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Scalar-field dark matter models imply small oscillations of fundamental constants. These oscillations

could result in observable variations of the magnetic field in a permanent magnet. We propose an

experiment for detection of this type of dark matter through searches of oscillations of magnetic field of

permanent magnets with a SQUID magnetometer or a low-noise radiofrequency amplifier. We show that

this experiment may have comparable sensitivity to leading experiments searching for variations of

fundamental constants in the range of frequencies from a few Hz to about 1 MHz. We also discuss

applicability of the approach of variations of fundamental constants for accounting for the interaction with

scalar dark matter.
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I. INTRODUCTION

Despite several decades of concerted experimental

efforts, nongravitational interactions of dark matter

(DM) are yet to be unambiguously detected, leaving

identifying the nature of DM as one of the greatest

challenges in modern science [1]. Ultralight bosonic dark

matter (UBDM) has emerged as a promising class of

candidates [2].

In contrast to heavier particles that may constitute DM,

UBDM is searched for through its collective effects, rather

than using particle detectors. Detection approaches may

vary depending on the spin and intrinsic parity of the

underlying particles. In the case of scalars, the potentially

observable signatures may be produced by apparent modi-

fication of fundamental constants [3–5].

The most notable effects are related to variations of the

fine structure constant and masses of elementary particles,

because they may be, in principle, observed in a variety of
experiments, see, for example, [6]. Since the variation of
mass and charge of a single particle is extremely small, it

is advantageous to look for collective effects, when an
ensemble of polarized particles interacts coherently with
the classical oscillating scalar field. In this case, the

observable effects are enhanced through the large number
of particles involved.

In this paper, we study the effect of oscillation of magnetic

field of a permanent magnet due to the interaction with a

background scalar field associated with the local dark matter

density. An experimental realization could measure small

variations of the magnetic field with a sensitive magnetom-

eter such as a superconducting quantum interferometer

device (SQUID) [7]. To provide interpretation of the experi-

ment, one needs to find the relation between the magnetic

field in the magnet and variations of the fundamental

constants. This question is the focus of this paper.
We derive the dependence of the oscillating magnetic

field in a magnetized material on the coupling constants of
the scalar field to photons and electrons. This field is found

as the analytical solution of Maxwell’s equations in a long
cylindrical magnet. We show that magnetic materials with
low electric conductivity are more suitable for the detection

of variations of fundamental constants because eddy
currents suppress the oscillating fields. The oscillating
electric and magnetic fields may be detected with a
SQUID magnetometer or with an induction coil connected

to a low-noise radio frequency (rf) amplifier. We estimate
the sensitivity of both these detectors and compare these
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with the results of other experiments which are sensitive to
variations of the fundamental constants [8–18]. We show

that the proposed experiment may have comparable sensi-
tivity to the leading experiments searching for variations of

fundamental constants in the range of frequencies from a

few Hz to about 1 MHz.

The rest of the paper is organized as follows. In the next

section, we study the dependence of the magnetization of a

magnetic material on the coupling constants of the scalar

field to photons and electrons. We show that the electron

coupling constant may be conveniently taken into account

through the variation of the Bohr magneton, while

the scalar-photon interaction leads to an extra term in

Maxwell’s equations. In Sec. III, we analytically derive the

oscillating electric and magnetic fields in an axially-

magnetized long cylinder, originating from the interaction

with the background scalar field. Using this analytic

solution, we study the effects of suppression of these fields

in permanent magnets with finite electric conductivity and

resonance enhancements in nonconducting magnets. In

Sec. IV, we estimate the sensitivity of experimental setups

based on the SQUID magnetometer and low-noise rf

amplifier, and compare these with the existing limits from

other experiments. Section V is devoted to a summary and a

discussion of the results.

II. OSCILLATING MAGNETIZATION

AND VARIATION OF FUNDAMENTAL

CONSTANTS

In this section, we start by considering the classical

oscillating scalar field as the dark matter candidate and,

then, derive variations of the Bohr magneton and magneti-

zation due to the electron interaction with this field.

A. Classical scalar field as a dark matter candidate

We consider a model of dark matter described by a real

scalar field ϕwith the mass of the underlying particlemϕ. If

this mass is sufficiently low, mϕ ≪ 1 eV, there are many

dark matter particles per de Broglie wavelength, and this

field may be well approximated by a classical field

described by a plane wave with angular frequency ω ≈mϕ,

ϕ ¼ ϕ0 cosðωtþ φÞ; ð1Þ

where φ is a location-dependent phase. Assuming that

this scalar field saturates all local dark matter density

ρDM ¼ 0.4 GeV=cm3, the amplitude of the plane wave (1)

is (here we use natural units with ℏ ¼ c ¼ 1)

ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

2ρDM
p

=mϕ: ð2Þ

In this paper, we assume that the de Broglie wavelength

of the scalar field is much larger than the experimental

setups used for its detection. Furthermore, we focus on

experiments with the integration time much longer than

1=ω, which are sensitive to many oscillations. Under these

assumptions, the phase in Eq. (1) does not play an

important role, and, for simplicity, we set φ ¼ 0.

Our calculations are performed for the plane wave (1)

with definite frequency ω since the spread of frequencies is

relatively small. For example, in the standard halo model of

dark matter δω ≃ 10−6ω.

B. Can we replace the interaction with the scalar field

by oscillating fundamental constants?

The interaction of the scalar field (1) with the electro-

magnetic field Fμν and a Dirac electron Ψ with mass me is

described by the Lagrangian

Lint ¼
1

4
gγϕFμνF

μν − geϕΨ̄Ψ; ð3Þ

where gγ and ge are coupling constants. This Lagrangian is

similar to the free Lagrangian for the electromagnetic field

and the fermion mass term,

L ¼ −
1

4
FμνF

μν −meΨ̄Ψ: ð4Þ

Therefore, it is convenient to take into account the fermion

interaction term in Eq. (3) by a redefinition of the electron

mass, me → m0
e ¼ me þ δme with

δme ¼ geϕ0 cosðωtÞ: ð5Þ

This oscillating effective electron mass m0
e should imply

observable effects such as oscillating magnetization which

we consider in this paper.

The first term in the right-hand side in Eq. (3) yields a

modification of the photon propagator when the space-time

derivatives of ϕ may be ignored. Alternatively, it can be

taken into account by a redefinition of the fine structure

constant, α → αþ δα, with δα=α ¼ gγϕ [3]. Indeed, the

electromagnetic interaction between fermions contains a

product of e2 and the photon propagator 1=½q2ð1 − gγϕÞ�,
where q is the momentum transfer. Therefore, this modi-

fication of the photon propagator may be fully accommo-

dated by the corresponding change of the electron charge e

and the fine structure constant α ¼ e2. However, this must

be taken with care, as only pairs of charges should be varied

which are connected by the photon propagator, and the

photon propagator should involve no scalar field to avoid

double counting of this interaction.

Consider, for example, an effect of oscillating magnetic

field due to scalar dark matter. Naively, one may conclude

that this effect is first-order in the variation of the electron

charge e, δB ∝ δe, since the magnetic field is mainly

sourced by the electron magnetic moment which is propor-

tional to the Bohr magneton μB ¼ e=ð2meÞ. However, to
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have a consistent result using the variation-of-α approach,

one must add the effect of the variation of e in the detector.

Therefore, experimentally measurable are the variations of

e2 ¼ α rather than variations of the electron charge in the

first power.

In this paper, it is convenient to take an alternative

approach. We consider the oscillating electron mass (5),

but keep the electron charge e constant. The interaction

with the coupling constant gγ in Eq. (3) will result in an

extra term in Maxwell equations (see Eqs. (9) in the next

section). Keeping this term in Maxwell equations is

completely equivalent to the approach of variation of the

fine structure constant.

C. Oscillating Bohr magneton and magnetization

The electron magnetic moment should oscillate as a

consequence of the oscillating electron mass (5). Indeed,

the definition of the Bohr magneton μB ¼ e=ð2meÞ implies

δμB

μB
¼ −

δme

me

¼ −
ge

me

ϕ0 cosðωtÞ: ð6Þ

The magnetization M⃗ of a permanent magnet occurs mainly

due to orientation of angular momenta of bound valence

electrons. Thus,

δM

M0

¼ δμB

μB
¼ −

ge

me

ϕ0 cosðωtÞ; ð7Þ

where M0 is the permanent magnetization of the magnet.

More generally, Eq. (7) should involve also thevariation of

the magnetic g factor which accounts for both spin S and

orbital angular momentum L contributions. However, the

effect of variation of g is significantly smaller than the effect

of variation of μB. Indeed, interaction between atomic

electron and scalar field perturbs electron wave function,

ψ ¼ ψ0 þ δψ , with δψ having the same angular quantum

numbers as ψ0. In the nonrelativistic approximation, for an

isolated atom the nondiagonal matrix element of the mag-

netic moment operator vanishes, μBhδψ jLz þ 2Szjψ0i ¼ 0,

because of the orthogonality of the radial electron wave

functionswith different principal quantumnumbersn and the
same angular quantum numbers, hence, hψ jLz þ 2Szjψi≈
hψ0jLz þ 2Szjψ0i. Thus, for an isolated atom corrections to

the g-factor due to the scalar darkmatter are small andmaybe

ignored.Weassume that this conclusionholds approximately

for an atom in a solid.

Naively, the oscillating contribution to the magnetic field

of the long cylindrical magnet due to the interaction with

the scalar field dark matter is

δB ¼ 4πδM; ð8Þ

where δM is given in Eq. (7). As we will show, Eq. (8) is

indeed correct for magnets with low electric conductivity

and when the de Broglie wavelength of the scalar field is

much larger than the magnet size. In general, however, the

oscillating magnetization (7) should be considered as a

source in the Maxwell equations describing dynamics of

electric and magnetic fields of the magnet. We stress the

importance of deriving the resulting oscillating fields of

the magnet as solutions of the Maxwell equations, because

these fields should obey correct boundary conditions, and

screening effects from eddy currents in the magnet should

be considered.

III. OSCILLATING ELECTRIC AND MAGNETIC

FIELDS IN A MAGNET

In this section, we derive electric and magnetic fields as a

solution of the Maxwell equations sourced by the oscillat-

ing magnetization. This solution is then applied to study

screening effects due to eddy currents in magnets with high

electric conductivity and resonance enhancement effects in

nonconducting magnets.

A. Maxwell equations with oscillating magnetization

In general, in a medium described by a relative permit-

tivity ϵ the propagation of the electric field strength E⃗

and magnetic flux density B⃗ are described by the Maxwell

equations,

∇ · D⃗ ¼ 0; ∇ · B⃗ ¼ 0; ð9aÞ

∇ × E⃗ ¼ −
1

c

∂B⃗

∂t
; ð9bÞ

∇ × ðH⃗ − gγϕB⃗Þ ¼
4π

c
j⃗þ 1

c

∂D⃗

∂t
; ð9cÞ

where D⃗ ¼ ϵE⃗ is the electric displacement field and H⃗ ¼
B⃗ − 4πM⃗ is the magnetic field strength, M⃗ is the magneti-

zation vector, and j⃗ is the current density. Equation (9c)

includes also the term with explicit interaction of the scalar

field ϕ originating from the first term in the Lagrangian (3).

In Eqs. (9), we have neglected the term proportional to

gγϕE⃗, because in a permanent magnet this term is higher-

order with respect to the coupling gγ .

With no scalar field dark matter, a magnet possesses a

permanent magnetization M⃗ ¼ M⃗0 that produces the per-

manent magnetic field B⃗0 (which is B⃗0 ¼ 4πM⃗0 inside a

long cylindrical magnet). The interaction of electrons with

the scalar field dark matter, however, yields the oscillations

of the magnetization (7). It is therefore convenient to

decompose the total magnetization and the magnetic flux

density as

M⃗ ¼ M⃗0 þ δM⃗; ð10Þ
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B⃗ ¼ B⃗0 þ δB⃗; ð11Þ

where δM⃗ is given by Eq. (7), and δB⃗ obeys the following

corollary of the Maxwell equations (9):

∇ · ðϵE⃗Þ ¼ 0; ∇ · δB⃗ ¼ 0; ð12aÞ

∇ × E⃗ ¼ −
1

c

∂δB⃗

∂t
; ð12bÞ

∇ × δB⃗ ¼ 4π

c
ðj⃗þ j⃗effÞ þ

1

c

∂ðϵE⃗Þ
∂t

: ð12cÞ

Here

j⃗ ¼ σE⃗ ð13Þ

is the physical current density in the medium with electric

conductivity σ and

j⃗eff ¼ cgϕ∇ × M⃗0 ð14Þ

is the effective current density corresponding to the

oscillating magnetization (7) and

g ¼ gγ −
ge

me

ð15Þ

is the combination of coupling constants which is relevant

for our setups.

The physical solutions of Eqs. (12) obey the boundary

conditions on the boundary between the two media:

D⃗n½1� ¼ D⃗n½2�; E⃗t½1� ¼ E⃗t½2�;

H⃗t½1� ¼ H⃗t½2�; B⃗n½1� ¼ B⃗n½2�; ð16Þ

where the subscripts “t” and “n” stand for the tangential and

normal components to the boundary, respectively.

Note that, in general, both relative permittivity ϵ and

electric conductivity σ contain oscillating contributions

originating from the interaction with the scalar field dark

matter. In Eqs. (12), these oscillating terms in ϵ and σ

may be ignored, because they correspond to higher-order

corrections with respect to the interaction constant g.
Therefore, in what follows, we will consider ϵ and σ

independent of g and constant in time.

B. Infinite cylindrical magnet

Consider an infinite cylindrical magnet of radius R
aligned along the z-axis. Assume that the magnetization

vector M⃗0 ¼ ð0; 0;M0zÞ has the only nonvanishing com-

ponent along this axis,

M0z ¼ M0θðR − rÞ; ð17Þ

where θðR − rÞ is the Heaviside step function in cylindrical
coordinates ðr;φ; zÞ. With this expression for the magneti-

zation, we find the effective current (14) to be j⃗eff ¼
ð0; jeff;φ; 0Þ, where

jeff;φ ¼ cgM0δðR − rÞϕ0 cosðωtÞ: ð18Þ

This equation shows that the oscillating magnetization (7)

is equivalent to a long solenoid with an infinitely thin wire

containing alternating current. This current creates electric

and magnetic fields both inside and outside the magnet.

Wewill look for a solution of Eqs. (12) within the ansatz
1

δB⃗ ¼ ð0; 0; BðrÞ cosðωtÞÞ, E⃗ ¼ ð0; EðrÞ sinðωtÞ; 0Þ that

corresponds to standing waves in the case ωR=c < 1.

The amplitudes of these waves BðrÞ and EðrÞ are found

analytically in terms of the Bessel functions Jn and Yn:

BðrÞ ¼ Re½κθðR − rÞ
ffiffiffi

ε
p

J0ð
ffiffiffi

ε
p

ωr=cÞY1ðωR=cÞ
þ κθðr − RÞY0ðωr=cÞJ1ð

ffiffiffi

ε
p

ωR=cÞ�; ð19aÞ

EðrÞ ¼ Re½κθðR − rÞJ1ð
ffiffiffi

ε
p

ωr=cÞY1ðωR=cÞ
þ κθðr − RÞY1ðωr=cÞJ1ð

ffiffiffi

ε
p

ωR=cÞ�; ð19bÞ

where

κ ¼ −4πgM0ϕ0

Y0ðωR=cÞJ1ð
ffiffiffi

ε
p

ωR=cÞ − ffiffiffi

ε
p

J0ð
ffiffiffi

ε
p

ωR=cÞY1ðωR=cÞ
:

ð20Þ

is the normalization constant. Here

ε ¼ ϵþ 4πiσ

ω
ð21Þ

is the complex dielectric constant with its real part coincid-

ing with the relative permittivity ϵ and with its imaginary

part containing the electric conductivity σ. Thus, the

solution (19) allows us to investigate dependence of

the dark-matter-induced magnetic and electric fields on

the electric conductivity σ.

The explicit solution (19a) allows us to find the magnetic

field flux through the magnet cross section S:

Φ ¼
Z

S

B⃗ · ds⃗

¼ 2π
Rc

ω
cosðωtÞRe½κJ1ð

ffiffiffi

ε
p

ωR=cÞY1ðωR=cÞ�: ð22Þ

1
The components of these vectors are given in cylindrical

coordinates, e.g., E⃗ ¼ ðEr; Eφ; EzÞ.
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This flux generates electromotive force (emf) in a pickup

coil encircling the magnet that is found through the

standard relation E ¼ −dΦ=dt.

C. Suppression of fields in conductors

An alternating magnetic field induces eddy currents on

the surface of conductors. These currents partly shield the

magnetic field inside the conductors and electric field on

their surface. In this section, we estimate the suppression of

the electric field on the boundary of an infinite cylindrical

magnet.

Let us consider a magnet with a high electric conduc-

tivity σ such that

χ ≡ j
ffiffiffi

ε
p

ωR=cj ≫ 1: ð23Þ

In this regime, it is possible to apply the asymptotic

expansion of the Bessel functions to show that

J0ð
ffiffiffi

ε
p

ωR=cÞ=J1ð
ffiffiffi

ε
p

ωR=cÞ ≈ −i. As a result, we find that

the electric field (19b) on the boundary is reduced to

EðRÞjχ≫1 ≈
4πg

2nc
ϕ0M0; ð24Þ

where n ¼ Reð ffiffiffi

ε
p Þ is the refractive index. Substitution of

the complex dielectric constant ε from Eq. (21) gives

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2 þ ð4πσ=ωÞ2
p

2

s

≈

ffiffiffiffiffiffiffiffi

2πσ

ω

r

≡
c

ωδ
: ð25Þ

Here

δ ¼ c
ffiffiffiffiffiffiffiffiffiffiffi

2πσω
p ð26Þ

is the penetration depth. Comparing Eq. (24) with the

electric field on the boundary for dielectrics (σ ¼ 0) we find

the suppression of the electric field on the magnet boundary

due to the eddy currents,

ξ ¼
EðRÞjχ≫1

EðRÞjσ¼0

¼ 1

2n

�

ffiffiffi

ϵ
p J0ð

ffiffiffi

ϵ
p

ωR=cÞ
J1ð

ffiffiffi

ϵ
p

ωR=cÞ −
Y0ðωR=cÞ
Y1ðωR=cÞ

�

:

ð27Þ

Note that the magnetic flux (22), and, thus the induced emf,

in a conductor is suppressed by the same factor (27) as

compared with a dielectric with similar parameters.

As an illustration, we compare the suppression (27)

between neodymium and ferrite magnets. A typical neo-

dymium magnet such as N52 has the electric conductivity

σ ¼ 7.1 × 105 S=m, see, e.g., [19]. Consider a cylindrical

magnet of radius R ¼ 5 cm and assume that the oscillation

frequency is f ¼ 1 MHz. For this magnet, we find that the

suppression is sufficiently strong,

ξ ¼ 0.01: ð28Þ

The electric conductivity of a typical ferrite magnet is low,

σ ¼ 10−4 S=m (see, e.g., [20]). As a result, the imaginary

part of the dielectric constant is very small, Imð ffiffiffi

ε
p Þ ≪ 1,

and the suppression of the electric and magnetic fields is

negligible. The magnetic flux density for such a magnet is

well approximated by Eq. (8). Thus, nonconductingmagnets

are more suitable for detection of the scalar field dark matter

than their conducting alternatives.

D. Enhancement of the magnetic flux in dielectrics

Equation (20) shows that the solution (19) may be

singular for certain resonant frequencies. For dielectrics

(σ ¼ 0), these frequencies correspond to the solutions of

the transcendental equation

Y0ðωR=cÞJ1ð
ffiffiffi

ϵ
p

ωR=cÞ ¼
ffiffiffi

ϵ
p

J0ð
ffiffiffi

ϵ
p

ωR=cÞY1ðωR=cÞ:
ð29Þ

This equation possesses nontrivial solutions for ϵ > 1. For

physical applications, however, it is necessary to consider

ϵ≳ 6, to allow for the solutions satisfying ωR=c < 1.
2

In particular, for ϵ ¼ 10, Eq. (29) possesses a solution

ωR=c ≈ 0.75. Near this resonance frequency, the electric

and magnetic fields inside the magnet may be strongly

enhanced. Although this effect is not suitable for broadband

detection, it may be exploited for studying a narrow band

near some particular frequency. In practice, tuning to the

resonance frequency may be difficult, as it would require an

adjustment of the geometry of the magnet (for the cylin-

drical magnet, the radius R is the only parameter).

In this paper, however, we do not consider resonance

enhancement of the signal and focus rather on the broad-

band detection. Various scalar field dark matter detection

experiments with resonance cavities were proposed in

Ref. [21].

IV. SENSITIVITY ESTIMATES

In this section, we estimate the sensitivity to the scalar

field DM of two experimental setups which utilize the

SQUID magnetometer and a low-noise rf amplifier, respec-

tively. We consider also effects of a parasitic capacitance of

a pickup solenoid and discuss the necessity of shielding

from external rf noise.

A. Intrinsic magnetization noise

The intrinsic magnetization fluctuations of the magnet

is the fundamental noise source that must be suppressed

2
We are considering the standing waves in the magnet which

naturally appear when ωR=c < 1. For ωR=c > 1 an outgoing
wave (radiation) should also be included.
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to maximize experimental sensitivity. The fluctuation-

dissipation theorem connects this noise to the imaginary

part of the magnetic susceptibility of the material, μ00. The
power spectrum of the magnetization noise is given by

SM ¼ 1

2πV

kBT

ω
μ00ðωÞ; ð30Þ

where V is the volume of the material [22]. If we prepare

the magnetic material so that it is fully saturated, we can

suppress both the real and imaginary parts of magnetic

susceptibility, so that μ0 − 1 ≈ 0.3 and μ00 ≈ 3 × 10−4,

corresponding to the loss tangent of 10−3. In order to

suppress the magnetic field due to this magnetization

noise below 100 aTHz−1=2 at frequencies above 1 Hz, we

have to cool the magnet to a temperature of ≈1 K,

assuming the volume is V ¼ 1000 cm3. This condition

will be assumed in our estimates below.

B. SQUID magnetometer

The SQUID magnetometer is one of the most sensitive

devices for measurements of magnetic fields and for

searches of wavelike dark matter, see, e.g., [23,24]. In

the SHAFT experiment [24], the record magnetic field

sensitivity of the SQUID magnetometer of
ffiffiffiffiffiffi

SB
p ¼

150 aTHz−1=2 was achieved. In this paper, we will assume

the same noise level of the SQUID magnetometer in the

searches of variations of fundamental constants with

permanent magnets.
3

The signal is given by the flux of the magnetic field

through the pickup loop of the magnetometer. This mag-

netic field is, in general, given by Eq. (19a), but for

nonconducting magnets at low frequencies it reduces to

B ¼ B0gϕ0 cosðωtÞ; ð31Þ

where B0 ¼ 4πM0 is the static magnetic field inside a long

cylindrical magnet. More precisely, in our estimates we

will use the root-mean-square (rms) of this field, B̄ ¼
1
ffiffi

2
p B0gϕ0 ¼ gB0

ffiffiffiffiffiffi

ρDM
p

mϕ
. Thus, when the integration time

exceeds the dark matter coherence time, t > ðγfÞ−1, the
signal-to-noise ratio is [25]

SNR ¼ gB0

ffiffiffiffiffiffiffiffiffi

ρDM
p

mϕ

ffiffiffiffiffiffi

SB
p

�

t

γf

�

1=4

; ð32Þ

where γ ¼ 10−6 is the scalar field frequency bandwidth in

the standard dark matter halo model.

Equating SNR ¼ 1, we find the sensitivity of the experi-

ment searching for the oscillations of the magnetic field of

the permanent magnet with the SQUID magnetometer.

Let us consider a nonconducting magnet with magnetic

field B0 ¼ 0.3 T, and assume the local dark matter density

ρDM ¼ 0.4 GeV=cm3. The integration time is taken t ¼
30 days. For shorter measurement time, if t < ðγfÞ−1,
the last factor in Eq. (32) should be replaced as follows:

ð t
γf
Þ1=4 →

ffiffi

t
p

. See, e.g., Ref. [25] for details.

Equation (32) allows us to find limits on the combination

of constant gγ and ge (15). Each of these constants may be

constrained independently assuming that this constant

gives the leading contribution. In Fig. 1, we present the

expected exclusion plots for these constants if no signal is

detected in this experiment. This setup allows us to probe

the range of scalar field masses from 4 × 10−15 eV to

4 × 10−9 eV that corresponds to frequencies from 1 Hz to

1MHz for which we expect the magnetic field sensitivity of

the SQUID magnetometer of
ffiffiffiffiffiffi

SB
p ¼ 150 aTHz−1=2.

C. Low-noise rf amplifier

For detection of the scalar-field dark matter, a boron

ferrite permanent magnet may be used. Typical magnetic

field of such a magnet is of order B0 ¼ 0.3 T. Let us

consider a cylindrical magnet with radius R ¼ 5 cm inside

a solenoid with N ¼ 1000 turns in the coil. The electric

conductivity of such a magnet is low, so it may be

considered as a dielectric. The dielectric constant is a

function of unknown signal frequency. However, the value

of the relative permittivity is bounded by the static

dielectric constant ϵ≲ 10 (see, for example, [27]), and

the electric conductivity is very small, σ ∼ 10−4 S=m [20].

As is shown in Sec. III C, for these values of the dielectric

constant and electric conductivity and for frequencies

below a few MHz, the suppression of the oscillating

electric and magnetic fields in the magnet (19) is negligible,

and the oscillating component of the magnetic field is given

by Eq. (31).

For frequencies below the resonance frequency of the

pickup solenoid the signal is formed by the emf in the coil

E ¼ −N
dΦ

dt
; ð33Þ

where Φ is the magnetic field flux (22). For the field (31),

the rms signal becomes

Ē ¼ πR2NgB0

ffiffiffiffiffiffiffiffiffi

ρDM
p

: ð34Þ

3
In Ref. [24], the sensitivity of the SQUID magnetometer was

studied in the range from 1 Hz to about 1 MHz. The record
magnetic field sensitivity

ffiffiffiffiffiffi

SB
p ¼ 150 aTHz−1=2 was achieved

for frequencies above 3 kHz while below this frequency the
sensitivity significantly deteriorated. The main reason for deterio-
ration of the SQUID magnetometer sensitivity were vibrations in
the pickup coil in the magnetic field leaking out from the
magnetized toroids. In the experiment proposed in the present
paper, this noise source will be absent, and high magnetic field
sensitivity is expected in the entire frequency range.
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Apparently, this signal may be enhanced by using a larger

and stronger magnet and by increasing the number of turns

in the coil.
We assume that the permanent magnet with the coil may

be cooled down to sufficiently low temperature such that

the thermal magnetization noise becomes unimportant, see,

for example, [28]. In this case, the noise is determined by

the noise level of the detector. In our estimates, we consider

a commercial low-noise rf-amplifier HFC 50 D/E [29] with

spectral noise floor
ffiffiffiffiffiffi

SV
p

≥ 0.2 nV=
ffiffiffiffiffiffi

Hz
p

below 50 MHz.

Numerically, the spectral noise of this amplifier (in

V=
ffiffiffiffiffiffi

Hz
p

) may be modeled by the function [21]

ffiffiffiffiffiffi

SV
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7.4185 × 10−14

f1.12
þ 9.252 × 10−19

f0.176

s

; ð35Þ

with f being the signal frequency measured in hertz. This rf

amplifier is suitable for the signal frequencies from

100 kHz to 40 MHz. This allows us to probe the scalar

field masses from 4 × 10−10 eV to 1.7 × 10−7 eV.
Given this noise floor and the signal in Eq. (34), we find

the signal-to-noise ratio

SNR ¼ πR2NgB0

ffiffiffiffiffiffiffiffiffi

ρDM
p

ffiffiffiffiffiffi

SV
p

�

t

γf

�

1=4

: ð36Þ

Here we assume that the virialized dark matter has a

bandwidth δf ¼ γf, where γ ≈ 10−6 in the standard dark
matter halo model. The integration time t is supposed to be

greater than the scalar field coherence time, t > ðγfÞ−1. For
shorter measurement time, if t < ðγfÞ−1, the last factor in

Eq. (36) should be replaced as follows: ð t
γf
Þ1=4 →

ffiffi

t
p

.

Equating SNR ¼ 1, we determine the sensitivity of the

proposed magnet-based experiment, see Fig. 1. In princi-

ple, this sensitivity may be improved by using a stronger

and larger magnet, by making a solenoid with larger

number of turns in the coil, and by using a more sensitive

detector. However, as is shown in the next section, these

parameters are correlated and depend on the frequency

band under investigation.

D. Effect of parasitic capacitance of the pickup

solenoid

In the previous subsection, we assumed that the oscillat-

ing magnetic field could be detected with the use of a

pickup solenoid. Naively, it seems advantageous to use a

large solenoid with many turns in the coil. However, the

efficiency of such a solenoid may be different for different

frequencies. Any solenoid possesses a parasitic capacitance

C and, as a consequence, the principle resonance frequency

f0 ¼
1

2π
ffiffiffiffiffiffiffi

LC
p ; ð37Þ

with L being the inductance of the solenoid. The resonance

frequency is an important characteristics of the solenoid,

because for alternating currents with the frequencies above

the resonance frequency it behaves rather as a capacitor,

and Eq. (33) does not hold. As a result, only the frequencies

f < f0 may be efficiently probed with the solenoid.

The inductance of a cylindrical solenoid with a ferrite

core may be estimated as
4
[30]
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FIG. 1. Projected sensitivity to the scalar-photon coupling gγ (left panel) and the scalar-electron coupling ge (right panel) of the

experiment based on the oscillation of the magnetic field in a permanent magnet. Pink exclusion area represents the sensitivity of the

experiment with the SQUID magnetometer, while the blue exclusion area corresponds to a low-noise rf amplifier. The sensitivity is

compared with the results of other experiments: 1. H=Quartz=Sapphire [8]; 2. Dynamic Decoupling [9]; 3. Holometer [10]; 4. I2 [11];

5. DAMNED [12]; 6. Cs-Cav [13]; 7. Dy [14]; 8. GEO600 [15]; 9. Fifth-Force [16]; 10. Eöt-Wash (EP) [17]; 11. MICROSCOPE [18].

The plot data for these experiments is taken from Ref. [26].

4
In this subsection, we use SI units.
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L ¼ μ0μFlN
2
S

lcoil
; ð38Þ

where N is the number of turns in the coil, S is the cross

sectional area of the ferrite core, lcoil is the length of the

coil, μ0 is the vacuum permeability, μ is relative permeabil-

ity of the ferrite core, and Fl is an empirical factor that

depended on the ratio of the coil and core lengths. The latter

is Fl ≈ 0.72 when the core and the coil have the same

length [30].

The capacitance of a single-layer coil with N turns may

be estimated as [31]

C ¼ C0

N − 1
; ð39Þ

with C0 the capacitance between two adjacent turns in the

coil. Let 2r be the diameter of the conducting wire, b be

the width of the wire insulating layer with the relative

permittivity ϵ, and p be the coil pitch. Then, the capaci-

tance C0 is [31]

C0 ¼
π2ϵ0D

lnðF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2 − ð1þ b=rÞ2=ϵ
p

Þ
; ð40Þ

where D is the diameter of the coil and

F ¼ p

2rð1þ b=rÞ1−ϵ−1
: ð41Þ

In particular, when the turns in the wire touch each other,

p ¼ 2ðrþ bÞ, and when the wire insulating layer is thin,

b ≪ r, Eq. (40) simplifies:

C0 ≈ π2ϵ0ϵD
r

b
: ð42Þ

Substituting this expression into Eq. (39), and assuming

N ≫ 1, we find

C ¼ π2ϵ0ϵr

bN
: ð43Þ

Note that here we assume that the main contribution to

the solenoid capacitance is given by the capacitance for

each pair of adjacent turns. In general, there are also

contributions from turn-to-shield capacitance and layer-to-

layer capacitance for multilayer coils, see Ref. [31] for

discussions. Here we assume that these contributions are

subleading and ignore them.

Substituting the inductance (38) and capacitance (43)

into Eq. (37) we find the resonance frequency of the

solenoid

f0 ¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8b

π3ϵ0ϵμ0μFlD
3

s

: ð44Þ

Notably, the resonance frequency is independent of the

number of turns in the coil. The main free parameter in this

expression is the diameter of the coil D.

For numerical estimates, let us consider a solenoid with

the diameter D ¼ 10 cm and a copper wire with kapton

insulation with ϵ ¼ 3.5 and b ¼ 0.01 mm. Assuming also

that μ ∼ 10 for a ferrite magnet, we find

f0 ¼ 0.48 MHz: ð45Þ

For a coil with D ¼ 1 cm, the resonance frequency

becomes f0 ¼ 15 MHz.

We stress that Eq. (44) describes the resonance frequency

of an isolated solenoid while in a real experiment the

solenoid is supposed to be connected to a low-noise

amplifier. In this case, the input capacitance of the amplifier

should be considered. In particular, in the proposed above

amplifier HFC 50D/E the input capacitance is Cin ¼ 6 pF

[29], which is much larger than the parasitic capacitance of

the solenoid. In this case, the input capacitance Cin should

be substituted in Eq. (37) in place of the parasitic

capacitance of the solenoid C. As a result, the capacitance
is fixed in this equation, and only the inductance L may be

varied to adjust the resonance frequency f0. To keep f0
sufficiently high, one has to lower the inductance L. This
limits the number of turns N in the coil.

In particular, the pickup-coil with N ¼ 1000 turns has

the inductance of order L ≈ 60 mH. The corresponding

circuit resonance frequency (37) is

f0 ≈ 300 kHz: ð46Þ

Measurements at frequencies higher than this resonance

will need to make use of careful electronic design, or an

amplifier with lower effective input capacitance.

E. Effect of the magnetic shielding

The experimental setup should be isolated from external

rf signals by a superconducting or mu-metal shield. One

may wonder whether the shield itself can affect the dark

matter signal. This question is important, in particular, in

the experiments searching for spin-dependent interactions

of DM particles [32] and in the dark matter radio experi-

ment [23]. In these references it was noted that physical

magnetic fields may be induced inside the magnetic shield

due to the interaction with the DM particles. This magnetic

field was considered as an additional contribution to the

dark matter signal.

In the case of the scalar field dark matter, an electro-

magnetic field could, in principle, be produced by absorp-

tion of a scalar and emission of a photon by atoms.
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However, the magnetic shield can hardly create any addi-

tional contributions to the signal. The difference with dark

photon case is that both the dark photon and the physical

photon are vector fields, so the generated photon may be

directed along the dark photon field. This is not the case for

the scalar field. The only vector characterizing the scalar

particle is its momentum k⃗ which is a T-odd vector. The

magnetic field B⃗ is a pseudovector, so it cannot be directed

along polar vector k⃗ due to parity conservation. This is an

important difference with the case of a pseudoscalar field a

where B⃗ ∝ k⃗a is allowed. The electric field E⃗ is a T-even

vector, so, in principle, the relation dE⃗
dt
∝ k⃗ is not forbidden.

However, such field, directed along momentum, even if it

exists, can hardly generate effects we are looking for, such

as emf in a circular pick-up coil. Note also that the

momentum of the dark matter particle is small compared

to energy, k ∼ 10−3mϕc.

Thus, we do not need to consider possible effects of the

magnetic shield on the scalar dark matter induced fields. In

the proposed experiment, cancellation of external rf noise is

the only important effect of the magnetic shield.

V. SUMMARY

In this paper, we considered the dark matter model with

dark matter particles described by a classical oscillating

scalar field ϕ. This field can have nonminimal interaction

with photon and electron fields with coupling constants gγ
and ge, respectively, as in Eq. (3). This interaction can

produce effects resembling oscillations of the fine structure

constant and the electron mass. Although these oscillations

may be extremely small, they can have a cumulative effect

in solids with permanent magnetization and may lead to

observable oscillation of the magnetic field in a permanent

magnet. We theoretically study this effect and propose an

experiment that could potentially probe such oscillation in

the range of frequencies from 1 Hz to a few MHz.

We stress that the effects of variations of fundamental

constants should not be interpreted literally; rather, they

represent an effective approach allowing one to take into

account the interaction with the background scalar field (3).

Starting from the Lagrangian (3) we derive the oscillating

contributions to the magnetic field of a permanent magnet

focusing on a long cylindrical magnet. Using the explicit

solutions for the oscillating electric and magnetic fields we

show that they may be strongly suppressed by eddy

currents if the magnet has a good electric conductivity

which is the case for most of neodymium and samarium

cobalt magnets. Therefore, we show that nonconducting

magnets such as barium-ferrite are suitable for the experi-

ment aiming to detect variations of fundamental constants.

We note also that nonconducting magnets may, in principle,

have resonant frequencies at which the oscillating fields are

enhanced. Approaches of detection of the scalar field dark

matter with cavity resonators are studied more systemati-

cally in Ref. [21].

The oscillating magnetic field of permanent magnet may

be detected either with a SQUID magnetometer or with a

pickup solenoid connected to a low-noise rf amplifier. We

consider both these possibilities and compare the sensitiv-

ities of these setups with other experiments [8–18]. As

shown in Fig. 1, the projected sensitivity of the setup with

the SQUID magnetometer exceeds the sensitivity of the

experiments [8–14] for both coupling constants considered

in this work. This experiment may give new and comple-

mentary constraints to these constants. The setup based on

a pickup solenoid and a low-noise rf amplifier has lower

sensitivity and may be competitive only with such experi-

ments as [10–13]. Another important limitation of this

setup is the resonance frequency of the pickup solenoid,

above which it becomes inefficient because of parasitic

capacitance. As shown in Sec. IVD, this resonance fre-

quency may vary from one to a few MHz, depending on the

parameters of the solenoid.

In this paper, we considered only the linear coupling of

the scalar field with the Standard Matter fields while

quadratic couplings introduced in Refs. [33–39] are of

interest as well. In this case, the field ϕ may be scalar or

pseudoscalar (axion) field. We leave this question for

future study.

ACKNOWLEDGMENTS

The work of V. V. F. and I. B. S. was supported by the

Australian Research Council Grants No. DP230101058

and DP200100150. The work of D. B. and O. T. is

supported in part by the Cluster of Excellence “Precision

Physics, Fundamental Interactions, and Structure of

Matter” (PRISMAþ EXC 2118/1) funded by the

German Research Foundation (DFG) within the German

Excellence Strategy (Project ID No. 39083149). This

article is based in part upon work from COST Action

COSMIC WISPers CA21106, supported by COST

(European Cooperation in Science and Technology). The

work of A. S. is supported in part by the NSF CAREER

Grant No. PHY-2145162 and by the U.S. Department of

Energy, Office of High Energy Physics, under the

QuantISED program, No. FWP 100667.

SCALAR DARK MATTER INDUCED OSCILLATION OF A … PHYS. REV. D 107, 075033 (2023)

075033-9



[1] Particle Dark Matter: Observations, Models and Searches,

edited by G. Bertone (Cambridge University Press,

Cambridge, 2010).

[2] D. F. J. Kimball and K. van Bibber, The Search for Ultra-

light Bosonic Dark Matter (Springer, New York, 2022).

[3] J. Ellis, S. Kalara, K. Olive, and C. Wetterich, Phys. Lett. B

228, 264 (1989).

[4] A. Arvanitaki, J. Huang, and K. Van Tilburg, Phys. Rev. D

91, 015015 (2015).

[5] D. Antypas, D. Budker, V. V. Flambaum, M. G. Kozlov, G.

Perez, and J. Ye, Ann. Phys. (Amsterdam) 532, 1900566

(2020).

[6] D. Antypas et al., arXiv:2203.14915.

[7] Such an experiment is currently in progress at Boston

University.

[8] W.M. Campbell, B. T. McAllister, M. Goryachev, E. N.

Ivanov, and M. E. Tobar, Phys. Rev. Lett. 126, 071301

(2021).

[9] S. Aharony, N. Akerman, R. Ozeri, G. Perez, I. Savoray, and

R. Shaniv, Phys. Rev. D 103, 075017 (2021).

[10] L. Aiello, J. W. Richardson, S. M. Vermeulen, H. Grote, C.

Hogan, O. Kwon, and C. Stoughton, Phys. Rev. Lett. 128,

121101 (2022).

[11] R. Oswald et al., Phys. Rev. Lett. 129, 031302 (2022).

[12] E. Savalle, A. Hees, F. Frank, E. Cantin, P.-E. Pottie, B. M.

Roberts, L. Cros, B. T. McAllister, and P. Wolf, Phys. Rev.

Lett. 126, 051301 (2021).

[13] O. Tretiak, X. Zhang, N. L. Figueroa, D. Antypas, A.

Brogna, A. Banerjee, G. Perez, and D. Budker, Phys.

Rev. Lett. 129, 031301 (2022).

[14] X. Zhang et al., arXiv:2212.04413.

[15] S. Vermeulen et al., Nature (London) 600, 424 (2021).

[16] A. Arvanitaki, S. Dimopoulos, and K. Van Tilburg, Phys.

Rev. Lett. 116, 031102 (2016).

[17] E. A. Shaw, M. P. Ross, C. A. Hagedorn, E. G. Adelberger,

and J. H. Gundlach, Phys. Rev. D 105, 042007 (2022).
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