001     348514
005     20240124124545.0
024 7 _ |a 10.1103/PhysRevA.107.L061303
|2 doi
024 7 _ |a 2469-9926
|2 ISSN
024 7 _ |a 2469-9942
|2 ISSN
024 7 _ |a 2469-9934
|2 ISSN
024 7 _ |a 10.15120/GSI-2024-00338
|2 datacite_doi
024 7 _ |a altmetric:140213268
|2 altmetric
024 7 _ |a WOS:001019866900001
|2 WOS
037 _ _ |a GSI-2024-00338
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a 2212.07952
|2 Other
100 1 _ |a Giuriato, Umberto
|0 0000-0002-0211-2458
|b 0
245 _ _ |a Stokes drift and impurity transport in a quantum fluid
260 _ _ |a Woodbury, NY
|c 2023
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705664486_3734501
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY 4.0 DEED Attribution 4.0 International "Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI."
520 _ _ |a Stokes drift is a classical fluid effect in which traveling waves transfer momentum to tracers of the fluid, resulting in a nonzero drift velocity in the direction of the incoming wave; this effect is the driving mechanism allowing particles, i.e., impurities, to be transported by the flow. In a classical (viscous) fluid this happens usually due to the presence of viscous drag forces; because of the eventual absence of viscosity in quantum fluids, impurities are driven by inertial effects and pressure gradients only. We present theoretical predictions of a Stokes drift analogous in quantum fluids finding that, at the leading order, the drift direction and amplitude depend on the initial impurity position with respect to the wave phase, and at the second order, our theoretical model recovers the classical Stokes drift but with a coefficient that depends on the relative particle-fluid density ratio. Our theoretical predictions are obtained for classical impurities using multitime analytical asymptotic expansions. Numerical simulations of a two-dimensional Gross-Pitaevskii equation coupled with a classical impurity corroborate our findings. Our findings are experimentally testable, for instance, using fluids of light obtained in photorefractive crystals.
536 _ _ |a 612 - Cosmic Matter in the Laboratory (POF4-612)
|0 G:(DE-HGF)POF4-612
|c POF4-612
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: repository.gsi.de
693 _ _ |a theory
|e no experiment theory work (theory)
|1 EXP:(DE-Ds200)theory-20200803
|0 EXP:(DE-Ds200)no_experiment-20200803
|5 EXP:(DE-Ds200)no_experiment-20200803
|x 0
700 1 _ |a Krstulovic, Giorgio
|0 0000-0002-9934-6292
|b 1
700 1 _ |a Onorato, Miguel
|0 0000-0001-9141-2147
|b 2
700 1 _ |a Proment, Davide
|0 0000-0002-9472-0097
|b 3
|e Corresponding author
773 _ _ |a 10.1103/PhysRevA.107.L061303
|g Vol. 107, no. 6, p. L061303
|0 PERI:(DE-600)2844156-4
|n 6
|p L061303
|t Physical review / A
|v 107
|y 2023
|x 2469-9926
856 4 _ |y OpenAccess
|u https://repository.gsi.de/record/348514/files/PhysRevA.107.L061303.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://repository.gsi.de/record/348514/files/PhysRevA.107.L061303.pdf?subformat=pdfa
909 C O |o oai:repository.gsi.de:348514
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a GSI Helmholtzzentrum für Schwerionenforschung GmbH
|0 I:(DE-Ds200)20121206GSI
|k GSI
|b 3
|6 0000-0002-9472-0097
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-612
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Cosmic Matter in the Laboratory
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV A : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Ds200)EXM-20080818OR100
|k EXM
|l ExtreMe Matter Institute, EMMI
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Ds200)EXM-20080818OR100
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21