108] and only the ones of interest generate a
valid trigger for the injection into the R3 [109]. No cooling
is presently available. Although lifetime measurements of
HCIs were not attempted yet, non-destructive diagnostic is
being developed [110,111], see Sect. 4.1, which will enable
such research in the future.

4 Time-resolved storage ring mass spectrometry

The measurements of nuclear decays rely on the storage ring
mass spectrometry (SRMS). Its basic principle lies in the fact
that the mass-over-charge ratio (m/q) of a particle changes in
the decay, which can be detected through time-resolved and
intensity-resoved SRMS. In the following, we briefly discuss
the basics of the SRMS.

4.1 Conventional storage ring mass spectrometry

In first-order approximation, the relative revolution fre-
quency deviation � f/ f of the stored ions can be related
to the relative difference �(m/q)/(m/q) and the velocity
spread �v/v via the following expression [115–118]:

� f

f
= − 1

γ 2
t

�(m/q)

(m/q)
+

(
1 − γ 2

γ 2
t

)�v

v
, (1)

where γ is the relativistic Lorentz factor and γt the machine
parameter termed transition energy. The latter quantity is
connected to the momentum compaction factor αp as αp =
1/γ 2

t , which describes the relative change of the orbit length
caused by a relative change of magnetic rigidity. αp is sup-

posed to be constant for a given ion-optical setting of the
ring [119,120].

According to Eq. (1), the revolution frequency is the mea-
sure of the particle mass-over-charge ratio if the second term
on the right-hand side is made negligible. However, the veloc-
ity spread of secondary particles produced in a nuclear reac-
tion is huge and is typically larger than the acceptance of the
transport beam lines and the injection into the storage ring.

In the conventional Schottky mass spectrometry (SMS)
[121], the velocity spread of the stored ions is reduced by
stochastic and/or electron cooling [122], reaching–for par-
ticle intensities of below about 1000 ions–values as small
as ≈ 10−7 [123]. Thus the second term in Eq. (1) can be
neglected.

Nuclides with lifetimes exceeding the cooling process,
which takes at least several seconds, can be addressed by the
conventional SMS.

The revolution frequencies are then measured by non-
destructive Schottky diagnostics. The development of Schot-
tky detectors in the ESR is illustrated in Fig. 3. A relativistic
particle revolves in a storage ring with a high frequency of
a few hundred kHz to a few MHz. Being charged, it peri-
odically induces an electric current on the electrodes of a
Schottky detector. The output of the detector, which is dom-
inated by thermal noise, is Fourier analysed, which makes
repeating signals visible. The obtained power spectrum con-
tains frequency peaks ordered according tom/q values of the
stored ions, see Eq. (1). This is routinely used for precision
mass measurements [124–130], where the spectrum is cali-
brated by the unavoidably present nuclei with well-known
masses. Furthermore, the area of a frequency peak is directly
proportional to the number of stored particles. By tracing the
evolution of peak areas, the corresponding half-lives can be
determined. This is the basis of the time-resolved SMS [131].

The first generation of the ESR Schottky detector is illus-
trated in the left panel of Fig. 3. A sum signal from a pair
of oppositely placed capacitive copper plates is typically
used [112]. A single stored ion with charge q > 30 can
be detected within about 30 s. The simultaneously measured
bandwidth covers the entire ESR acceptance [126]. An exam-
ple of the measured decays in the ESR is shown in Fig. 4.

The need for a faster detector led to a development of a pill-
box cavity resonator [113], see the middle panel in Fig. 3. The
cavity was placed on air with a ceramic gap separating it from
the ultra-high vacuum (UHV) of the ring. The detection sen-
sitivity was enhanced such that the frequency of a single ion
could now be measured within a few ten milliseconds [132].
The inevitably smaller bandwidth of the detector allows for
covering only 1/3 of the ESR aperture. To scan through the
ring acceptance, the resonance frequency of the cavity can
be varied by moving copper blocks in/out of its working vol-
ume. An identical detector is installed in the CSRe [133,134]
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Fig. 3 Schottky diagnostics at the ESR. Left: Two pairs of copper
plates (capacitive arrangement) installed directly inside the ESR vac-
uum pipe [112]. Middle: First generation of resonant Schottky detector
with the resonator cavity on air [113]. The cavity is screwed together

around the ceramic gap. In the photo, the halves of the cavity are driven
apart such that the ceramic gap (white) can be seen. Right: The recently
installed fully-UHV resonant Schottky detector [114]. Photos: P. Petri,
M.S. Sanjari, GSI, Darmstadt

Fig. 4 Time-resolved Schottky frequency spectra of stored isobars
with A = 175 measured in the ESR. Data are displayed at the 30th
harmonic of the mean revolution frequency of about 2 MHz, that is why
the offset of 59,950 kHz is subtracted. Three H-like 175W73+ ions (at
f ≈ 8.4 kHz) are produced via radioactive decays. One of them is from
the EC decay of a single He-like 175Re73+ ion (at f ≈ 8.1 kHz) about 3
min after the measurement start, which is the time of the ion injection.

The other two ions are products of the three-body β+
c -decay of H-like

175Re74+ ions (at f ≈ 154.0 kHz) at about 2 and 10 min. The charge
state remains the same in the EC decay and only a small � f ≈ 300 Hz is
observed, which directly corresponds to the decay Q-value. The atomic
charge state is altered by one unit in the β+

c decay, which yields a much
larger � f ≈ 140 kHz. Note the break in the frequency scale. The figure
is adopted from [41]

and, adjusted to its specific parameters, a similar one has been
built for the R3 [110,111].

Figure 5 shows spectra taken with the new detector illus-
trating two EC decays of 142Pm60+ ions [132]. Both decays
have specific features associated with the kinematics of the
decay. The electron cooling is always on and forces the ions
to the revolution frequencies defined by their m/q ratios. As
discussed in Sect. 5.1, in the two-body EC decay, the energy
is shared between the emitted neutrino and the recoiling
daughter ion. The recoil causes a velocity mismatch, which
is quickly removed by the electron cooling. This is seen by

characteristic tails in Fig. 5, where the daughter nuclei require
a few hundred milliseconds before they are cooled to the cor-
rect velocity, that is revolution frequency. In the first decay
in Fig. 5, the electron neutrino is emitted in the backward
direction. The resulting higher velocity of the daughter ion
is then reduced by the cooling process, which is manifested
by the right-hand side cooling tail. Vice versa, in the sec-
ond decay the neutrino is emitted in the forward direction
and the slower daughter ion needs to be accelerated. Since
the storage ring has non-integer tune values [101], the trans-
verse components of the recoil are averaged away after a few
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Fig. 5 Time-resolved Schottky frequency spectra of two H-like
142Pm60+ ions stored and electron-cooled in the ESR. Displayed is the
124th harmonic of the mean revolution frequency. Data were acquired
with the resonant cavity-based Schottky detector [113], see Fig. 3 (Mid-
dle). The time- and frequency-resolutions are 32 ms and 31.25 Hz,
respectively. Both parent H-like 142Pm60+ ions decay by EC to fully-
ionised 142Nd60+ daughter nuclei, accompanied by the emission of an
electron neutrino νe. Yellow arrows indicate the true decay times, as
unambiguously identified by a decrease of the intensity of the trace cor-
responding to the parent ions and the simultaneous onset of the trace
of the recoiling daughter ion. The latter starts at a revolution frequency
shifted by δ f with respect to the frequency after completion of electron
cooling, which reflects the projection of the recoil velocity onto the
beam direction axis immediately after the decay. The figure is adopted
from [132]

revolutions. This means that the lengths of the cooling tails
reflect the projections of the recoiling momenta on the beam
direction axis, which, combined with the fact that the emit-
ted neutrino is ‘monochromatic’, gives information on the
neutrino emission angle.

In the conventional isochronousmass spectrometry (IMS)
[118,135], the ring is tuned in a special ion-optical mode. The
very principle of this mode is to send a faster ion of a given
ion species onto a longer orbit while a slower ion of the same
ion species onto a shorter orbit, such that the velocity spread
is compensated by the lengths of the closed orbits. In this
mode, the Lorentz factor of the ions γ = γt , see Eq. (1). The
revolution times are measured by a time-of-flight detector. A
thin foil (≈ 10μg/cm2) is inserted into the ring aperture and
is punched through by stored ions at each revolution [136–
140]. Secondary electrons released from the foil provide pre-
cise timing stamps, which are then used to determine the cor-
responding frequencies [141,142]. Ions can accomplish sev-
eral thousand revolutions before they are lost from the ring
either due to the energy loss or charge-exchange reactions in
the foil. The method has been primarily developed for pre-
cision mass measurements [143–157]. The fragments do not
require cooling. The overall measurement takes a few hun-
dred microseconds, which is ideally suited for addressing

short-lived nuclei. However, with respect to lifetime mea-
surements, there is an upper limit of a few μs.

4.2 Bρ-defined isochronous mass spectrometry

Due to the large velocity spread of stored ions, the condi-
tion γ = γt is fulfilled only in a small range of m/q values,
termed isochronous window. Outside of it, the mass resolv-
ing power and–in turn–the sensitivity deteriorate rapidly [50,
158]. However, if the velocity or magnetic rigidity of each
particle is known, high resolving power can be extended
beyond this window [159]. This has been verified at the ESR,
where, in the so-called Bρ-tagging regime, the rigidities of
all particles were limited in the dispersive plane of the FRS
by mechanical slits to about 10−4 [160]. The transmission
was dramatically reduced, but the mass resolving power has
increased and remained constant over the entire ESR accep-
tance, where at the edges of the acceptance the improvement
by up to a factor of 8 was achieved. Several measurements
have been conducted [161,162].

A different approach has been realised at the CSRe. Here,
two ToF detectors were installed about 18 m apart in a straight
section [163]. Each stored particle causes two trains of timing
signals in the detectors, which are then used to determine the
frequency and the velocity of each ion [164,165]. By assum-
ing that the particles with the same Bρ have the same mean
C , a universal calibration curve can be constructed. As a
result, a high mass resolving power of about 400’000 has
been achieved. Furthermore, it is about constant over the
entire CSRe acceptance. The widths of the frequency peaks
correspond to about 5 keV/q (FWHM) [166], which means
that the mass of a single ion can be determined with this pre-
cision. It is worth emphasising that the overall measurement
requires merely 200μs. A striking confirmation of the power
of the method has been delivered through measurements of
the masses of 70Kr and 75Sr, which were produced with rates
of below 2 particles per week [167–169]. This technique was
termed Bρ-defined IMS or Bρ-IMS.

At the R3, the measurement of particle velocities is
realised by using standard detectors within the Big-RIPS
fragment separator. The results of the first mass measure-
ments have been reported in 2022 [107].

4.3 Combined isochronous + Schottky mass spectrometry

As has been discussed above, non-destructive Schottky
detection is ideally suited to study exotic nuclear decays of
HCIs and, indeed, it has successfully been applied to inves-
tigate long-lived (T1/2 � 1 s) systems, see Sect. 5. It has,
however, been realised, that in order to access shorter-lived
species new methods would be needed.

For instance, one could attempt to accelerate the cool-
ing process. For this purpose stochastic and electron cool-
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ing were combined. In this procedure, the fast stochastic
pre-cooling reduced the momentum spread to about 10−4

within about a second. The subsequent electron cooling was
then much quicker than usual and the half-life of isomeric
state in 207Tl81+ with T1/2 = 1.33(11) s [170] could be mea-
sured [171,172]. No further significant decrease in the mea-
surement time was achieved, and apart from employing it in
the single-particle decay spectroscopy, see Sect. 5.1.3, this
approach was no longer followed.

With the development of the new-generation of Schottky
detectors[113], that enabled frequency measurement of a sin-
gle stored ion within a very few ten milliseconds [132,173],
it has been proposed to abandon cooling and pursue lifetime
measurements in the isochronous mode [174]. Such com-
bined Schottky+isochronous mass spectrometry (S+IMS)
would comprise the advantages of both techniques. Follow-
ing a proof-of-principle demonstration at the ESR [175], the
S+IMS has been applied in the CSRe to measure half-lives
of 49Cr24+ and 53Fe26+ [176], see Table 1.

To further increase the sensitivity of the Schottky detec-
tor, the ceramic gap has been removed and the cavity became
a part of the beam pipe, fully integrated into the ring
UHV [114], see the right panel of Fig. 3. The technique has
been verified in the ESR and successfully employed to mea-
sure the two-photon de-excitation of the first exited 0+ state
in 72Ge [177], see Sect. 5.2. Through the development of the
S+IMS, simultaneous broad-band mass and lifetime mea-
surements can now be aimed at [178].

5 Experimental results

Most of the lifetime results to date were obtained with the
conventional time-resolved Schottky mass spectrometry, see
Sect. 4.1. It is important to emphasise that such measure-
ments provide redundant information, since typically both,
the decay of the parent ions and the growth of the number
of daughter ions, are simultaneously observed. In the case of
a large relative change of the magnetic rigidity in the decay,
the daughter ions might leave the storage ring acceptance. In
such cases, the daughter ions can be measured with in-ring
particle detectors [179–181].

Employing internal gas-jet targets [182,183] facilitates
atomic charge-exchange reactions, which can be used in com-
bination with particle detectors to count the number of the
produced daughter or remaining parent ions. This is essential
for cases when the difference between the mass-over-charge
ratios of parent and daughter ions is too small to be resolved
by revolution frequency, see Sect. 5.1.2.

A careful consideration of ion losses due to atomic charge-
changing reactions is necessary. The rings are operated at
UHV conditions (10−10–10−12 mbar). Dependent on the ion
species, if not limited by the radioactive decay time, the stor-

age times can reach several hours. Collisions with the residual
gas atoms and molecules as well as the recombination with
the cooler electrons are the main loss mechanisms [184,185].
Furthermore, resonances in the machine can lead to unwanted
losses.

Up to date results on radioactive decays of HCIs measured
in heavy-ion storage rings are listed in Table 1.

5.1 Beta decay

Measurements of weak decays in HCIs were among the main
scientific motivations for the construction of the ESR [19].

The nuclear β-decay can be expressed as: n + νe ↔ p +
e−, where p, n, e− and νe indicate proton, neutron, electron
and electron-neutrino, respectively. By taking into account
particle-antiparticle symmetry, the following weak decays
can be distinguished:

n → p + e− + ν̄e − continuum β−-decay (β−
c )

n + νe → p + e−
b − bound-state β−-decay (βb)

p → n + e+ + νe − continuum β+-decay (β+
c )

p + e−
b → n + νe − orbital electron capture (EC)

p + e− → n + νe − free electron capture (free EC)

Capture of free electrons is common in stellar plasmas, as e.g.
7Be nuclei in the Sun dominantly decay by the free electron
capture from solar plasma [12,13].

5.1.1 Continuum beta decay

In the continuum β+
c /β−

c decays, the energy and momen-
tum are shared between the three particles in the final state,
namely the emitted positron/electron, neutrino/antineutrino
and the recoiling daughter nucleus. Fully-ionised 19Ne10+
ions were used in the first experiments at the FRS-ESR facil-
ity, during which the β+

c rate could be measured [39]. Short
after, dedicated measurements of β+

c rates of fully-ionised
52,53Fe26+ nuclei were conducted [186]. In these first exper-
iments, the feasibility of decay measurements in the ESR
was confirmed, thereby enabling a first comparison of the
calculated and measured β+ decay rates for fully-ionised
nuclei. Continuum β+

c and β−
c decays were intensively stud-

ied in the ESR by employing the time-resolved SMS. The
first application of the combined S+IMS technique was done
at the CSRe, where β+

c rates of 49Cr24+ and 53Fe26+ were
determined [176].

5.1.2 Bound state beta decay

Bound-state beta decay [187,188] is a nuclear weak decay in
which one of the neutrons n in the nucleus is transmuted into a
proton p accompanied by the emission of an electron and an
electron antineutrino. However, different from an ordinary
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Table 1 Half-lives of HCIs in
ground and isomeric (m) states
measured in storage rings.
Listed are the investigated ion
species, the measured or
proposed decay mode, the
measured half-life in the rest
frame of ions (T1/2(exp)),
half-lives for neutral atoms
T1/2(lit.) are taken from NNDC
[170], and NUBASE [172]
evaluations the employed
measurement technique, storage
ring facility, and the reference to
the original work, respectively.
An asterisk in last column
indicates a new information as
compared to the table published
in [38]

Ion Mode T1/2(exp) T1/2(lit.) Method Reference comm.

19Ne10+ β+
c 18.5(6) sa 17.26(1) s SMS ESR [39]

49Cr24+ β+
c 44.0(27) min 42.3(1) min S+IMS CSRe [176] *

52mMn25+ β+
c + IT 22.7(30) min 21.1(2) min SMS ESR [186]

52Fe26+ β+
c 12.5(+15

−12) h 8.275(8) h SMS ESR [186]
53Fe26+ β+

c 8.5(3) min 8.51(2) min SMS ESR [186]
53Fe26+ β+

c 8.47(19) min 8.51(2) min S+IMS CSRe [176] *
53mFe26+ IT 2.48(5) min 2.54(2) min SMS ESR [186]
72mGe32+ 2γ b prompt S+IMS ESR *
94mRu44+ IT 102(17) μs 67.5(28) μs IMS CSRe [229] *
122I53+ β+

c 4.39(28) min 3.63(6) min SMS ESR [204] *
122I52+ β+

c +EC 3.27(14) min 3.63(6) min SMS ESR [204] *
133mSb51+ IT? > 60μs 16.54(19) μs IMS ESR [227,228]
125mCe58+ IT 130+64

−6 s 3.4 s (est.)c SMS ESR [280]
140Pr59+ β+

c 7.3(4) min 3.39(1) min SMS ESR [202]
140Pr58+ β+

c +EC 3.04(9) min 3.39(1) min SMS ESR [202]
140Pr57+ β+

c +EC 3.84(17) min 3.39(1) min SMS ESR [202]
142Pm61+ β+

c 56.4(32) s 40.5(5) s SMS ESR [203]
142Pm60+ β+

c +EC 39.2(7) s 40.5(5) s SMS ESR [203]
142Pm60+ β+

c +EC 38.5(21) s 40.5(5) s SMS ESR [173] *
142Pm59+ β+

c +EC 39.6(14) s 40.5(5) s SMS ESR [203]
144mTb65+ β+

c + IT 12(2) s 4.25(15) s SMS ESR [220]
149mDy66+ β+

c + IT 11(1) s 0.490(15) s SMS ESR [220]
163Dy66+ β−

b 47+5
−4 d stable SMS ESR [190]

163Ho67+ stable 4570(25) y SMS ESR [190]
151mEr68+ β+

c + IT 19(3) s 0.58(2) s SMS ESR [220]
183mHf71+ β−

c ? + IT 10+48
−5 s 40(30) s SMS ESR [221,222]

184m1Hf72+ IT 1.9+12
−7 min 48(10) s SMS ESR [221]

184m1Hf72+ β−
c ? + IT 113+60

−47 s 48(10) s SMS ESR [222] *
184m2Hf72+ β−

c ? + IT 12+10
−4 min 16(7) min SMS ESR [221]

184m2Hf72+ β−
c ? 12+8

−6 min 16(7) min SMS ESR [222] *
186mHf72+ β−

c ? + IT > 20 s > 20 s SMS ESR [221,222]
168Ta73+ β+

c 5.2(7) min 2.0(1) min SMS ESR [281]
186mTa72+ β−

c ? + IT 3.4+24
−14 min 1.54(5) min SMS ESR [221]

186mTa72+ β−
c + IT 3.0+15

−8 min 1.54(5) min SMS ESR [222] *
187Ta73+ β−

c 2.3(6) min 2.3(6) min SMS ESR [221,222]
187m1Ta73+ β−

c ? + IT 22(9) s 7.3(9) s SMS ESR [221,222]
187m2Ta73+ β−

c + IT? > 5 min > 5 min SMS ESR [221]
186mW72+ IC 7.5+48

−33 s 18(1) μs SMS ESR [222]
187Re75+ β−

b 32.9(20) y 41.60(2) Gy SMS ESR [191]
192mRe75+ β−

c ? + IT 61+40
−20 s < 500 ms SMS ESR [222,223]
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Table 1 continued
Ion Mode T1/2(exp) T1/2(lit.) Method Reference comm.

192mOs75+ β−
c ? + IT 15.1+15

−13 s 5.94(9) s SMS ESR [282] *
195mOs76+ β−

c ? + IT > 9 min 47(3) s SMS ESR [222]
205Hg80+ β−

c + β−
b 5.61(9) min 5.14(9) min SMS ESR [194]

205Tl81+ β−
b c stable SMS ESR *

205Pb82+ stable 17.0(9) My SMS ESR *
207Tl81+ β−

c + β−
b 4.25(19) min 4.77(2) min SMS ESR [193]

207Tl81+ β−
c + β−

b 4.72(19) min 4.77(2) min SMS ESR [194]
207mTl81+ IT 1.47(32) s 1.33(11) s SMS ESR [93,171]
213Tl81+ β− 1.7+81

−8 min 23.8(44) s SMS ESR [283]
212m2Bi83+ IT > 30 min 7.0(3) min SMS ESR [284] *

221Po84+d
β− 1.9+10

−5 min 2.2(7) min SMS ESR [283]
222Po84+ β− 2.4+116

−11 min 9.1(72) min SMS ESR [283]
224At85+e

β− 1.3+23
−4 min 2.5(15) min SMS ESR [283]

234Ac87+ β− 45(2) s 45(2) s SMS ESR [285]
235Ac88+ β− 62(4) s 62(4) s SMS ESR [285]
236Ac89+ β− 1.2+56

−6 min 4.5(36) min SMS ESR [283]

a11% contamination by β-decay of 15O is suggested in [39]
bSuccessfully measured in 2021, result is not yet disclosed
cUpdated, see [170]
aSuccessfully measured in 2020, result is not yet disclosed
dCan be mixed with isobars A = 221 and q = 84+
eCan be mixed with isobars A = 224 and q = 85+

continuum β− decay mode, the electron is not emitted to
the continuum but occupies one of the bound orbitals. Thus,
there are two particles in the final state which share the decay
Q-value. Two-body β-decays, EC and βb-decay, are the time-
reverse of each other. Similarly to the EC-decay in which the
electron from any shell can be captured, the created electron
in the bound-state β−-decay can occupy different shells in
the daughter atom. The scaling of the probabilities to capture
(generate) s-electron from (in) electron shells with different
principal quantum number n is roughly 1/n3 [189]. Since the
inner orbitals in neutral atoms are Pauli-blocked, βb-decay is
restricted to very weakly bound electron states of the daugh-
ter atom and is, therefore, only a marginal decay branch of
neutral atoms.

Although the existence of the βb-decay was predicted in
the 1940 s [187], it took several decades until it has exper-
imentally been verified. All results on the βb-decay come
from the ESR.

Neutral 163Dy atoms are stable and decay with half-life
of about 50 days if fully ionised. This was one of the very
first measurements conducted in the ESR [190]. The obtained
result impacted our understanding of the s-process flow,
where 163Dy becomes a branching point nucleus, contribut-
ing to the creation of 164Er. In turn, the observed abundance
of 164Er can be used to infer the ionisation degree of 163Dy
and the corresponding environment temperature [41].

In a subsequent study, the βb-decay of fully-ionised
187Re has been measured [191]. Neutral 187Re atoms have
a very long half-life of 42 Gy [170,172]. However, the
increased decay Q-value, if all bound electrons are removed
in 187Re75+ ions, enables the decay to the first exited state in
187Os nucleus at E∗ = 9.8 keV thereby reducing the half-
life to merely 33 years. This result made a dramatic conse-
quence for a possible application of the 187Re/187Os pair as a
nuclear cosmo-chronometer, turning it instead into a cosmo-
thermometer [192].

The Q-values of the βb-decays of 163Dy and 187Re are
so small that the daughter ions cannot be resolved from the
corresponding parent ions. To detect the bred H-like daughter
ions an internal gas target has been utilised to strip the bound
electron. The resulting bare nuclei have significantly different
orbits and can be intercepted by particle detectors installed
after a bending magnet downstream the target [101].

The first direct observation of the bound-state β-decay
was performed on the examples of fully-ionised 206,207Tl81+
nuclei, see Fig. 6. These systems have a sufficiently large
decay Q-value (> 1 MeV), which allows for direct resolving
of the parent and daughter ions by their revolution frequen-
cies via SMS [193]. Furthermore, such large Q-values imply
that the β−

c -decay is also allowed. This enabled the first mea-
surements of the β−

b /β−
c ratios [193,194] in analogy to well
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Fig. 6 Illustration of the the bound-state beta-decay of fully-ionised
206Tl81+ measured in the ESR [193,194]. The colour code represents
logarithm of Schottky power in arbitrary units. Similar to Fig. 4, the
data were measured at 30th harmonic of the revolution frequency. The
isomeric state of thallium, labelled withm, decays by internal transitions
to the ground state. The ground state decays via βb decay to H-like
206Pb81+ ions. The decay Q-value is large enough to enable all ion
species to be directly resolved. The parallel changes in the revolution
frequencies are due to random fluctuations of the magnetic fields of the
ESR. Figure taken from [41]

studied EC/β+
c branching ratios [189]. Therefrom obtained

ratios are in fair agreement with theoretical estimations [30].
In spite of the successful investigations of βb-decays, the

most impactful case proposed before the construction of the
ESR [195], namely the decay of 205Tl81+ nuclei, remained
unmeasured. The knowledge of the decay rate is essen-
tial for the conclusion on the s-process clockworks in the
Hg-Bi region, where especially the destruction/survival of
long-lived 205Pb is affected [196]. Furthermore, there have
been proposals to utilise 205Tl as a detector for solar pp-
neutrinos [197–199], where the transition strength defines
the neutrino capture probability. Although 205Tl is stable
and abundant on Earth, it is poisonous and for safety rea-
sons its use in a source was excluded. The case was revived
every time an upgrade of the GSI facility was undertaken.
However, the production of a sufficient amount of secondary
205Tl81+ nuclei was not possible for decades. An expected
half-life can lie in the range from about 50 days to about 400
days [31,32,200,201]. Therefore, 106 − 107 ions need to be
produced and stored for several hours. In 2020 the experi-
ment has finally been accomplished. Enriched 206Pb beam
was used to produce 205Tl81+ ions. A challenging complica-
tion arises from a much higher production of the 205Pb81+
ions, which are the daughters of the βb-decay of interest.

Efficient production, purification, accumulation as well as
the storage of up to 10 h could be achieved. The analysis is
in its final stage and will be published soon.

5.1.3 Orbital electron capture

On the neutron-deficient side of the nuclidic chart, the two-
body beta decay mode is the orbital electron capture [189].
It is obvious that EC is disabled in fully-ionised nuclei. The
number of measured EC decays in highly-charged ions is
limited and all results stem from the ESR, see Table 1.

The EC decays of H- and He-like ions were measured in
122
53 I, 140

59 Pr, and 142
61 Pm ions [202–204]. Also the correspond-

ing β+
c in the fully-ionised nuclei were obtained. A striking

result was observed that H-like 140Pr58+ and 142Pm60+ ions
decay through an allowed 1+ → 0+ Gamow-Teller transi-
tion by a factor ∼1.5 faster than the corresponding He-like
140Pr57+ and 142Pm59+ ions, and even than neutral atoms.
Although at first glance counterintuitive, this result could be
explained by the conservation of the total angular momen-
tum and by the fact that the ions in the ESR are stored in the
ground hyperfine state [205–208]. Similar results were seen
in muon capture [209] and were discussed for EC [34]. One
of the consequences is that the neutrino emission direction
is strictly opposite of the direction of the spin of the parent
nucleus, see the discussion in relation to Fig. 5.

To verify the theoretical explanation, the Gamow-Teller
1+ → 2+ decay of H-like 122

53 I52+ ions has been stud-
ied [204]. According to the proposed selection rules, this
decay shall be disabled. Indeed a slower decay has been
measured. A definite conclusion though was not possible,
since the decay strength is split over numerous states in the
daughter nucleus [170].

Substantial research has been devoted to the verification
of a surprising observation of modulated EC decay of in H-
like 122I52+, 140Pr58+ and 142Pm60+ ions [210,211]. These
measurements were conducted with the so-called “single-ion
decay spectroscopy”, which aimed at a continuous observa-
tion of each stored ion. Precise decay times were seen as
well-defined jumps of intensities corresponding to individual
ions from the parent frequency to daughter frequency. Several
thousands of such EC decay times were collected in several
experiments. Although the periodic modulations with several
second periods were not reproduced, these experiments were
the motivation for the development of the highest-sensitivity
Schottky detectors, see Sect. 4.1. In the latest experiment, a
pure exponential decay of 142Pm60+ ions was obtained with
a high statistical confidence [173]. A detailed discussion of
this research can be found in [212].
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5.2 Nuclear isomers

Isomers are long-lived nuclear states [213–215]. Such states
have quantum numbers, which hinder transition to the cor-
responding low-lying states. Isomers can de-excite either
through electromagnetic channels, that is via internal conver-
sion (IC), emission of a γ -quantum (IT), or, if the excitation
energy exceeds 1.022 MeV, via the creation of an electron-
positron pair, through weak channels, that is via β-decay,
see Eq. (2), or through strong interaction, that is by emission
of nucleons, α-particles or fission. Conventionally, isomeric
states are studied by utilising various spectroscopic methods.
Of particular interest here is that highly charged ions offer a
way to isolate specific decay channels.

We note, that prompt decays of excited states in HCIs can
be measured at in-flight spectrometers. In such experiments,
a new decay channel, namely the Bound Internal Conversion
(BIC) was discovered [216–218]. Similar to the β−

b -decay,
in this IC-decay mode the conversion electron is not emit-
ted to the continuum but transferred to a different atomic
level [219].

In fully ionised nuclei, all bound electrons are removed
and the de-excitation through IC is impossible. In this way
the partial (β++γ )-decay rate can be measured, which offers
an independent approach to obtain conversion coefficients.
In the first experiments, long-lived isomers in 52Mn and 53Fe
were investigated [186] Afterwards, conversion coefficients
were obtained for 144mTb, 149mDy and 151mEr isomeric states
through measuring the pure IT channel in the correspond-
ing fully-ionised nuclei [220]. Such measurements allow for
addressing weak gamma decay branches.

A spectacular application of time-resolved SMS is to
search for long-lived rarely produced isomers. Indeed, new
isomeric states are frequently found in campaigns on broad-
band mass measurements. However, assumed here are iso-
meric half-lives in the order of minutes, hours or longer and
production rates of one particle per hour, day, week or even
smaller. Here, the ultimate sensitivity to single stored ions
allows for the detection and identification of every produced
rare ion. Searches for such exotic isomeric states with con-
ventional γ -spectroscopy are very complicated. In a ded-
icated experiment, several high-K isomers in neutron-rich
nuclides in the Hf-Os region were discovered [221–223] and
their properties, like excitation energy and lifetime, were
determined. The latter can then be used to specifically design
a spectroscopic experiment to investigate such isomers. As
an example, the isomeric state in 187Ta has been first dis-
covered in the ESR and then thoroughly studied at the KISS
facility in RIKEN [224–226].

In the last few years, the advancement in the speed and
sensitivity of the newest Schottky detectors together with
the development of the combined S+IMS technique pro-
vided access to nuclear lifetimes in the millisecond range.

For benchmarking the power of the technique, 72Ge has been
selected. The ground and first excited states in this nucleus are
both 0+ [170]. In a fully-ionised nucleus, the IC and IT decay
channels are disabled and the isomer is forced to decay via
a second-order 2γ -decay. The successful measurement has
been conducted in 2021 and is being analysed now [177].
The results are not yet disclosed by the collaboration but are
expected soon to be reported.

Last but not least, although the measurement duration
in the IMS is very short, decays of μs isomers are some-
times possible to detect. Here, the large losses due to interac-
tions of the ions with the ToF-detector foil need to be taken
into account [227]. For instance, the decays of isomers in
133Sb [228] and 94Ru [229] were measured in the ESR and
CSRe, respectively. The former nucleus is just one proton
above the doubly-magic 132Sn and the ESR result was use-
ful for constraining shell-model predictions in this region.
In the case of 94Ru, the change of the revolution frequency
due to the decay could be observed directly in the measured
revolution time stamps, see Sect. 4.1.

So far obtained half-lives for isomeric states are listed in
Table 1, where the assumed decay channels are indicated.

6 Future experiments

The rich harvest of measured half-lives presented in Table 1
shows the past successes. However, the perspectives for
future measurements are as well exciting. It is important to
emphasise that half-life measurements are planned at all three
facilities in operation.

New experimental capabilities are coupled to advances in
detector development. The major goal in the context of life-
time measurements is the ability to non-destructively deter-
mine the velocity of each stored particle in the isochronous
mode. Such determination will enable all advantages of the
Bρ-defined IMS, see Sect. 4.2. The corresponding approach
is to construct transverse Schottky detectors to measure
the position of each particle in a dispersive location of
the ring [230–232]. This will provide the particle mag-
netic rigidity, from which the velocity can straightforwardly
be deduced. The first prototype of such detector is being
installed in the R3.

An important goal of the future measurements is a broad-
band determination of yet unknown β-decay half-lives. Of
interest here are neutron-rich nuclei, especially those rel-
evant to the r -process. There are indications that forbid-
den β-decays may become dominant, thus altering the-
oretical predictions [233,234]. An additional channel, β-
delayed single-neutron (P1n) or multiple-neutron (Pxn) emis-
sion, becomes energetically allowed in such systems [235].
Proposals to employ the combined S+IMS with telescope
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detectors to measure Pn values have been prepared for the
ESR [236,237].

On the neutron-deficient side of the nuclidic chart, the
production of nuclides beyond the proton drip-line is feasi-
ble. Taken the speed of the S+IMS, investigations of direct
proton and/or β-delayed proton emission may become pos-
sible [238].

Although proposed more than 10 years ago, measurements
of possible modifications of α-decay rates in HCIs are still
pending. Small changes of the rates are expected because
of the reduction of the Coulomb barrier due to the missing
screening effect of the electrons [239–242].

Regarding EC decays, the presently available measure-
ment of the decay of H-like 122I [204] is yet insufficient to
firmly confirm the theoretical explanation of the decay rates
in H-like and He-like 140Pr and 142Pm. An ideal test can-
didate would be 111Sn [243], decaying by allowed Gamow-
Teller transition 7/2+ → 9/2+ to the ground state of 111In,
see Fig. 7. If the assumption of the disabled repopulation of
hyperfine states in the storage ring is correct [244], the ground
hyperfine state in H-like 111Sn has the total angular momen-
tum F = 3. However, such F state is not available in the
daughter ion and thus the allowed �I = +1 EC decay is not
possible. We note that the magnetic moments of both nuclei
are positive [170]. In the case of 64Cu it is negative [170] and
thus the ordering of hyperfine states is inverted, which leads
to the disabled �I = −1 decays [245]. If experimentally

Fig. 7 Cartoon representation of the EC decay of H-like 111Sn49+ ions
decaying through allowed Gamow-Teller transition to the ground state
of fully-ionised 111In49+ nuclei. In the initial state (i), the nuclear and
single electron spins can couple to the total angular momenta Fi = 3
and Fi = 4. Both nuclei have positive magnetic moments [170]. After
a short time, only the Fi = 3 hyperfine ground state is populated.
No repopulation of upper hyperfine states has been observed in the
ESR [244]. In the final state ( f ), the states are Ff = 4 and Ff = 5.
Therefore, no Fi = Ff transition is available and hence the EC decay
is hindered. Taken from [247]. Courtesy Ragandeep Singh Sidhu

confirmed, it will be possible to use different combinations
of states in parent and daughter nuclei to address, e.g. weak
decay branches or forbidden decays, etc.

A special case is 7Be, which was briefly discussed in
Sect. 1. The EC decay of the 3/2− ground state to the 1/2−
first excited state in 7Li depends on the population of hyper-
fine states in 7Be [246]. The tiny hyperfine splitting might
be used to probe the re-population probability in the storage
ring.

EC decays of Li-like systems shall show similar depen-
dence on the total angular momenta as the H-like ions. Predic-
tions of such decays have been made and await experimental
confirmation [248].

Search for long-lived rare isomers will continue. The
immediate goal here is to study 188Hf where an exotic K-
isomer with an exceptionally long lifetime with respect to
photon decay is predicted to exist [215].

The fast S+IMS enabled half-life measurements in the mil-
lisecond range. Further measurements of known as well as yet
unknown 0+ → 0+ decays are proposed at the ESR [249].
Furthermore, an exotic bound electron-positron pair decay
will be addressed [250]. This decay mode is energetically
open in 194Pb where the excitation energy of the first excited
0+ state [170] combined with the binding energy of the K-
orbital [251] gives about 10 keV excess energy, which is car-
ried away by monochromatic positrons.

Further exotic decay modes are the time-reverse of
IC, termed Nuclear Excitation by (free) Electron Capture
(NE(free)EC), and of BIC, termed Nuclear Excitation by
Electron Transition (NEET). A large deviation was observed
between the NEEC measured through depletion of the
isomer in 93Mo [252] and theoretical predictions [253]. It
turns out that it is crucial whether electrons are consid-
ered to be free or bound in a target atoms [254,255]. Sev-
eral prepared proposals suggest various approaches to mea-
sure both NE(target)EC and NE(free)EC at the ESR and/or
CRYRING@ESR [68,256,257].

Last but not least, the isomeric state in 229Th is in the
focus of numerous experimental and theoretical investiga-
tions [258–260]. It is predicted that transition rates in highly
charged 229Th ions may change dramatically due to the
nuclear hyperfine interaction [261]. The versatile instrumen-
tation, facilities (ESR, CRYRING@ESR, HITRAP), and
variety of targets and probes offer promising prospects for
studies on 229Th and other low-lying isomers [262–264].

7 Outlook

The presently running storage ring machines will continue
research programs on half-life measurements of radioactive
HCIs. However, there are several new storage ring projects
launched worldwide.
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At the future Facility for Antiproton and Ion Research
(FAIR), which is in construction at the GSI site in Darm-
stadt [265], two new storage rings are planned. The first one,
Collector Ring (CR), is a dedicated facility to be operated in
isochronous mode [266]. It will profit from excellent design
transmission from the new high-acceptance fragment separa-
tor Super-FRS [267]. Particle detectors for Pn determination,
a double-ToF setup, and multiple Schottky detectors will be
installed thus enabling Bρ-defined IMS, S+IMS as well as the
combination of both. Since only one ion is needed to obtain
its mass and lifetime, this will be the facility, where the basic
properties of the most exotic nuclei will be measured. The
second ring is the High-Energy Storage Ring (HESR) [268].
Accumulation and long storage times of stochastically cooled
ion beams will be possible in the HESR [269]. Counting on
high intensities of secondary beams from Super-FRS and
CR, dedicated measurements of rare decay channels and long
half-lives are aimed at [178].

Another future complex in construction is the High Inten-
sity Heavy-ion Accelerator Facility in China [270]. A 15 Tm
spectrometer ring SRing [271] will be built behind a syn-
chrotron, connected by the fragment separator HFRS. The
multi-purpose SRing will be equipped with electron, stochas-
tic and laser cooling capabilities, various detector and spec-
trometer setups, and internal targets. A special care is devoted
to high quality isochronous ion-optical mode [272]. Further
in the future, it is planned to upgrade the facility by adding a
45 Tm superconducting MRing [273,274], which will form
a special configuration with the SRing for interaction of two
co-propagating beams.

In addition to the projects in construction, there are a few
ones in the discussion phase. The first one is the dedicated
low-energy storage ting at ISOLDE at CERN [246]. Mea-
surements of β-decays of HCIs is one of the proposed physics
cases there. One of the key nuclei is the H-like 7Be, which
decay probability was still not feasible to measure elsewhere.
Other low-energy storage rings in discussion are the ones at
LANL [275] and TRIUMF [276]. These rings will be coupled
to free-neutron targets primarily for challenging neutron-
induced reaction measurements [277,278], though some yet
unspecified decay measurements are not excluded. Last but
not least, a multi-purpose storage ring project DERICA is
being considered at JINR in Dubna [279]
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