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√
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in different topological regions of the events. Particle transverse momentum (pT) spectra are
measured in the “toward”, “transverse”, and “away” angular regions defined with respect
to the direction of the leading particle in the event. While the toward and away regions
contain the fragmentation products of the near-side and away-side jets, respectively, the
transverse region is dominated by particles from the Underlying Event (UE). The relative
transverse activity classifier, RT = NT/〈NT〉, is used to group events according to their UE
activity, where NT is the measured charged-particle multiplicity per event in the transverse
region and 〈NT〉 is the mean value over all the analysed events. The first measurements
of identified particle pT spectra as a function of RT in the three topological regions are
reported. It is found that the yield of high transverse momentum particles relative to the
RT-integrated measurement decreases with increasing RT in both the toward and the away
regions, indicating that the softer UE dominates particle production as RT increases and
validating that RT can be used to control the magnitude of the UE. Conversely, the spectral
shapes in the transverse region harden significantly with increasing RT. This hardening
follows a mass ordering, being more significant for heavier particles. Finally, it is observed
that the pT-differential particle ratios (p + p)/(π+ + π−) and (K+ + K−)/(π+ + π−) in
the low UE limit (RT → 0) approach expectations from Monte Carlo generators such as
PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models
have been tuned to reproduce e+e− results.
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1 Introduction

In recent years, proton-proton (pp) and proton-lead (p-Pb) collisions, commonly denoted as
small collision systems, have attracted the heavy-ion community’s attention due to several
measurements in high-multiplicity pp and p-Pb collisions, which show similar features as
those observed in heavy-ion collisions. Observations of radial [1–4] and anisotropic [5, 6] flows
(collective phenomena), as well as strangeness enhancement [1, 7, 8] in heavy-ion collisions,
are associated with the formation of the strongly interacting quark-gluon plasma (QGP).
However, these signatures have also been observed in pp and p-Pb collisions [2, 4, 8, 9]. In
particular, the pT-differential baryon-to-meson ratios in small collision systems showcase
radial-flow like effects when studied as a function of the charged particle multiplicity of
the event [2, 3]. In order to pin down the origins of the effects observed in small collision
systems, it has been proposed to study particle production as a function of the Underlying
Event (UE) activity [10]. The UE is defined as the particles that do not originate from
the fragmentation products of the partons produced in the hardest scattering. It consists
of the set of particles arising from initial- and final-state radiation, beam remnants and
multiple parton interactions (MPIs) [11]. In the context of MPI models, the measurement
of identified particle yields and ratios as a function of the UE activity allows one to measure
event properties in an MPI-suppressed (-enhanced) environment. Moreover, as shown in [12],
these measurements can also provide insights into possible effects that give similar signatures
as radial flow but are produced by jet hardening with increasing multiplicity.
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At the LHC energies, particles and anti-particles are produced in equal amounts [13].
In the remaining of this paper and unless stated otherwise, the notation π, K and p is
adopted to refer to (π+ + π−), (K+ + K−), and (p + p), respectively. In this study, the
production of π, K, and p is studied as a function of the UE activity in pp collisions at
centre-of-mass energy,

√
s = 13 TeV. The UE is examined using the event topology defined

by the leading charged particle in the event, which is defined as the charged particle with
the highest transverse momentum in the range 5 ≤ pleading

T < 40 GeV/c, and reconstructed
in the pseudorapidity interval |η| < 0.8. The lower pleading

T threshold corresponds to the
onset of the UE plateau in the transverse region (transverse to the direction of the leading
particle) [14–17]. In the plateau region, quantities such as the average charged-particle
density, 〈Nch〉, and the average transverse momentum sum, 〈∑ pT〉, have little dependence
on the pT of the leading particle or jet. This study uses a lower threshold on the pleading

T of
5 GeV/c to guarantee that the multiple soft scatterings that contribute to the UE are largely
independent of the pleading

T . In [18] a slow rise of the UE plateau is reported. This can be
explained by additional contributions from wide-angle radiation associated with the hard
scattering. Since wide-angle contamination becomes significant for jet pT > 50 GeV/c [18],
an upper limit on pleading

T of 40 GeV/c is used to reduce its effects.

To study the particle production associated with different underlying physics mech-
anisms, the conventional division of the azimuthal (ϕ) plane into regions relative to the
direction of the leading particle [19] is used (see figure 1). The observables reported in this
paper are measured in three different topological regions, the toward, transverse, and away
regions. These are defined based on the absolute difference in azimuthal angle between the
leading and associated particles, |∆ϕ| = |ϕleading −ϕ|. The associated particles are measured
in the kinematic range 0.15 ≤ pT < 5 GeV/c and |η| < 0.8. The toward, transverse, and
away regions are defined by |∆ϕ| < 60◦, 60◦ ≤ |∆ϕ| < 120◦, and |∆ϕ| ≥ 120◦, respectively.
The particle production in the toward and away regions contains the constituents of the
leading and away-side jets, respectively, the transverse region is mainly sensitive to multiple
parton interactions and initial- and final-state radiations.

The UE activity is quantified using the relative transverse activity classifier RT [10],
which is defined as NT/〈NT〉, where NT is the measured charged-particle multiplicity per
event in the transverse region and 〈NT〉 is the mean value over all the analysed events. By
construction, RT cleanly separates events with “higher-than-average” UE from “lower-than-
average” ones irrespective of the centre-of-mass energy. Of particular interest is whether
events with very low UE activity, which are dominated by the jet activity, exhibit particle
ratios and spectra consistent with fragmentation models tuned to e+e− data and whether
events with high UE activity exhibit any clear signs of flow or other collective effects [10].
Finally, it is worth mentioning that this study is complementary to the measurements made
using transverse spherocity, in which global event properties are studied for jet-like and
isotropic topologies [20, 21].

The structure of the paper is as follows: in section 2, the data analysis is described,
section 3 discusses the systematic uncertainties, and in section 4, the results are presented.
Finally, in section 5, the conclusions are given.
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The event selection in this study follows those of the previous studies to measure the
production of π, K, and p as a function of the charged-particle multiplicity in [3, 28]. The
minimum-bias trigger requires signals in both V0A and V0C scintillators in coincidence
with the arrival of the proton bunches from both directions. The primary vertex position
is reconstructed using global tracks (reconstructed using ITS and TPC information). For
events with too few tracks to compute the vertex position, the primary vertex from SPD
tracklets (reconstructed using only SPD information) is used instead. Events are required
to have a vertex position along the z-axis (parallel to the beam axis) in |z| < 10 cm, where
z = 0 corresponds to the centre of the detector. The out-of-bunch pileup is rejected offline
using the timing information from the two V0 subdetectors. Furthermore, events with
multiple interaction vertices reconstructed are rejected. Finally, events are required to have
a leading particle with 5 ≤ pleading

T < 40 GeV/c. The total number of events after event and
vertex selections amounts to about 827 million, while the number of analysed events with a
leading particle is about 8.1 million.

The distributions presented in this study correspond to primary charged particles, which
are defined as particles with a mean proper lifetime τ larger than 1 cm/c, which are either
produced directly in the interaction or from decays of particles with τ smaller than 1 cm/c,
excluding particles produced in interactions with material [29]. Primary charged particles
are reconstructed using the ITS and TPC detectors, which provide measurements of the
track transverse momentum and azimuthal angle. In particular, tracks are required to cross
at least 70 TPC pad rows. They are also required to have at least two hits in the ITS, out of
which at least one is in the SPD layers. The fit quality for the ITS and TPC track points must
satisfy χ2

ITS/Nhits < 36 and χ2
TPC/Nclusters < 4, respectively, where Nhits and Nclusters are

the number of hits in the ITS and the number of clusters in the TPC associated to the track,
respectively. Finally, tracks are also required to have a transverse momentum larger than
0.15 GeV/c and to be reconstructed in |η| < 0.8. To limit the contamination from secondary
particles, a selection on the distance of closest approach (DCA) to the reconstructed vertex
in the direction parallel to the beam axis (z) of |DCAz| < 2 cm is applied. Also, a pT-
dependent selection on the DCA in the transverse plane (DCAxy) of the selected tracks
to the primary vertex is applied. Moreover, tracks associated with the decay products of
weakly decaying kaons (“kinks”) are rejected. In ALICE, the set of tracks reconstructed
with the above-mentioned selection criteria is commonly referred to as “global tracks”.

The use of global tracks yields a significantly non-uniform efficiency as a function of the
azimuthal angle and pseudorapidity. In order to obtain a high and uniform tracking efficiency
together with good momentum resolution, “hybrid tracks” are used [30, 31]. Hybrid tracks
correspond to the union of two different sets of tracks selected with complementary criteria:
(i) tracks containing at least one space-point reconstructed in one of the two innermost
layers of the ITS (global tracks) and (ii) tracks without an associated hit in the SPD for
which the position of the reconstructed primary vertex is used in the fit of the tracks.
Hybrid tracks are used to select the leading particle, as well as to measure NT and the pT

spectra. Furthermore, in order to select high-quality high-pT tracks, a selection based on the
geometrical track length (L) is applied [32]. This selection criterion excludes the information
from the readout pads at the TPC sector boundaries (≈ 3 cm from the sector edges).
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Analysis pT ranges (GeV/c)

π K p
TPC 0.25–0.7 0.3–0.6 0.45–1.0

TOF 0.7–3.0 0.6–3.0 1.0–3.0

rTPC 2.0–5.0 3.0–5.0 3.0–5.0

Table 1. The name of the analysis technique and the transverse momentum ranges in which π, K
and p are identified.

2.2 Particle identification

ALICE’s tracking and particle identification (PID) capabilities allow measuring the trans-
verse momentum spectra of π, K, and p over a wide range of transverse momentum. In
this study the pT spectra are measured in the pT < pleading

T interval, using the standard
particle identification techniques which have been reported in previous ALICE publica-
tions [3, 28, 33–35]. Table 1 shows the three techniques used for the PID and the pT

intervals each method covers.

At low pT, the average energy loss, 〈dE/dx〉, is proportional to 1/(βγ)2 and the
relatively large π − K and p − K separation power makes it possible to perform particle
identification in this region on a track-by-track basis [28]. Thus in the TPC analysis, the
relative particle abundances, which are defined as the measured fractions of π, K, and
p with respect to all the measured primary charged particles are obtained from fitting
nσ distributions in narrow intervals of transverse momentum. For each track, the nσ is
defined as the difference between the measured and expected dE/dx values normalised to
the resolution, nσ = (dE/dxmeasured − 〈dE/dxexpected〉)/σ. While the signal of π and p can
be fitted with a Gaussian parameterisation, the one for K uses the sum of two Gaussians as
parameterisation to take into account the contamination by electrons.

In the TOF analysis, the particle abundances are also measured on a track-by-track
basis by fitting the measured β,1 distributions in momentum intervals. In the interval
1 < p < 2 GeV/c, the π − K and p − K separation power of hadron identification is large
enough [28] such that one can perform single fits to the signal of π, K, and p using a
Gaussian parameterisation convoluted with an exponential tail. The parameters (µ, σ and ξ,
where µ and σ represent the mean and standard deviation of the Gaussian paramerisation,
and ξ represents the β value at which the exponential tail begins) of the single fits are
extracted from data in 1 < p < 2 GeV/c and are used to extrapolate to higher momentum
values. Finally, the extrapolated functional forms are used to fit the β distributions with
the sum of three contributions to describe the signals of the three species simultaneously.

In the rTPC analysis, the method described in [33–35] is used. In the relativistic
rise region of the TPC (3 . βγ . 1000), the 〈dE/dx〉 increases as log(βγ) and the
π − K and p − K separation power for hadron identification is almost constant [28]. The
knowledge of these two features makes it possible to perform a two-dimensional fit of the
correlation between dE/dx and momentum. In order to accomplish this, the first step

1β = L/c∆t, where L is the track length and ∆t is the measured time-of-flight.
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is to parameterise the Bethe-Bloch and resolution curves in the relativistic rise region.
The Bethe-Bloch parameterisation provides the relation between the 〈dE/dx〉 and βγ,
and the parameterised resolution gives the relation between σdE/dx and 〈dE/dx〉. For
the parameterisation, high-purity samples of identified hadrons are used, namely p(p̄)

and π± from Λ(Λ) and K0
S decays, respectively, and e± from γ-conversions [33–35]. Once

the Bethe-Bloch and resolution curves are parameterised, they are used to perform the
two-dimensional fit. The two-dimensional fit is only used to improve the Bethe-Bloch
parameterisation in the transition to the plateau region. Then, the particle ratios are
obtained from one-dimensional fits to the dE/dx distributions in momentum intervals using
the sum of four Gaussians as a fit function to describe simultaneously the signal of π, K,
p, and e, where the µ and σ of each of the Gaussian distributions are fixed based on the
〈dE/dx〉(βγ) and σdE/dx(〈dE/dx〉) obtained with the above procedure.

2.3 Corrections

The pT spectra of π, K, and p are corrected for acceptance and reconstruction inefficiency.
The spectra measured with the TOF detector are also corrected for TPC–TOF matching
inefficiency. The acceptance and efficiencies are obtained from simulations using the
PYTHIA8 Monte Carlo event generator with the Monash 2013 tune (indicated as PYTHIA8
Monash in the following) [36]. Subsequently, the propagation of simulated particles through
the ALICE apparatus is carried out using GEANT3 [37]. The simulated events are
reconstructed using the same algorithms as for the data. The obtained acceptance and
reconstruction efficiencies are independent of the charged-particle multiplicity. Hence, the
RT-integrated values are applied for all the RT classes. As GEANT3 does not fully describe
the interaction of low-momentum p and K− with the detector material, an additional
correction factor to the efficiency for these two particles is estimated with GEANT4 [38]
and FLUKA [39], respectively. These corrections are the same as the ones applied in [3].

The pT spectra of π and p contain a large contribution from secondary particles from
interactions in the material and particle decays (π± from K0

S and p(p) from Λ and Σ+).
Since the strangeness production is underestimated in the Monte Carlo event generators,
a data-driven approach is used to estimate the fraction of non-primary particles as a
function of pT so that it can be subtracted from the measured spectra. The estimation of
this correction is based on a multi-template fit method to describe the measured DCAxy

distributions [40]. In practice, three Monte Carlo templates representing the expected
shapes of DCAxy distributions of primary particles, secondaries from weak decays, and
secondaries from interactions in the material are used to fit the data DCAxy distributions.
The fits are performed in |DCAxy| ≤ 3 cm and in pT bins. Since the TOF analysis only uses
tracks matched with the TOF detector, these corrections are estimated separately for the
low- and intermediate-pT regions. At pT = 0.45 GeV/c the contribution from non-primary
π+(p) was found to be about 4%(20%) while at pT = 2.0 GeV/c it decreases to about
1%(4%). Furthermore the correction decreases asymptotically at higher pT. Therefore, the
correction for the TOF is extrapolated to higher pT and then applied.
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Figure 2. (Left) Correlation between the true NT,t and the measured NT,m multiplicity in the
transverse region. (Right) Unfolding matrix M1tm. The iteration step of the unfolding matrix
corresponds to the third.

2.4 Unfolding the charged-particle multiplicity distributions

The charged-particle multiplicity in the transverse region, NT, is used to characterise the
event activity. However, the limited acceptance and finite resolution of the detector cause a
smearing of the measured charged-particle multiplicity distribution Y (NT,m). This section
introduces the one-dimensional unfolding method to correct for these detector effects and
efficiency losses. The adopted approach is based on the iterative Bayesian unfolding method
by G. D’Agostini [41]. Bayesian unfolding requires the knowledge of the smearing matrix
Smt, which comprises information about the limited acceptance and finite resolution. It
represents the conditional probability P (NT,m|NT,t) of an event with the true multiplicity
NT,t to be measured as one with multiplicity NT,m. Figure 2 (left) shows the smearing matrix
obtained with simulated events using PYTHIA8 Monash. The values along the diagonal
of the smearing matrix represent the probability that a measured event is reconstructed
with the true number of particles. At the same time, the off-diagonal elements give the
probability that fewer or more particles are reconstructed due to detector inefficiencies and
background, e.g., secondary particles misidentified as primary particles.

The one-dimensional unfolded distribution Y (NT,t) is given as the linear combination
between the elements of the unfolding matrix M1tm (see the right panel of figure 2) and the
measured distribution,

Y (NT,t) =
∑

m

M1tmY (NT,m) , where M1tm =
P (NT,m|NT,t) P0(NT,m)∑
t P (NT,m|NT,t) P0(NT,m)

. (2.1)

P0(NT,m) represents a prior probability distribution. It can be any arbitrary distribution
at the start of the unfolding process. Here, the measured multiplicity distribution is used
as the prior distribution. An updated prior distribution,

P̂ (NT,t) =
Y (NT,t)∑

NT,t
Y (NT,t)

, (2.2)

is obtained from the second iteration and onwards. Thus, the unfolding matrix is improved
as the prior distribution is updated. Finally, a new unfolded distribution closer to the
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true one can be obtained using eq. (2.1) with the updated M1tm. The smearing in figure 2
left shows very few events below the main correlation band between 7 < NT,t < 15 and
15 < NT,m < 30. This small population comes from statistical fluctuations of the response
matrix. Since the unfolding matrix M1tm is proportional to P (NT,m|NT,t), these events
show up in M1tm in the intervals 22 < NT,t < 30 and 7 < NT,m < 17, as can be seen in
figure 2 right. However, given their very small contribution, they are not affecting the
unfolding process.

This iterative process makes the unfolded distribution to converge to the true one
eventually. However, it also compounds the effects of statistical uncertainties in the
smearing matrix. Therefore, a larger number of iterations does not guarantee a better result:
eventually, the true distribution might be contaminated by statistical fluctuations [42].
In order to decide when to stop the iterations, the χ2/Ndf between the unfolded and the
true distribution as a function of the number of iterations is computed for a Monte Carlo
generated sample. The minimum value of the ratio χ2/Ndf indicates when to stop the
iterative process. This study found that the optimal number of iterations is three.

2.5 Unfolding the pT spectra

Unfolding the transverse momentum spectra as a function of the multiplicity is treated differ-
ently depending on the topological region. The toward and away regions are straightforward
cases as there is no overlap between the tracks used for the spectra and the tracks used for
the multiplicity calculation as the latter is measured in the transverse region. Therefore,
the one-dimensional unfolding matrix M1tm is directly applied in these two regions. This
also makes it trivial to see that the same unfolding matrix can be used for all identified
particle spectra. Hence, the fully corrected pT spectra as a function of NT,t are obtained in
a two-step procedure:

1. Correct the raw pT spectra at particle level for tracking inefficiency and secondary
particle contamination. The efficiency correction is applied here as the one-dimensional
unfolding only affects the classification of the events.

2. Apply the one-dimensional unfolding matrix. The spectra as a function of NT,t are

given by: dY (NT,t)
dpT

=
∑

m M1tm
dY (NT,m)

dpT

The transverse region requires a more elaborate method since both pT spectra and
multiplicity are measured using the same tracks. In other words, one is no longer dealing with
the problem of rearranging events but rather how tracks should be unshuffled to match the
true transverse momentum distributions. This poses a multi-dimensional problem with two
dimensions associated to the true and measured multiplicities and two additional dimensions
(true and measured yields) for each pT bin. Instead of performing the full multi-dimensional
unfolding, an approximate method is employed in which the multiplicity smearing matrix is
assumed to be independent of the transverse momentum. This is a very good approximation
as the efficiency is essentially flat in pT for the track selection and pT ranges used here.
In this approach, a new response matrix is obtained by multiplying every column of the
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original multiplicity response matrix with the respective number of measured particles as
weights. After row-wise normalisation, the desired track smearing matrix is obtained.

The unfolding is done bin-by-bin in pT with this modified response matrix. For a
particular transverse momentum bin, the measured multiplicity distribution is unfolded
using the iterative unfolding procedure described in section 2.4. This approach yields
unfolding matrices that depend on the transverse momentum. Henceforth, these matrices
will be called M2tm(pT). It should be stressed that this method works here because the
tracking efficiency does not depend strongly on the transverse momentum for hybrid tracks
and because the same tracks to measure NT are used to obtain the spectra.

Similar to the toward and away regions, the two-step procedure is followed to obtain the
fully corrected transverse momentum spectra. The only difference is that in the transverse
region the pT-dependent M2tm(pT) matrices are used

dY (NT,t, pT)

dpT
=

∑

m

M2tm(pT)
dY (NT,m, pT)

dpT
. (2.3)

The method described above unfolds the spectra of all charged particles and yields the
unfolding matrices M1tm and M2tm(pT). When unfolding the spectra of identified particles
(for example, π in the transverse region), eq. (2.3) is applied using the M2tm(pT) matrices
from charged particles and then exchanging dY (NT,m, pT)/dpT for dY π(NT,m, pT)/dpT.
The unfolding of π spectra in the toward and away regions is done with the same strategy
but using M1tm instead.

3 Systematic uncertainties

In this section, the estimation of the systematic uncertainties is described. The systematic
uncertainties on the pT spectra are divided into two categories, RT-dependent and RT-
independent uncertainties. The total systematic uncertainty on the pT spectra is given as
the sum in quadrature of all the individual sources of uncertainty.

RT-dependent systematic uncertainties. The unfolding method described in sec-
tion 2.4 shows deficiencies, mainly when unfolding the pT spectra for low multiplicities in
the transverse region. To account for these deficiencies, the following contributions to the
systematic uncertainty on the NT distribution are considered:

• Monte Carlo (MC) non-closure: PYTHIA8 Monash is the default tune for the gen-
eration of the multiplicity response matrix and NT distributions with and without
the detector’s efficiency losses. The unfolded NT spectrum from the simulation is
compared to the generated one. Thus, any statistically significant difference between
the generated and unfolded distributions is referred to as MC non-closure and is added
in quadrature to the total systematic uncertainty. During the unfolding procedure,
the MC closure improves with the number of iterations, with an optimal number of
three, which leads to a negligible MC non-closure.

• Dependence on the choice of the MC model: EPOS LHC [43] is used to generate
a different multiplicity response matrix. This response matrix is used to unfold
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the NT and pT spectra. The ratio between the final unfolded distributions using
PYTHIA8 Monash and EPOS LHC was quantified and added to the total systematic
uncertainty. In the interval 0 < NT < 18, the relative systematic uncertainty is below
2 %, increasing to about 4 % at NT ≈ 18. Due to statistical limitations on the response
matrix, a constant 4 % relative systematic uncertainty for NT ≥ 18 was assigned.

• Track selection: this uncertainty is quantified by changing the track selection criteria
with respect to the nominal one. In particular, the minimum number of crossed rows
in the TPC is set to 60 and 100 (the nominal is 70). The track fit quality in the ITS
and TPC quantified by the χ2

ITS/Nhits and the χ2
TPC/Nclusters must not exceed 25 and

49 (the nominal is 36), and 3 and 5 (the nominal is 4), respectively. The maximum
distance of closest approach to the vertex along the beam axis (DCAz) is set to 1 and
5 cm (the nominal is 2 cm). Furthermore, the parameters of the geometrical length cut
to select the leading particle are also varied. For a particular parameter variation, the
maximum difference between the results obtained with the tighter and looser selections
with respect to the nominal value is quantified. The total systematic uncertainty from
track variations is given as the sum in quadrature of the different parameter variations.
The relative systematic uncertainty is on average 1 % in the interval 0 < NT < 18

and increases for higher NT values. For NT ≥ 18, the statistical fluctuations become
significant. Therefore, a constant 2 % relative systematic uncertainty was assigned.

RT-independent systematic uncertainties. The RT-independent systematic uncer-
tainties are divided into two categories. The first category includes the uncertainties
common to the different analyses, such as those due to the track quality criteria and the
pT-dependent ITS–TPC matching efficiency. The ITS–TPC matching efficiency is derived
from matching ITS pure tracks with the corresponding ITS+TPC tracks (in the same
phase-space region) and by comparing the matching efficiency in data and Monte Carlo
simulations. The second category groups the analysis specific uncertainties. It includes
the uncertainties on the secondary particle contamination correction estimation, the signal
extraction technique and the TPC–TOF matching efficiency.

As described in section 2.3, the secondary particle contamination correction is based
on multi-template fits to the DCAxy distributions in transverse momentum intervals. The
estimation of the systematic uncertainty follows the procedure described in [28]. Namely,
the fitting range is changed from the nominal values of ±3 cm to ±1.5 cm.

To estimate possible systematic effects attributed to the signal extraction technique in
the TPC analysis, a similar procedure to the one described in [28] was applied. The signal
extraction technique changed from fitting nσ distributions to bin counting in the range of
±3σ. The systematic uncertainty on the particle fractions is given as the difference between
the nominal particle fractions and the ones obtained from bin counting.

As described in section 2.2, the measurement of the particle fractions in the TOF
analysis is based on fits to β distributions in momentum intervals. Hence, the systematic
uncertainty is mainly driven by the uncertainty in the parameterisation of the µ, σ, and
ξ curves for π, K, and p. The relative difference between the fitted curves and the actual
measured µ, σ, and ξ values was computed to evaluate the effect of the parameterisations.
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Thus, the systematic uncertainty in the extraction of the particle fractions is obtained by
refitting the β distributions while randomly varying the constrained parameters µ, σ, and ξ

within the uncertainty of the parameterisations assuming a Gaussian variation centred at
the nominal value. The refitting was performed 1000 times, and the systematic uncertainty
on the particle fractions as a function of the transverse momentum is given as the standard
deviation of the associated distributions. This approach is motivated by work developed
in [28, 33, 35].

The measurement of the systematic uncertainty on the extraction of the particle
fractions in the rTPC analysis follows the method from [28, 33, 35]. In this analysis,
the primary source of systematic uncertainty comes from the imprecise description of the
detector response, namely the Bethe-Bloch and resolution parameterisations. To estimate
the systematic effect, the relative difference between the parameterisations and the actual
〈dE/dx〉 and σdE/dx values are measured. The particle fractions are measured following a
fitting procedure where the constrained parameters, 〈dE/dx〉 and σdE/dx, are allowed to
vary randomly within the uncertainty of the parameterisations. The fitting procedure was
repeated 1000 times and the systematic uncertainty in the particle fractions is given as the
standard deviation of the associated distributions.

When computing the pT-differential particle ratios, all the systematic uncertainties
cancel out in the ratios except those attributed to the signal extraction and feed-down. In
the high pT region (rTPC analysis) the procedure described in [33] is used to extract the
signal extraction systematic uncertainty on the K/π and p/π ratios directly from fits to the
dE/dx distributions.

Table 2 lists a summary of the systematic uncertainties at different pT values for the
spectra and particle ratios in the transverse region. The table is divided into common and
analysis-specific uncertainties. The values in the toward and away regions are the same as
those of the transverse region. The only topological-region-dependent uncertainty is the
one attributed to the MC non-closure.

4 Results

This section presents the results of the production of π, K, and p as a function of the
relative transverse activity classifier, RT. The data are compared with predictions from
PYTHIA8 Monash [36], PYTHIA8 with ropes hadronisation model (indicated as PYTHIA8
ropes) [44], HERWIG7 [45, 46], and EPOS LHC [43]. PYTHIA8 with Monash tune is one
of the most popular event generators at LHC energies for most observables but lacks the
QGP-like effects observed in small collision systems such as strangeness enhancement, while
the other three models are known to describe the strangeness enhancement in small collision
systems better [8, 44, 47]. Hence, these models allow for testing a broad range of possible
dynamic effects. In PYTHIA8 Monash, the soft-inclusive particle production is based on
multiple perturbative parton-parton interactions (MPI) [11]. This model also includes a
colour reconnection (CR) mechanism [48], allowing each MPI system’s partons to be colour
connected with a higher-pT MPI system. In particular, PYTHIA8 Monash describes the
enhanced pT-differential proton-to-pion ratio at intermediate pT [3] by introducing the
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Uncertainty (%)

Common source π K p

pT (GeV/c) 0.3 2 5 0.3 2 5 0.45 2 5

ITS–TPC matching efficiency 1.4 2.6 2.9 1.4 2.6 2.9 1.4 2.6 2.9

MC non-closure 3.2 3.6 1.5

MC dependence 1 1.5 1.7 0.9 1.5 1.7 0.9 1.5 2

Track selection 1 1 1

Analysis-specific π K p

TPC, pT (GeV/c) 0.3 0.7 0.3 0.6 0.45 1

PID 0.1 1.8 7.3 5.9 0.1 3.4

Feed-Down 1 0.3 — — 10 1.1

TOF, pT (GeV/c) 1 2 1 2 1 2

PID negl. 1 0.3 3.4 0.2 0.7

Feed-Down 0.3 negl. — — 1 0.2

TOF matching efficiency 3 3 6 6 4 4

rTPC, pT (GeV/c) 3 5 3 5 3 5

PID 0.7 0.6 6.4 2.8 5.8 4.2

Feed-Down negl. negl. — — 0.2 0.2

Total π K p

pT (GeV/c) 0.3 2 5 0.3 2 5 0.45 2 5

Total 3.9 5.5 4.7 8.3 8.3 5.7 10.2 5.3 5.7

Particle ratios K/π p/π

pT (GeV/c) 0.3 2 5 0.45 2 5

Total 7.4 4.1 3.2 10.1 1.5 4

Table 2. Summary of systematic uncertainties on the π, K, and p pT spectra. The uncertainties are
shown for different representative pT values. The last two rows show the total systematic uncertainty
on the pT spectra and the pT-differential particle ratios. These values correspond to the spectra in
the transverse region in the 0 ≤ RT < 0.5 class.

colour reconnection mechanism and does not need to assume the formation of a medium [49].
PYTHIA8 ropes model allows strings to fuse in an environment with a high density of strings
and form “colour ropes”. Consequently, colour ropes are expected to produce more strange
hadrons and baryons, the latter via probabilistic collapses of ropes to string junctions.
EPOS LHC is a core-corona model, which assumes the formation of a QGP medium in the
high-density core regions in pp collisions. The hadronisation of the corona is based on string
fragmentation, while the particles associated with the core are thermally produced (grand-
canonical thermal description). In EPOS LHC, particle production in low-multiplicity

– 12 –



J
H
E
P
0
6
(
2
0
2
3
)
0
2
7

RT = NT/〈NT〉 NT Number of events
0–0.5 0–3 2613151

0.5–1.5 4–11 4055410
1.5–2.5 12–18 1302116
2.5–5 19–30 180652
0–5 0–30 8151331

Table 3. Relation between RT intervals and NT classes.

events is mainly dominated by string fragmentation. In contrast, high-multiplicity events
are core dominated, and a large production of strange hadrons and baryons is expected.
Particle production in the HERWIG7 is based on cluster hadronisation and it has its own
colour reconnection mechanism where baryonic clusters are allowed to be produced in a
geometric manner. This model also includes a non-perturbative gluon splitting mechanism
to create more ss pairs to account for the strangeness enhancement [50].

The pT spectra as a function of RT are normalised to the total number of events in
each RT class. The relation between RT intervals and NT classes is given in table 3. The
RT distribution is constructed using the unfolded NT distribution for which the 〈NT〉 is
equal to 7.366 ± 0.002 (stat.). For each RT bin the intervals under the NT column are
inclusive meaning that for 0 ≤ RT < 0.5, NT is equal to 0, 1, 2 or 3.

Figure 3 shows the unfolded NT and RT probability distributions in the transverse
region integrated over all the events with the leading particle along with different model
predictions. For each model, the 〈NT〉 corresponds to the mean value of the corresponding
NT spectrum. It is observed that PYTHIA8 Monash and PYTHIA8 ropes give the best
qualitative description of the NT distribution, while EPOS LHC (HERWIG7) overestimates
(underestimates) the data for NT > 10. However, when RT is computed, all the models
underestimate the data for RT & 2. This is because the models poorly describe the low-
NT region, so they predict larger 〈NT〉 values than the measured ones. Finally, the RT

probability distribution is compared with the previous ALICE result [14], which used a
limited data sample and applied the unfolding at the level of the RT distribution while in
the current analysis the RT spectrum is derived from the NT distribution. The new result
is in agreement with the previous ALICE measurement within 1.5%.

Figures 4 to 6 show the transverse momentum distributions of π, K, and p as a function
of RT. The results in the toward, away, and transverse regions are shown on the left,
middle, and right panels, respectively. The lower panels show the ratios between the RT-
dependent pT spectra and the RT-integrated pT spectrum. The RT-independent systematic
uncertainties cancel out in the ratios. The RT-dependent systematic uncertainties are
correlated and cancel out only partly. From the ratios to the RT-integrated spectrum, it
is observed that the toward and away regions share a similar feature at low transverse
momentum: a depletion of low-pT particles with increasing RT. Furthermore, this effect
follows a mass ordering, being larger for heavier particles. This behaviour is reminiscent
of radial flow effects, in which the depletion of low-pT particles is compensated by an
increasing number of particles at intermediate pT. The particle production in the toward
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Figure 4. Transverse momentum spectra (top panels) of pions as a function of RT and ratios to
the RT-integrated spectrum (bottom panels). The toward, away, and transverse regions are shown
from left to right. The statistical and systematic uncertainties are represented with bars and boxes,
respectively.

Figure 8 shows the pT-differential kaon-to-pion (K/π) and proton-to-pion (p/π) ratios
for the four different RT intervals in the three topological regions. The RT-dependent ratios
are contrasted with the inclusive ratios in minimum bias collisions at the same centre-of-mass
energy [3]. Minimum bias means integrated over RT and the azimuthal angle, and without
the leading particle requirement. The K/π ratios in the toward and away regions show
similar features: they increase with increasing UE activity. However, this is true only
for 1 . pT < 2 GeV/c. Conversely, the K/π ratio in the transverse region decreases with
increasing RT. One also observes that the minimum-bias result is very similar to those
measured in the transverse region. This suggests that the inclusive K/π ratio is dominated
by bulk particle production. The p/π ratio in the toward and away regions measured in
the lowest RT intervals is always below the inclusive one. Similar observations have been
made for the Λ/K0

S ratio in jets [51]. As the UE increases, the toward and away regions
become more UE dominated (jet dilution) and the p/π ratio also increases. However, this is
true only for pT & 1 GeV/c. The growth of the p/π ratio might be attributed to a gradual
increase of the collective radial flow with RT. Furthermore, the baryon-to-meson ratio for
pT > 1 GeV/c in these two regions tends to increase with increasing RT and to approach
the minimum bias ratio, which is similar to the one measured in the transverse region. The
p/π ratio in the transverse region shows a mild dependence on RT. It is observed that the
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Figure 5. Transverse momentum spectra (top panels) of kaons as a function of RT and ratios to
the RT-integrated spectrum (bottom panels). The toward, away, and transverse regions are shown
from left to right. The statistical and systematic uncertainties are represented with bars and boxes,
respectively.

result in the highest UE activity interval is below the one in the lowest UE activity interval
for pT . 2 GeV/c, indicating a suppression of low-pT protons possibly due to collective
radial flow. Furthermore, the observed maximum in the highest RT interval (centred at
pT ≈ 3.5 GeV/c) is shifted to the right with respect to the one of the lowest RT interval
(centred at pT ≈ 2.5 GeV/c). This might be attributed to the jet hardening effect with
increasing multiplicity as discussed in [12].

Figure 9 shows the pT-differential K/π and p/π ratios along with model predictions in
two RT intervals: 0 ≤ RT < 0.5 (low-UE activity) and 2.5 < RT < 5 (high-UE activity).
The K/π and p/π ratios in the toward and away regions in events at low RT can be
described qualitatively by PYTHIA8 Monash. However, this model predicts almost no
evolution with RT. On the other hand, the PYTHIA8 ropes hadronisation model, which
allows for the formation of colour ropes, predicts p/π ratios that evolve with RT, but
overestimates the data, particularly for high-RT events. EPOS LHC also describes both
ratios qualitatively in the limit of low UE activity and predicts an evolution with RT. It
describes the K/π ratio but overestimates the p/π ratio in events with high RT. This was
clear from the pT-integrated particle ratios: the transition from string fragmentation to
statistical hadronisation needs improvement. Finally, HERWIG7 also predicts an evolution
with RT and can describe rather well the K/π ratio, while it misses the pT trend of the
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Figure 6. Transverse momentum spectra (top panels) of protons as a function of RT and ratios to
the RT-integrated spectrum (bottom panels). The toward, away, and transverse regions are shown
from left to right. The statistical and systematic uncertainties are represented with bars and boxes,
respectively.

p/π ratio. The fact that all models do a better job at describing both ratios at low than at
high RT is expected since they are tuned to e+e− data. The model predictions in the away
region are similar to those of the toward.

In the transverse region, PYTHIA8 Monash and PYTHIA8 ropes describe the splitting
and ordering of the K/π ratio between the two RT classes qualitatively but underestimate
the data. They can also describe the p/π ratio qualitatively. Moreover, those models
predict the lower p/π ratio for pT . 2 GeV/c in events with high RT compared to the low
UE activity ratios. This effect, which can be attributed to the radial flow effects, is likely
induced by the CR and ropes in PYTHIA8. EPOS LHC predicts the same K/π ratio for
both RT classes, while the p/π ratio at low RT agrees with the data. Still, as previously
mentioned, the transition from core-corona hadronisation is not well modeled. Finally,
HERWIG7 gives a good qualitative description of the evolution of the p/π ratio with RT in
the transverse region.

The pT-integrated yield (dN/dy) and the average transverse momentum (〈pT〉) of pions,
kaons, and protons are extracted from the pT-differential spectra in the different RT intervals
and topological regions. Since the spectra are measured for pT > 0.3 GeV/c (π, K) and
pT > 0.45 (p) GeV/c, they are first extrapolated to pT = 0. The extrapolation procedure
is carried out by fitting the spectra with Lévy-Tsallis parameterisations [52, 53]. The
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Figure 8. pT-differential particle ratios as a function of RT. The top (bottom) row shows the K/π

(p/π) ratio. The results in the toward, away, and transverse regions are shown from left to right.
Statistical and systematic uncertainties are represented with error bars and boxes, respectively. The
inclusive minimum-bias particle ratios in pp collisions at the same centre-of-mass energy [3] are
overlaid.

parameterisation is only used in the pT intervals with no data. For example, for the
0 ≤ RT < 0.5 interval in the transverse region the fractions of extrapolated yields amount
to 38%, 19%, and 22% for π, K, and p, respectively. To estimate the systematic uncertainty
associated with the extrapolation procedure, several other parameterisations such as the
Fermi-Dirac, Bose-Einstein, Blast-Wave, and mT-exponential are used to estimate the
extrapolated yield. The maximum difference between the nominal and extrapolated yields
is associated as the systematic uncertainty of the extrapolation procedure. For example,
the systematic uncertainties on the dN/dy (〈pT〉) amount to 2%(1.7%), 2.7%(2.3%), and
2%(1.5%) for π, K, and p, respectively, for the 0 ≤ RT < 0.5 interval in the transverse region.

Figure 10 shows the average transverse momentum as a function of RT in the different
topological regions. The 〈pT〉 of π and K in the toward region is the largest in the
0 ≤ RT < 0.5 (low UE activity) interval. This feature reflects the presence of the jet
fragmenting mainly into low-mass hadrons (π and K) with large transverse momentum. As
the UE activity increases, the 〈pT〉 of π and K slowly decreases and tends to flatten for
RT > 1.5 due to the jet dilution effect: the toward and away regions become dominated
by the UE. Conversely, the 〈pT〉 of protons increases with RT, which can be attributed to
the additional radial flow effect. Moreover, the 〈pT〉 of all the species at high-RT tend to
approach the values measured at high RT in the transverse region. All models can describe
the 〈pT〉 qualitatively in the toward region, but EPOS LHC is the only one that predicts
an increasing trend of the proton 〈pT〉. Particle production in the away region is similar
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regions and low RT) and regions where soft non-perturbative QCD processes dominate
(transverse region or high RT). In particular, since conventional UE (Underlying Event)
studies average over the event activity, this analysis allows us to get further insight into
collective effects and the interplay between hard and soft production in pp collisions.
Furthermore, the models can describe the new results in the toward and away regions when
the UE is suppressed (0 ≤ RT < 0.5), which was expected since they are tuned to reproduce
jet-like e+e− measurements. However, when the UE increases, all models fail to reproduce
the data at both qualitative and quantitative level. This demonstrates that by measuring
the production of identified particles as a function of RT, one can reveal novel features of
the UE. The new measurements presented here thus allow for substantial progress on the
model side to nail down the properties of the UE.
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