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Abstract. Isomeric states of the neutron-rich isotope  were populated via fragmentation of a 
primary beam of 208Pb ions at 1 GeV/u impinging on a 9Be target at GSI, Darmstadt, Germany. The isotopes 
of interest were separated, identified and delivered to the DESPEC setup. Two isomers were deduced in 
189Ta116 and their lifetimes were measured based on -ray time distributions.      

1 Introduction 
Neutron-rich nuclei in the A ~ 190 mass region exhibit 
a variety of nuclear structural properties. For instance, 
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well deformed prolate, triaxial, oblate and spherical 
shapes (at N = 126) could be characterized by the 
properties of their respective ground-state shapes [1-4]. 
The evolution from prolate to oblate nuclei passing 
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through the -soft nuclei have been described as the 
prolate-oblate phase transitional systems [5]. In odd-
mass systems, the shape of the atomic nucleus is 
influenced by the addition of an unpaired particle or 
hole. A study of odd-A neutron-rich Rhenium isotopes 
(Z =75) in the A ~ 190 region indicated 
deformation and the evolution of triaxiality with 
increasing neutron number [6]. The 187Ta114 nucleus was 
studied recently using multinucleon transfer (MNT) 
reactions  rays depopulating the 
isomeric states of 187Ta114 were associated with a 
perturbed rotational band, showing the prolate-oblate 
shape transition effect [7].  
 However, with increasing neutron number, it 
becomes difficult to synthesize and select isotopes using 
MNT reactions and the isotope separation method. To 
overcome this obstacle, projectile fragmentation 
reactions at relativistic energies proved to be an efficient 
method for populating states in neutron-rich isotopes. 
For 189Ta116, two data sets were obtained from the 
RISING campaigns in 2006 and 2007, which reported 
different isomeric half-lives of T1/2 
T1/2 , respectively. The involvement of 
two different isomeric states were assumed to explain 
the discrepancy in half-lives.  
 The 189Ta116 nucleus and other neutron-rich nuclei 
in the A~190 region were populated for the study of 
shape evolution, using the projectile fragmentation 
reactions at GSI Helmholtzzentrium für 
Schwerionenforschung. The spectroscopic study was 
carried out using the DEcay SPECtroscopy (DESPEC) 
[10] setup within the FAIR Phase-0 campaign in March 
2021.  

2 Experimental Details  
The nuclei of interest were produced by the 
fragmentation of a 1 GeV/u primary beam of 208Pb, 
impinging on a 2.7 g/cm2 9Be target. The primary beam 
was delivered by the UNILAC and SIS-18 synchrotron 
with a beam intensity of up to 109 ions/s. The fragments 
were separated and identified on an event-by-event basis 
in the FRagment Separator (FRS) [11], operated in the 
standard achromatic mode with an Al degrader placed in 
its intermediate focal plane. The FRS was tuned to 
transmit fully-stripped 190Ta117 ions in the central 
trajectory of the FRS to the final focal plane. A summary 
of the FRS setting is shown in Table 1. 

Table 1. Summary of FRS setting parameters.   

Parameter Value 

Magnetic rigidity 
B 12  12.5166 Tm 

Magnetic rigidity 
B 34  10.5367 Tm 

S2 degrader 
thickness  2500 mg/cm2 

S4 degrader 
thickness  4838 mg/cm2 

Spill length  1.5 s 

  A series of detectors at the intermediate and final 
focal planes of the FRS were used for the secondary 
beam identification. The time of flight (ToF) was 
determined by measuring the time difference between 
the two scintillation detectors placed at the intermediate 
and the final focal planes of the FRS. Time projection 
chambers (TPCs) were used for position measurements. 
Two multi-sampling ionization chambers (MUSICs), 
placed at the final focal plane, were used for the energy 

. 
An Al degrader was used to decelerate the ions 

arriving at the final focal plane and allowed for their 
implantation into an active stopper, the Advanced 
Implantation Detector Array (AIDA) [12]. AIDA 
consisted of 3 layers of (8 x 8) cm2 Double-Sided Silicon 
Strip Detectors (DSSSDs), for the identification of the 

plastic scintillators were mounted upstream and 
downstream of AIDA with 10 m -
decay timing. The downstream plastic was also used for 
vetoing light ions passing through the detectors. 
Surrounding AIDA, two high-purity Ge cluster 
detectors of the EUROBALL array [13], each with 7 
segments, and 36 LaBr3(Ce) detectors of the FAst 
TIMing Array (FATIMA) [14] were used to detect  
radiation. The LaBr3(Ce) detectors were used for fast-
timing spectroscopy, while HPGe detectors provided 
precise energy information.  

All the subsystems of the DESPEC setup were 
triggered independently, in which the White Rabbit 
common time clock with ~ 1 ns precision was employed 
to correlate the events (for more details about the setup, 
the reader is referred to Ref. [10]).               

3 Analysis and Results 
As the particle identification is based on the mass-over-
charge ratio (A/Q) as a function of the atomic number 
(Z), the charge states of the ions traversing the FRS must 
be selected first. Previous studies in the A ~ 190 mass 
region have shown how the different charge states can 
overlap in the particle ID plot [8, 9]. In particular, 
isotopes with atomic mass equal to (A  3), Z and charge 
(Q = Z  1), have comparable magnetic rigidity to fully- 
stripped ions (A, Q = Z). Fully-stripped ions transmitted 
through the FRS can pick up an electron when they 
interact with matter and detectors at the intermediate 
focal plane. In order to overcome this, the energy loss 

Edeg in the degrader in the intermediate focal plane can 
be deduced from the difference in the magnetic rigidity, 
B  between the first and the second halves of the FRS. 
The charge states of the ions were determined by 
correlating the energy loss, Edeg, with the atomic 
number (Z) [15]. 

As shown in Fig. 1, two main isotopic regions (1, 2) 
in the two-dimensional plot can be seen, one is for the 
H-like ions from Platinum (Z = 78) to Osmium (Z = 76), 
and the second region corresponds to the fully-stripped 
ions from Rhenium (Z = 75) to Hafnium (Z = 72). The 
isotopes from Z = 76 to 78 acquire an electron at the 
mid-focal plane and retain it to the final focal plane.    
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 Fig. 1. (color online) Two-dimensional plot of the effective 
energy loss Edeg as function of Z. Region (1): H-like charge 
state ions from (Z = 78 to 76). Region (2): fully-stripped ions 
from (Z = 75 to 72).  

After the particle identification, the fully-stripped 
ions (Q = Z), shown in Fig. 2, were -
spectroscopic analysis. The presence of the delayed 292 

-ray transition in the 188Ta115 isotope [16], 
confirms the validity of the used method. 

 
Fig. 2. (color online) Particle identification plot. The main 
isotopes of interest in the experiment are labelled (190W, 
188Ta, 189Ta).  

 The  rays decaying from the isomeric states in 
189Ta were detected within a time widow of 10 µs for 
HPGe clusters and 7 µs for the LaBr3(Ce) detectors after 
the implantation. The presence of previously-reported 
83, 134, 154, 199, 246, 283, 389 and 481 -ray 
transitions have been confirmed in the present data set. 
As shown in Fig. 3, the delayed -ray transitions 
spectrum, where the energy peaks are labelled, as 
recorded in HPGe detectors. 

  
Fig. 3. Delayed energy spectrum of the known in 189Ta 
as registered in HPGe detectors. 

 In the previous measurements by Alkhomashi et al. 
and Steer et al., one isomeric state was identified. The 
half-life of the isomer was reported to be T1/2 = 1.6(2) 
µs and T1/2 = 0.58(22) µs in [8] and [9], respectively. In 
this experiment, two isomeric states have been 

-ray emission time was registered with 
respect to the time of implantation. The time behaviour 
of the 134 keV transition, as shown in Fig. 4, shows a 
shorter decay constant in comparison with time 
behaviour of the 154, 283, 389 and 481 keV transitions. 

 
Fig. 4. (color online) The energy-time matrix for the 
LaBr3(Ce) detectors. The 134 keV -ray transition is 
indicated by the black arrow.    

 The 154, 199, 246, 283, 389 and 481 keV -ray 
transitions were found to be in coincidence within a ~ 
10 ns - - T cube. The 134 keV 
transition is in coincidence with the other transitions 
mentioned above, when the T range is long (10 ns < 

T < 5 µs). The time difference between transitions for 
example: T (154 keV  134 keV) > 10 ns suggests that 
the first isomer is decaying from a higher-lying energy 
state via a 134 keV -ray, feeding the second isomer 
which then depopulates to the ground state via other -
ray transitions. 
 With a single-component exponential decay fit to 
the time difference distribution of the 134 keV transition 
with respect to the implant time, the half-life of the first 
isomer was estimated to be T1/2 ~ 200 ns. For the second 
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isomer, fitting to the exponential decay of the sum of the 
time difference distributions of the 154, 283, 389 and 
481 keV -ray transitions yields a half-life of T1/2 ~ 1.2 
µs. A comparison with theoretical calculations, 
interpretation of the isomeric states and a suggestion for 
the level scheme for the neutron-rich 189Ta116 isotope 
will be reported elsewhere [17].   

4 Conclusions         
The isomeric states of 189Ta116 were produced by 
fragmentation reactions at the GSI accelerator facility, 
Darmstadt. The study of  rays via spectroscopy using 
the DESPEC setup shows that two isomers are present 
in this isotope. The half-life of the shorter isomer was 
estimated to be T1/2 ~ 200 ns, and T1/2 ~ 1.2 µs for the 
longer one. The - - T analysis has shown that the 
shorter isomer is decaying from a higher-lying energy 
state and feeding the second isomer.       
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