000348514 001__ 348514
000348514 005__ 20240124124545.0
000348514 0247_ $$2doi$$a10.1103/PhysRevA.107.L061303
000348514 0247_ $$2ISSN$$a2469-9926
000348514 0247_ $$2ISSN$$a2469-9942
000348514 0247_ $$2ISSN$$a2469-9934
000348514 0247_ $$2datacite_doi$$a10.15120/GSI-2024-00338
000348514 0247_ $$2altmetric$$aaltmetric:140213268
000348514 0247_ $$2WOS$$aWOS:001019866900001
000348514 037__ $$aGSI-2024-00338
000348514 041__ $$aEnglish
000348514 082__ $$a530
000348514 088__ $$2Other$$a2212.07952
000348514 1001_ $$00000-0002-0211-2458$$aGiuriato, Umberto$$b0
000348514 245__ $$aStokes drift and impurity transport in a quantum fluid
000348514 260__ $$aWoodbury, NY$$bInst.$$c2023
000348514 3367_ $$2DRIVER$$aarticle
000348514 3367_ $$2DataCite$$aOutput Types/Journal article
000348514 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705664486_3734501
000348514 3367_ $$2BibTeX$$aARTICLE
000348514 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000348514 3367_ $$00$$2EndNote$$aJournal Article
000348514 500__ $$aCC BY 4.0 DEED Attribution 4.0 International "Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI."
000348514 520__ $$aStokes drift is a classical fluid effect in which traveling waves transfer momentum to tracers of the fluid, resulting in a nonzero drift velocity in the direction of the incoming wave; this effect is the driving mechanism allowing particles, i.e., impurities, to be transported by the flow. In a classical (viscous) fluid this happens usually due to the presence of viscous drag forces; because of the eventual absence of viscosity in quantum fluids, impurities are driven by inertial effects and pressure gradients only. We present theoretical predictions of a Stokes drift analogous in quantum fluids finding that, at the leading order, the drift direction and amplitude depend on the initial impurity position with respect to the wave phase, and at the second order, our theoretical model recovers the classical Stokes drift but with a coefficient that depends on the relative particle-fluid density ratio. Our theoretical predictions are obtained for classical impurities using multitime analytical asymptotic expansions. Numerical simulations of a two-dimensional Gross-Pitaevskii equation coupled with a classical impurity corroborate our findings. Our findings are experimentally testable, for instance, using fluids of light obtained in photorefractive crystals.
000348514 536__ $$0G:(DE-HGF)POF4-612$$a612 - Cosmic Matter in the Laboratory (POF4-612)$$cPOF4-612$$fPOF IV$$x0
000348514 588__ $$aDataset connected to CrossRef, Journals: repository.gsi.de
000348514 693__ $$0EXP:(DE-Ds200)no_experiment-20200803$$1EXP:(DE-Ds200)theory-20200803$$5EXP:(DE-Ds200)no_experiment-20200803$$atheory$$eno experiment theory work (theory)$$x0
000348514 7001_ $$00000-0002-9934-6292$$aKrstulovic, Giorgio$$b1
000348514 7001_ $$00000-0001-9141-2147$$aOnorato, Miguel$$b2
000348514 7001_ $$00000-0002-9472-0097$$aProment, Davide$$b3$$eCorresponding author
000348514 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.107.L061303$$gVol. 107, no. 6, p. L061303$$n6$$pL061303$$tPhysical review / A$$v107$$x2469-9926$$y2023
000348514 8564_ $$uhttps://repository.gsi.de/record/348514/files/PhysRevA.107.L061303.pdf$$yOpenAccess
000348514 8564_ $$uhttps://repository.gsi.de/record/348514/files/PhysRevA.107.L061303.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000348514 909CO $$ooai:repository.gsi.de:348514$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000348514 9101_ $$0I:(DE-Ds200)20121206GSI$$60000-0002-9472-0097$$aGSI Helmholtzzentrum für Schwerionenforschung GmbH$$b3$$kGSI
000348514 9131_ $$0G:(DE-HGF)POF4-612$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vCosmic Matter in the Laboratory$$x0
000348514 9141_ $$y2023
000348514 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000348514 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000348514 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-08-29
000348514 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000348514 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV A : 2022$$d2023-08-29
000348514 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000348514 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000348514 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
000348514 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000348514 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
000348514 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000348514 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000348514 920__ $$lyes
000348514 9201_ $$0I:(DE-Ds200)EXM-20080818OR100$$kEXM$$lExtreMe Matter Institute, EMMI$$x0
000348514 980__ $$ajournal
000348514 980__ $$aVDB
000348514 980__ $$aUNRESTRICTED
000348514 980__ $$aI:(DE-Ds200)EXM-20080818OR100
000348514 9801_ $$aFullTexts