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Abstract

Synchrotron based nuclear forward scattering (NES) experiments using the '**Ir nucleus
have been performed for the first time on a dinuclear iridium(I) complex, [IrC1(COD)],
with COD being cycloocta-1,5-diene. This complex serves as a catalyst for hydrogenation
and other chemical reactions. Both, the obtained absolute values of the isomer shift
6 =0.87mms~! and the quadrupole splitting AE, = 3.82 mm s~! agree within the
experimental error with values obtained via conventional '**Ir Mdssbauer spectroscopy
reported earlier (Gal M. et al. J. Radioanal. Nucl. Chem., 260 (1) 2004, 133). In addition,
we present density functional theory (DFT) calculations of the complex yielding its
electronic structure and related Mossbauer parameters.

Keywords '*Ir nuclear forward scattering - '*>Ir Mossbauer spectroscopy - Density
functional theory - Iridium complexes

1 Introduction

Mossbauer spectroscopy using the 73 keV transition from the I=3/2 ground to the [=1/2
first excited state of '’Ir has been considered as an optimal method to study hyperfine
interactions in iridium containing materials because of its low natural line width of
0.625 mm s~ [1]. However, '*’Ir Méssbauer spectroscopy requires '*’Os as a radioactive
source which has a half life time of 31d and needs to be prepared via neutron irradiation by
a l9205(n,y)19305 reaction [2, 3]. This has hampered more widespread applications of 1937y
Maossbauer spectroscopy in the past although the '**Ir isotope has a high natural abundance of 62%.
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Fig. 1 Structural view of the dinuclear iridium(I) complex [IrCI(COD)], investigated in this study. Ir atoms
are displayed in dark blue, chloride atoms in green, carbon atoms in dark grey and hydrogens in grey [11]

The high brilliance at modern synchrotron sources and the recent development of mon-
ochromator systems for 73 keV with an energy resolution of 160 meV at the Dynamics
Beamline PO1 (PETRA III, DESY, Hamburg) now enables to excite the 73 keV level from
the ground state to perform coherent nuclear forward scattering (NFS) experiments using
the '*Ir nucleus. This set-up has been developed and used by Alexeev et al. [4] for the
studies of magnetic and electronic properties of iridates which display both strong spin
orbit coupling and strongly correlated electron systems.

Iridium containing materials play an important role in chemistry. For example, in photo-
chemistry molecular iridium complexes are used in organic light-emitting diodes (OLEDs) [5,
6], organic solar cells [7], in photocatalysis [8], in car exhaust catalysts but also recently for
initiating “water oxidation reactions " [9, 10]. In this process water is catalytically split into
hydrogen and oxygen, a prerequisite to enable hydrogen as a sustainable storable energy source.

Here, we report the first !*’Ir NFS experiments on a molecular material, namely a dinuclear
iridium(I) complex, [IrCI(COD)], [11] with COD being cycloocta-1,5-diene (Fig. 1). This
complex serves as a catalyst for hydrogenation and other chemical reactions [12-22]. It has been
investigated by conventional '**Ir Mssbauer spectroscopy in the past [23, 24] which makes this
system ideal for elucidating the potential of 193y NFS with respect to its chemical applications.
In addition, we present density functional theory (DFT) calculations, which have been used to
calculate the isomer shift and the quadrupole splitting of the dinuclear iridium(I) complex.

2 Materials and methods
Di-p-chlorobis[(1,2,5,6-n)-1,5-cyclooctadiene]diiridium  (C;4H,,Cl,Ir,; CAS No.:

12112-67-3) was synthesized as described in [25]. For 1931 NFS experiments the sam-
ple was filled in a hole with a diameter of 2 mm and a length of 4 mm of a sample
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Fig.2 Set-up for 1*Ir NFS at beamline PO1, PETRA III: DCM - double crystal monochromator consisting
of Si (311) single crystals (grey); MRM - medium resolution monochromator consisting of Si(422) (blue)
and Si(800) (dark grey) single crystals

holder made of aluminium. The sample was tightly pressed into the sample volume and
sealed with aluminium tape.

193]r NFS experiments were performed at the Dynamics Beamline PO1 (PETRA III,
DESY, Hamburg) using the 40-bunch mode with a time separation of 192 ns between
the electron bunches of the PETRA III storage ring.

The synchrotron radiation (SR) generated by the undulator source was
monochromatized with a double-crystal monochromator (DCM) consisting of two
Si(311) crystals (see Fig. 2) to about 10 eV. The medium resolution monochromator
(MRM) reduced the energy bandwidth to about 160 meV. The MRM consisted of two
asymmetric channel-cut silicon crystals, a Si(422) collimator crystal and a Si(800)
energy selector crystal. Subsequently, the SR, monochromatized to 73.0 keV, was
transmitted through the sample mounted in a He-closed cycle cryostat from Advanced
Research Systems, Inc. The delayed resonantly scattered radiation was detected with
an avalanche photo diode (APD) detector array. The APD detector allowed a time
resolution of ~0.6 ns and '*Ir-NFS time spectra could be obtained as early as 3 ns after
the excitation by the SR pulses by using time gated electronics.

For the determination of the quadrupole splitting (4E,) and the isomer shift (6) the
193[-NFS data were analyzed with the CONUSS software [26] as described in Alexeev
et al. [4].

DFT calculations were used to calculate the hyperfine parameters 6 and AE,
on the basis of the crystal structure of [IrCI(COD)], [11]. Structure optimization
and Natural bond orbital (NBO) analysis [27] was performed with Gaussian 16
[28] using Grimme’s dispersion with the original D3 damping function [29] for
the functional TPSSTPSS and the basis set QZVP [30, 31]. Kohn-Sham Molecular
orbitals (MOs) and their energies were calculated and graphically represented by
the Gauss View mode.

With the optimized structures, calculations of the hyperfine parameters were per-
formed using the Orca 5.0 programme [32]. For this purpose, all-electron calculations
of the SARC (segmented all-electron relativistically contracted) basis sets were used,
which have been specially developed for scalar relativistic calculations and have been
adapted to the Douglas-Kroll-Hess Hamiltonian of the second order (DKH?2) [31]. The
DKH-def2-TZVP basis set [30] was used for C, H, F, Br and CI and the SARC-DKH-
TZVP basis set [33] was used for the two Ir atoms. Calculations were performed with
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Fig.3 '®’Ir NFS spectrum of [IrC1(COD)], obtained at 10 K (black circles) (left) with the APD detector
mounted behind the sample inside a closed cycle cryostat (right). The red line is a simulation performed
with CONUSS [20] yielding AE,, = 3.82(4) mm 7!

both TPSS and B3LYP functionals. The convergence criteria and grid points for the self-
consistent field (SCF) calculations were set to Tight SCF (energy change 1 - 1073 au).
All SCF calculations were performed with the resolution of the Identity Approximation
(RI) [34]. The programme Orca_eprnmr implemented in Orca was used to calculate the
electron density p, and the electric field gradient (EFG) tensor at the iridium core [34].

3 Results and discussion

Figure 3 shows a 'Ir NFS spectrum of [IrCI(COD)], obtained at T= 10 K. The spectrum
shows a beating pattern with a time period of about 5 ns which originates from the non-
zero EFG of the two equivalent Ir sites in [IrC1(COD)],. The beating pattern could be suc-
cessfully reproduced by a simulation with CONUSS which gave 4E, = 3.82(4) mm s7L
There are small deviations between experimental and simulated data occurring at >25
ns which may be due by some spurious bunches of the synchrotron. Nevertheless, the so
obtained value of the quadrupole splitting is in excellent agreement with those obtained
by conventional '**Ir Mdssbauer spectroscopy for this complex at liquid He temperatures
(3.81(2) mm s~![23] and 3.85(2) mm s~!, respectively [24]).

For the determination of the isomer shift a data set with a metallic iridium foil as a single-
line reference was collected. The corresponding '*’Ir NFS spectrum is shown in Fig. 4. The
interference of the 73 keV resonantly scattered quanta originating from the iridium foil and
the [IrC1(COD)], sample leads to the disappearance of the regular beating structure visible in
Fig. 3. A simulation with CONUSS using two Ir sites with AE; = 3.82 mm s~! representing
[IrCCOD)], and AE,, = 0 mm s~ for the metallic Ir foil yields 6 = +0.87(4) mm s~ for the
complex. It is important to note that the sign of 6 cannot be obtained using the set-up displayed in
Fig. 4. Indeed, conventional **Ir Mssbauer spectroscopy showed that the sign of the isomer shift
of [IrCI(COD)], is negative. Nevertheless, the absolute 5-value obtained in this study is in excel-
lent agreement with the reported values of —0.88(1) mm s~![23] and —0.87(1) mm s~' [24].
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Fig.4 '>’Ir NES spectrum of [IrCI(COD)], obtained at 10 K (black circles) (left) with an iridium foil
mounted in the beam path (right). Temperature of the iridium foil was 300 K. The red line is a simula-
tion performed with CONUSS [20] using AE, = 3.82(4) mm s~! for the Ir sites of [IrCI(COD)], yielding
6 = 0.87(4) mm s~! for the complex

It has been shown by [35] that experimentally observed isomer shifts are related to
the theoretically calculated electron density at the iridium nucleus pg‘”c via the following
relation:

5= a(pg“lc - b) +c

The parameters a, b and ¢ are fit parameters which need to be obtained from a series
of complexes with known experimental values of § and calculated pg"lc which can be
obtained by DFT methods based on known molecular structures. For >’Fe containing
complexes this approach has been shown by various authors to be very successful
[36, 37] The same strategy has been used recently within the frame of a DFT study to
calculate '”*Ir Mssbauer spectroscopic parameters [34].

For the determination of pg“l" of the complex [IrCI(COD)], investigated in this study
DFT calculations of the various iridium(I), iridium(IIl) and iridium (IV) complexes
listed in ref. [34] were repeated with the Orca 5.0 programme [32] as described in the
Materials and Methods section. Table 1 provides a list of the iridium complexes and
experimental 6 values and lists the charge and multiplicity of the complexes used for
the calculations. The Cartesian coordinates of the complexes were taken from [34]. Our
DFT calculations performed with both, the functional T7PSS and B3LYP gave slightly
differentp?c values than reported in ref. [34] (Table 1) and were used to perform a lin-

ear regregsion analysis between pg"lc and measured 6 values as shown for both func-
tionals in Fig. 5. For [IrCI(COD)], we obtain electron densities at the iridium core of
2657326.5773 au~> when using TPSS and 2658125.7642 au™> when using B3LYP. With
the parameters a, b and ¢ given in Table 2 the calculated isomer shifts for the complex

are Sypgs = —0.58 mm s~! and §p5;,p = —0.65 mm s~!. Although the absolute values of
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Table 1 Experimental isomer shifts § of iridium complexes listed in ref. [2, 23, 24, 34, 38] and calculated
electron densities at the iridium nucleus pg’”“ obtained by DFT calculations performed in this study with the
functionals TPSS and B3LYP

Complex é B Ref. Charge Multiplicity pf)"T';SS SZI:YP
[mm s~'] [aa3] ]

("B, |~ -2.23(3) 2] -3 1 2657283.0545 2658084.3623
(rMC1*- -2.26(3) 21 -3 1 2657280.9270 2658082.1558
trans-[Ir'"'Cl,(py),]~ -1.73(3) [38] -1 1 2657305.2701 2658105.3922
[IM(SCN),J*~ -1.65(3) [38] -3 1 2657306.0747 2658107.5108
[IM(NH;) 3 -1.51(2) [38] +3 1 2657300.3303 2658100.6602
(YN P~ 0.26(1) 2] -3 1 2657336.2254 2658137.5882
[Ir'VBrg]* -1.10(2) 21 -2 2 2657306.4264 2658110.7226
(Ve >~ -0.95(2) 2] -2 2 2657307.8814 2658112.2327
trans-[Ir'YCl,(py),] -0.67(2) [38] © 2 2657321.8203 2658125.4879
trans-[Ir'Br(CO)(Phh;),] 0.010(15) [34] © 1 2657345.5671 2658144.8336
trans-[Ir'CI(CO)(Phh;),] -0.06(10) [34] © 1 2657346.4855 2658145.7629
trans-[Ir'F(CO)(Phh;),] 0.28(10) [34] © 1 2657349.7936 2658148.8378
trans-[I'"'C1(C1),(CO)(Phhs),] -0.480(15) [34] 0 1 2657330.2666 2658132.1362
trans-[I'"'C1(0,)(CO)(Phhs),]  -0.290(15) [34] 0 1 2657332.8288 2658134.4527
trans-[Ir'"'CI(H)(CI)(CO) 0.240(15) [34] © 1 2657346.8556 2658148.5975
(Phh,),]

trans-[Ir""CI(H),(CO)(Phhy),]  0.350(15)  [34] 0 1 2657348.3391 2658149.9957
[IF'CI(COD)], -0,87(1) [24] © 1 2657326.5773 2658125.7642

-0,88(1) [23]

1,0
0,5+
,T'_‘ 0,0
fé -0,5
g -1,0
w-15
-2,0
L " L L _2'5 " L " s
0 20 40 60 80 0 20 40 60 80
po — blau®] po — blau?]

Fig.5 Experimental 6 -values as a function of calculated p-values for the TPSS (a) and B3LYP (b) func-
tionals. The black points represent the experimental data (Table 1) and the red line the result of a linear
regression analysis with parameters a, b and c listed in Table 2

the calculated isomer shifts are below the experimental value of § = —0.87 mm s~! the
DFT calculations also give a negative sign of the isomer shift as has been observed by
conventional '**Ir Mossbauer spectroscopy.

The DFT calculations performed in this study also deliver the main components of
the EFG tensor V,,, V,, and V,, in its principal axis system (| V,, |<| V,, [<] V,, ). With
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Table 2. Paramete.rs of the .linear PSS B3LYP

regression analysis shown in

oz > for the TPSSand BSLYP - mm =1 au?) 0.040(4) 0.041(3)
blau™? 2,657,281 2,658,082
c[mm s~ -2,393(216) -2,454(184)
R? 0,83793 0,8841

R? represents goodness of fit

Fig.6 Coordinate axes system of the electronic orbitals of the right iridium atom of the complex chosen
from the symmetry axis of the d, orbital. Note that inversion of the z-axis would interchange the x and y
axes. The latter were chosen from the symmetry axes of the p orbitals

the asymmetry parameter # = (V,, — V,,)/V,, and the quadrupole moment Q the quadru-
pole splitting is given as:
eQV,, i+ ;7_2

AE, Oexp = 2 3

Taking Q=0.751 b for the first excited nuclear state of '’Ir and the expression
eQV._ [mm s7'| = (eQV_[J] x c[mm s7'|)/E,[J] with the speed of light ¢ in units of
mm s~! allows to obtain AE in its usual units since the DFT package ORCA delivers the
EFG tensor components in units of au.

In this way we obtained for both functionals 7PSS and B3LYP a positive
sign of the quadrupole splitting and slightly different absolute values of
AEBLYP — 4470 mm s™!; #5307 =029  and  AETPSS = +4.25 mm s~ 47755 = 0.43.
Giving the fact that for quadrupole splittings of >’Fe containing compounds deviations
between experimental and DFT calculated AE, values in the order of ~ 1 mm 57!
are not uncommon [39] we consider the agreement with the experimental value of
AE, =3.82 mm s~! at least for the complex [IrCI(COD)], investigated here as reasonable.

Gal et al. [24] argued that 6 = —0.87 mm s~! of [IrCI(COD)], is unusually high com-
pared to other Ir(I) complexes which show typically 6§ ~ —4 mm s~!. They attributed this
to a ¢ donation into the 6s orbitals as well as hybridization of the 6s with the 5d . orbitals.
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Fig.7 DFT calculated Kohn-Sham molecular orbitals with 5d character obtained from the optimized struc-
ture of [IrCI(COD)],. Numbers in brackets represent the number of the molecular orbitals as given in the
output-file of Gaussian16

According to our NBO analysis, the electron configuration of the iridium is 6s(0.48)5d(
8.02)6p( 0.32)7p( 0.19). The eight occupied MOs with 5d character according to the refer-
ence frame given in Fig. 6 are shown in Fig. 7. Our calculations indicate that the 5p and
Ss-orbitals prevail their character as expected (Fig. 8).

The DFT calculations presented here show a positive V_, which is in contradiction with
the reported presumably negative V_, assumed by Gal et al. [24]. Future experimental
investigations with NFS experiments in high external fields can serve to determine the
sign of the quadrupole splitting and may shine more light on the binding properties of

catalytically active iridium complexes.

4 Conclusions

In this work it has been shown that the '>’Ir NFS is an excellent alternative to conventional
193] Méssbauer spectroscopy. Moreover, we have shown that it is possible to calculate
Mossbauer parameters like the isomer shift and the quadrupole splitting using state of the
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Fig.8 DFT calculated Kohn-Sham molecular orbitals with 5p and 5s character obtained from the optimized
structure of [IrCI(COD)],. Numbers in brackets represent the number of the molecular orbitals as given in
the output-file of Gaussian16

art DFT methods with satisfying accuracy. The combination of experimental '**Ir NFS
and quantum chemical DFT methods may represent an important technique for future
characterisation of the magnetic and electronic properties of iridium containing molecular
systems.
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org/10.1007/310751-023-01836-3.
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