
Bound state energies and critical bound region
in the semiclassical dense hydrogen plasmas

Cite as: Phys. Plasmas 31, 042110 (2024); doi: 10.1063/5.0185339

Submitted: 30 October 2023 . Accepted: 22 March 2024 .

Published Online: 9 April 2024

Tong Yan,1,2 Li Guang Jiao,2,3,4,a) Aihua Liu,1,a) Yuan Cheng Wang,3,4,5 Henry E. Montgomery, Jr.,6

Yew Kam Ho,7 and Stephan Fritzsche3,4,8

AFFILIATIONS

1Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, People’s Republic of China
2College of Physics, Jilin University, Changchun 130012, People’s Republic of China
3Helmholtz-Institut Jena, D-07743 Jena, Germany
4GSI Helmholtzzentrum f€ur Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
5College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, People’s Republic of China
6Chemistry Program, Centre College, Danville, Kentucky 40422, USA
7Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, Republic of China
8Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universit€at Jena, D-07743 Jena, Germany

a)Authors to whom correspondence should be addressed: lgjiao@jlu.edu.cn and aihualiu@jlu.edu.cn

ABSTRACT

We calculate the bound state energies of the hydrogen atom in semiclassical dense hydrogen plasmas modeled by the effective screened
interaction potential developed by Ramazanov et al. [Phys. Rev. E 92, 023104 (2015)]. It is shown that the quantum degenerate and
exchange-correlation effects of plasma electrons do not play significant roles in the region where the system exhibits bound states. The
bound-continuum critical transition lines and the distribution of the ground state energies in the plasma density-temperature phase diagrams
are obtained, both with and without taking into account the screening effect of the plasma ions. The dipole transition oscillator strengths and
static dipole polarizabilities of the electron-ion subsystems in semiclassical dense hydrogen plasmas are calculated in a wide range of plasma
parameters.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0185339

I. INTRODUCTION

Investigation of the spectral properties and collisional dynamics
of the electron-ion subsystems in plasmas has attracted considerable
interest in recent years due to their great importance in modeling the
microscopic and thermodynamic processes in plasmas and diagnosing
plasma parameters such as temperature and density.1–3 During recent
years, significant progress has been made by many authors to deter-
mine, e.g., accurate bound state energies, transition amplitudes, multi-
pole polarization properties, electron impact excitation and ionization
scattering cross sections, and laser-induced nonlinear responses of the
electron-ion subsystems embedded in different plasma environ-
ments.4–16 The most widely investigated plasmas are probably the
weakly coupled ideal plasmas, in which the effective interaction
potential between a pair of charged particles is modeled by the

Debye–H€uckel potential.17 In that model, the Coulomb interaction is

screened by an exponential factor with a length parameter called the

Debye length,2 beyond which plasma particles effectively screen any

localized charge imbalance. The strongly coupled plasmas, in the

opposite limit, generally have low temperatures and high electron den-

sities, and the screening effect is better described by the ion-sphere

model.18 In such an approximation, each stationary ion is surrounded

by electrons uniformly distributed in a Wigner–Seitz sphere to neutral-

ize the ionic charge.
In dense plasmas, the quantum degenerate effect of electrons is

measured by the ratio of thermal energy to the Fermi energy of elec-
trons.19 For dense plasmas in the fully degenerate region, where ener-
gies of degenerate electrons follow the Fermi–Dirac distribution, a
novel attractive interaction potential between charged particles was
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derived by Shukla and Eliasson20–22 and later improved by Akbari-
Moghanjoughi et al.23–25 considering both the quantum statistical
pressure and the quantum Bohm potential, as well as the electron
exchange-correlation effects. A simplified model, which is called the
modified Debye–H€uckel or exponential cosine screened Coulomb
potential26 attracted special interest in subsequent investigations, par-
tially due to its simple analytical formalism. On the other hand, the
semiclassical dense plasmas have attracted growing interest in recent
years due to their importance for understanding the evolution of stellar
interiors and the extreme environment in inertial confinement
fusion.2,27,28 The recent works of Ramazanov et al.29–32 made a major
step forward in developing compact and analytical effective interaction
potentials between charged particles in these weakly nonideal, semi-
classical dense plasmas. Based on the Deutsch micropotential33 and
the static dielectric function in the linear response approximation,
Ramazanov et al.32 developed a new screened interaction potential
between charged particles by taking into account both the quantum
mechanical diffraction and symmetry effects between colliding par-
ticles at short distances, and the simultaneous screening effects of
plasma electrons and ions.32 Such a model potential successfully treats
the effective interactions of the electron–electron, ion–ion, and
electron-ion subsystems in a unified framework.

Since the development of the Ramazanov effective interaction
potential, this model potential and corresponding variants have been
widely employed to investigate various thermodynamic and transport
properties of nonideal semiclassical dense plasmas, including the scat-
tering of electrons from ions and atoms,34–39 the optical reflectivity,40

relaxation of plasma temperature and coupling parameters,41,42

dynamical conductivity,43,44 Coulomb logarithm and stopping
power,45–47 etc. In a recent work, Shalenov et al.48 calculated the bound
state energy spectra of the hydrogen atom under the Ramazanov
model potential using the Ritz variational method. It has been shown
that the electron degeneracy and plasma screening effects lead to a
decrease in the ionization potentials, and in the high-density limit, sys-
tem bound energies approach zero and eventually bound states merge
into the continuum.48 Such a phenomenon is called the pressure ioni-
zation in plasmas49,50 or Mott transition in condensed matter.51 The
bound-continuum transition has a close relationship to the quantum
phase transition and symmetry breaking of electron configuration and
also appears in other physical systems with potentials having adjust-
able parameters.52–56 Investigation of the shifts of bound state energies
and accurate positions of the continuum edge attracts wide interest in
a variety of plasmas, and so far they have not been established in the
semiclassical dense region. The purpose of this work is first to provide
alternative and accurate solutions of the bound state energies of the
hydrogen atom in semiclassical dense hydrogen plasmas and second to
determine the critical bound region where bound-continuum phase
transition occurs.

The rest of this paper is structured as follows: In Sec. II, we intro-
duce the Ramazanov model potential for simulating the electron-ion
interaction in semiclassical dense plasmas, the definition of plasma
parameters, the valid range of the potential, and the numerical method
for calculating the bound state energies. In Sec. III, we compare the
present results with previous calculations and make a comprehensive
survey of the critical bound region for the electron-ion subsystem in
plasmas. Physical properties of dipole transition oscillator strengths
and static polarizabilities for the ground state of the system are also

investigated in Sec. III. Section IV gives a summary of the present
work. Both atomic units (�h ¼ me ¼ e ¼ 1) and those more widely
used in plasma physics (e.g., eV and cm�3 for the plasma temperature
and particle number density, respectively) will be used according to
circumstances.

II. THEORETICAL METHOD

A. Effective interaction potential

The electron-ion effective interaction potential in the semiclassical
dense plasmas was derived by Ramazanov et al.32 using the Deutsch
micropotential33 and the dielectric response function in a linear response
approximation. The potential is expressed in a compact form

VeiðrÞ ¼ � Ze2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and

k2D ¼ k2i þ k2e : (5)

In the formulas above, ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pniZ
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2=ðkBTiÞ
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and ke
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4pnee2=ðkBTeÞ
p

represent the wave numbers of the plasma ions

and electrons, respectively. Zi is the electronic charge of the ions, and
TiðeÞ niðeÞ are, respectively, the temperature and density of the plasma

ions (electrons). kei ¼ �h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pleikBTei

p

is the thermal de Broglie wave-

length of pairs of electron and ion, in which lei ¼ memi=ðme þmiÞ is
the electron-ion reduced mass and Tei ¼

ffiffiffiffiffiffiffiffiffi

TeTi

p
is the temperature of

the electron-ion subsystem. The thermal de Broglie wavelengths

kee ¼ �h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmekBTe

p
and kii ¼ �h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmikBTi

p
are employed for elec-

trons and ions, respectively, while in deriving Eq. (1), it has been
assumed that ions are point-like particles, i.e., kii ¼ 0, due to
mi � me. We note that there exists a debate on the different choice of
the wavelength kei in the literature (see, e.g., Refs. 42, 57, and 58 for
discussion), and the original formulations of the Deutsch potential
were also published in different forms by the authors.33,59–62As we will
explain later, kei will be omitted in our following calculations of the
bound state energies of the electron-ion subsystem. In this work, we
focus on hydrogen plasmas in the thermodynamic equilibrium condi-
tion, i.e., Zi¼ 1, Te¼Ti, and therefore, ne ¼ Zini ¼ ni.

It should be mentioned that in the recent works of Kodanova
et al.42 and Shalenov et al.,48 those authors employed a different defini-
tion of the electron wavelength kee by incorporating the electron
degeneracy and exchange-correlation effect [see Eq. (2) in Ref. 48 for
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more details]. Here, we simplify our calculations by directly using the
original thermal de Broglie wavelength of electrons. In the results and
discussion, we will show that such a simplification does not produce a
significant effect on the physical properties investigated in this work.

Despite the different choices of the wavelength parameters, the
electron-ion pair interaction potential given in Eq. (1) takes into
account the quantum effects of diffraction and symmetry between the
colliding charged particles at short distances, and therefore, it can be
properly used to model the collisional dynamics in the semiclassical
dense plasmas. It was, however, pointed out by Shalenov et al.48 that
when using Eq. (1) in solving the Schr€odinger equation of the
electron-ion subsystem, double counting of the quantum diffraction
effect arises due to the explicit appearance of the parameter kei in the
Deutsch micropotential. Therefore, to calculate the bound state ener-
gies of the electron-ion subsystem, one should rewrite Eq. (1) by set-
ting kei ¼ 0, which yields

VeiðrÞ ¼ � Ze2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ k2i k
2
eeÞ

2 � 4k2Dk
2
ee

q

� 1� k2eeB
2

� �

e�Br � 1� k2eeA
2

� �

e�Ar
� �

: (6)

This potential, if a further approximation is made without taking into
account the screening effect of the ionic components (ki¼ 0), recasts
the potential derived by Stanton and Murillo63 based on the finite-
temperature orbital-free density functional theory. Throughout this
work, we will employ Eq. (6) as the model potential to investigate the
bound state energies of the electron-ion subsystem, both with (ki 6¼ 0)
and without (ki¼ 0) considering the screening effect of ions. Some
examples of the potential parameters kee, ke, A, and B for ki 6¼ 0 at
some selected values of plasma temperatures and densities are given in
Table I for reference.

B. Plasma parameters

To simplify our calculation and the following discussion, plasmas
are characterized by three dimensionless parameters. The electron den-
sity parameter is given by

rs ¼
ae

aB
; (7)

where ae ¼ ð3=ð4pneÞÞ1=3 is the average distance between electrons
and aB is the in bohr radius. The electron degeneracy parameter is
defined as

TABLE I. Parameters of the electron-ion effective interaction potential in Eq. (6) with considering the screening effect of ions (ki 6¼ 0) at some selected values of plasma temper-
atures and densities. For the hydrogen plasmas in thermodynamic equilibrium where Zi¼ 1, Ti¼ Te, and ni¼ ne, it simplifies that ke¼ ki and kD ¼

ffiffiffi

2
p

ke. Those places without
data represent the potential in the forbidden region [see Eq. (15)]. Numbers in parentheses represent powers of ten.

neðcm�3Þ rs h C ke¼ ki A B

kBTe ¼ 50 (kee ¼ 0:294 306 868 062)

1� 1021 1.172 292 53(1) 1.371 196 62(2) 4.642 422 53(�2) 3.183 442 15(�2) 3.397 664 85 4.502 264 71(�2)

1� 1023 2.525 627 69 6.364 530 92 2.154 821 66(�1) 3.183 442 15(�1) 3.382 598 03 4.522 318 77(�1)

1� 1025 5.441 299 91(�1) 2.954 153 56(�1) 1.000 179 61 3.183 442 15 – –

kBTe ¼ 100 (kee ¼ 0:208 106 382 157)

1� 1021 1.172 292 53(1) 2.742 393 24(2) 2.321 211 27(�2) 2.251 033 53(�2) 4.805 181 93 3.183 477 09(�2)

1� 1023 2.525 627 69 1.272 906 18(1) 1.077 410 83(�1) 2.251 033 53(�1) 4.799 935 91 3.186 956 42(�1)

1� 1025 5.441 299 91(�1) 5.908 307 13(�1) 5.000 898 07(�1) 2.251 033 53 – –

kBTe ¼ 200 (kee ¼ 0:147 153 434 031)

1� 1021 1.172 292 53(1) 5.484 786 48(2) 1.160 605 63(�2) 1.591 721 08(�2) 6.795 609 38 2.251 039 71(�2)

1� 1023 2.525 627 69 2.545 812 37(1) 5.387 054 14(�2) 1.591 721 08(�1) 6.793 761 60 2.251 651 95(�1)

1� 1025 5.441 299 91(�1) 1.181 661 43 2.500 449 04(�1) 1.591 721 08 6.581 132 01 2.324 400 51

kBTe ¼ 400 (kee ¼ 0:104 053 191 078)

1� 1021 1.172 292 53(1) 1.096 957 30(3) 5.803 028 16(�3) 1.125 516 77(�2) 9.610 462 72 1.591 722 17(�2)

1� 1023 2.525 627 69 5.091 624 73(1) 2.693 527 07(�2) 1.125 516 77(�1) 9.609 810 04 1.591 830 28(�1)

1� 1025 5.441 299 91(�1) 2.363 322 85 1.250 224 52(�1) 1.125 516 77 9.542 435 59 1.603 069 41

kBTe ¼ 800 (kee ¼ 0:073 576 717 016)

1� 1021 1.172 292 53(1) 2.193 914 59(3) 2.901 514 08(�3) 7.958 605 38(�3) 1.359 125 37(1) 1.125 516 96(�2)

1� 1023 2.525 627 69 1.018 324 95(2) 1.346 763 54(�2) 7.958 605 38(�2) 1.359 102 30(1) 1.125 536 07(�1)

1� 1025 5.441 299 91(�1) 4.726 645 70 6.251 122 59(�2) 7.958 605 38(�1) 1.356 777 28(1) 1.127 464 83

kBTe ¼ 1000 (kee ¼ 0:065 809 016 323)

1� 1021 1.172 292 53(1) 2.742 393 24(3) 2.321 211 27(�3) 7.118 393 06(�3) 1.519 548 45(1) 1.006 692 91(�2)

1� 1023 2.525 627 69 1.272 906 18(2) 1.077 410 83(�2) 7.118 393 06(�2) 1.519 531 95(1) 1.006 703 85(�1)

1� 1025 5.441 299 91(�1) 5.908 307 13 5.000 898 07(�2) 7.118 393 06(�1) 1.517 873 01(1) 1.007 804 11
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h ¼ kBTe

EF
; (8)

where EF ¼ �h2ð3p2neÞ2=3=ð2meÞ is the Fermi energy of electrons. For
h � 1, the plasma is classified as a degenerate quantum plasma, while
for h � 1, the plasma is considered as a non-degenerate classical
plasma. The semiclassical plasmas are generally defined in the transi-
tion region between them. The Coulomb coupling parameter reads

C ¼ e2

aekBTe
: (9)

When C � 1, the electrons are said to be weakly coupled, while
C � 1 means the electrons are strongly coupled. These three dimen-
sionless parameters are not independent, since the electron degeneracy
parameter h and Coulomb coupling parameter C can be connected via
the electron density parameter rs through

hC ¼ e2

aeEF
� 0:543011 rs: (10)

The characteristic plasma parameters, which are more extensively
used in plasma experiments, i.e., the plasma particle density and tem-
perature, can be derived straightforwardly as

ne ¼
3

4p
r�3
s � 0:238732 r�3

s ða:u:Þ

� 1:611046� 1024 r�3
s ðcm�3Þ; (11)

and

kBTe ¼
1

2

9p

4

� �2
3

hr�2
s � 1:841584 hr�2

s ða:u:Þ

� 50:11206 hr�2
s ðeVÞ: (12)

C. Potential valid range

It can be inferred from both Eqs. (1) and (6) that such an
electron-ion interaction potential can only be valid under the
condition

1þ k2i k
2
ee > 2kDkee: (13)

For plasmas that do not follow the above condition, Ramazanov
et al.32 provided a modified effective interaction potential to remove
the imaginary unit. In this work, we solely focus on the electron-ion
interaction under the above restriction, but keep in mind that another
form of potential can be used in the complementary area.

The combination of Eqs. (7), (8), and (13) yields the valid range
of the electron-ion potential for ki 6¼ 0,

rs > 41:399 h2 or rs < 1:2187 h2: (14)

They can also be expressed in terms of the plasma density and temper-
ature parameters as

ne > 2:9142 ðkBTeÞ2 or ne < 0:0858 ðkBTeÞ2: (15)

For example, if rs¼ 2, the plasma degeneracy parameter can only be
set in the range of h > 1:29 or h < 0:22. On the other hand, if ki¼ 0,
i.e., kD¼ ke, the valid range of the potential simplifies to

rs < 1:7757 h2; (16)

or

ne < 0:125 ðkBTeÞ2: (17)

D. Numerical calculation

The bound state energies of the electron-ion subsystem are calcu-
lated by solving the non-relativistic radial Schr€odinger equation in the
form

� 1

2

d2

dr2
þ lðl þ 1Þ

2r2
þ VeiðrÞ

� �

wnlðrÞ ¼ EnlwnlðrÞ; (18)

where Vei is given by Eq. (6) and Enl is the eigenenergy of the system
with principal quantum number n and orbital angular momentum l.
The critical bound region for the electron-ion subsystem indicates the
plasma parameter region (either in terms of rs and h or ne and kBTe)
where the lowest eigenenergy of the system is negative, i.e.,

E1sðrs; hÞ < 0 or E1sðne; kBTeÞ < 0: (19)

The parameters that produce exactly zero ground state energy are
defined as the critical plasma parameters.

In general, the effective electron-ion potential can be treated as a
combination of two screened-type Coulomb potentials and, unfortu-
nately, it has no known analytical solutions. In this work, we employ
the generalized pseudospectral (GPS) method64–66 to solve Eq. (18) in
the discrete variable representation. The GPS method has been exten-
sively employed in our previous work11,12 to solve the bound state
energies, wave functions, and corresponding transition and polariza-
tion properties of atoms under different screened Coulomb potentials.
One of the great advantages of the GPS method is that it converges
exponentially fast with a gradual increase in the dimension of discreti-
zation. This is much faster than the traditional finite-basis-set expan-
sion methods and the finite-difference or finite-element methods.67

Such computational superiority demonstrates the utility of the GPS
method as a powerful tool to calculate the critical screening parameters
of potentials and investigate the critical (bound-continuum and
bound-resonance) transitions of quantum systems. For a detailed
implementation of the GPS method in solving the radial Schr€odinger
equation, interested readers are referred to Refs. 64–66. The strategy of
accurately determining the critical screening parameters is available in
Refs. 68–70.

III. RESULTS AND DISCUSSION

A. Effective potential and ground state energies

To validate the effective potentials used in the present numerical
calculations, we reproduce the potential curves described in Eqs. (1)
and (6) in Figs. 1(a) and 1(b), respectively. Figure 1(a) displays the
comparison of the electron-ion effective potential derived by
Ramazanov et al.,32 the original Deutsch micropotential (in the limit
without plasma screening, i.e., ki ! 0; ke ! 0, and kD ! 0), and the
widely used Debye potential (in the limit without quantum effects, i.e.,
kee ! 0 and kei ! 0). We successfully reproduce the three potential
curves obtained by Ramazanov et al.32 at rs¼ 2 and h ¼ 2:2 (see Fig. 3
in Ref. 32), which corresponds to the electron degeneracy parameter at
about C ¼ 0:5. Figure 1(b) displays the effective potentials of Eq. (6)
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that will be used in the following numerical solution of the
Schr€odinger equation. For rs¼ 2, we successfully reproduce the poten-
tial curves obtained by Shalenov et al.48 at h¼ 5 and 2. However, those
authors used a different definition of the electron wavelength kee by
incorporating the electron quantum degeneracy and exchange-
correlation effects, while we directly employ the thermal de Broglie
wavelength of electrons. It can be seen that the difference is nearly
indistinguishable in the current figure scale, which means that the
quantum degeneracy and exchange-correlation effect do not play sig-
nificant roles in the plasmas considered here. Discrepancies do exist in

the valid range of the effective potential. As we have discussed in Sec.
IIC, if the thermal de Broglie wavelength of electrons is used in the cal-
culation, the effective potential is restricted to the ranges of h > 1:29
and h < 0:22 for rs¼ 2. Therefore, in Fig. 1(b) we only show the
potential curves for h as small as 1.3, while in the work of Shalenov
et al.,48 those authors provided the potential curve at h ¼ 0:5. It should
be kept in mind that this is in the region of weakly degenerate quan-
tum plasmas.

The ground state energies of the electron-ion subsystem are
solved by employing the GPS method. The numerical results are
shown in Tables II and III for ki 6¼ 0 and ki¼ 0, respectively, in a wide
range of dimensionless parameters rs and h. The implementation
details of the GPS method are available elsewhere64–66 and are omitted
here. All numerical calculations can be converged to an accuracy close
to the precision of numerical arithmetic with a moderate dimension of
discretization.11 For simplicity, we only show the first 6 significant dig-
its in these tables. It is also worth mentioning that in Table II, i.e.,
ki 6¼ 0, the ground state is still bound at smaller values of h (< 1) and
some large values of rs (>5). These energies are not included in the
table since the plasma electrons are in the degenerate quantum region.

Two common behaviors can be observed from the comparison
shown in Tables II and III. At fixed values of rs (i.e., fixed electron den-
sity ne), the ground state energy increases monotonically with decreas-
ing h (i.e., decreasing the plasma temperature kBTe). This is consistent
with the fact that in lower temperatures, the Debye length of plasmas
(which characterizes the average screening distance between charged
particles) is much smaller and the quantum diffraction effect becomes
more important. All these effects produce a stronger screening effect
on the effective interaction potential and, consequently, the bound
state energies are shifted to higher levels (i.e., far away from the free
hydrogen levels). At fixed values of h, the gradual increase in rs corre-
sponds to the decrease in electron density ne. As a result, the electron-
ion subsystem behaves like a free hydrogen atom, and the ground state
energy approaches�0.5 (in atomic units).

The validation of the present numerical results and comparison
with previous calculations can be seen in Fig. 2, where for the ease of
comparison the ground state energies are depicted as a function
of electron density ne, at some fixed values of temperature kBTe.
Figures 2(a) and 2(b) compare the energies under potentials with
ki 6¼ 0 and ki¼ 0, respectively. The parameters of the effective interaction
potentials in Fig. 2(a) at ne ¼ 1� 1021; 1� 1023, and 1� 1025 cm�3

have been given in Table I. Those parameters for ki¼ 0 in Fig. 2(b) can
be obtained in a similar way by setting kD¼ ke. In both figures, the varia-
tional calculations of Shalenov et al.48 based on the hydrogen-like wave
functions are included for comparison. For ki¼ 0, the predictions of
Chen et al.13 using the Stanton–Murillo model potential63 are also
included. Good agreement between the present results and previous cal-
culations of Shalenov et al.48 and Chen et al.13 over the wide range of
plasma parameters indicates that the different choice of electron
wavelength has a negligible effect on the ground state energies of the
electron-ion subsystem. Large discrepancies only exist in the region
where the ground state energy approaches zero, i.e., the critical
bound region. In these loosely bound systems, large portions of elec-
tron probability densities are distributed into the far asymptotic dis-
tances, and the electron wave functions can be significantly different
from the hydrogen-like ones (see, e.g., Fig. 3 in Ref. 68). The present
GPS numerical calculations achieve full convergence in the critical

FIG. 1. Effective potential energy curves of the electron-ion system in semiclassical
dense plasmas. (a) Comparison of the potential of Eq. (1) at rs¼ 2 and h ¼ 2:2
with the Debye and Deutsch potentials. Dots are the present calculations and lines
are from Ref. 32. The expressions of the Debye and Deutsch potentials are given,
respectively, in Eqs. (13) and (1) in Ref. 32. (b) Comparison of the potentials of
Eq. (6) at rs¼ 2 and some selected values of h. Dots are the present calculations
and lines are from Ref. 48. In the present models, the value of h must be larger
than 1.29 for rs¼ 2 (see the discussion in Sec. II C).
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TABLE II. Ground state energies of the hydrogen atom in semiclassical dense plasmas under Eq. (6) with ki 6¼ 0. Those places without data are due to either the nonexistence of bound states or being out of
the valid range of the interaction potential (labeled by “–”). Energies are given in atomic units. Numbers in parentheses represent powers of ten.

h

rs

0.01 0.05 0.1 0.5 1 5 10 50 100

1000 �1.175 78(�1) �2.872 93(�1) �3.415 44(�1) �4.239 27(�1) �4.452 78(�1) �4.749 55(�1) �4.821 93(�1) �4.919 82(�1) �4.943 24(�1)

700 �7.739 15(�2) �2.543 83(�1) �3.152 20(�1) �4.101 01(�1) �4.351 22(�1) �4.701 76(�1) �4.787 73(�1) �4.904 31(�1) �4.932 27(�1)

500 �4.301 00(�2) �2.203 71(�1) �2.872 93(�1) �3.949 68(�1) �4.239 27(�1) �4.648 57(�1) �4.749 59(�1) �4.886 99(�1) �4.920 02(�1)

300 �6.199 27(�3) �1.642 18(�1) �2.391 41(�1) �3.675 67(�1) �4.034 36(�1) �4.549 83(�1) �4.678 56(�1) �4.854 69(�1) �4.897 20(�1)

100 �4.301 01(�2) �1.175 78(�1) �2.872 97(�1) �3.415 54(�1) �4.239 85(�1) �4.453 87(�1) �4.752 40(�1) �4.825 35(�1)

70 �1.451 76(�2) �7.739 23(�2) �2.543 92(�1) �3.152 41(�1) �4.102 16(�1) �4.353 33(�1) �4.706 80(�1) �4.793 58(�1)

50 �6.651 87(�4) �4.301 09(�2) �2.203 86(�1) �2.873 30(�1) �3.951 80(�1) �4.243 10(�1) �4.657 04(�1) �4.759 12(�1)

30 �6.200 15(�3) �1.642 52(�1) �2.392 30(�1) �3.680 97(�1) �4.043 60(�1) �4.567 82(�1) �4.697 85(�1)

10 �4.313 47(�2) �1.180 51(�1) �2.905 52(�1) �3.467 34(�1) �4.315 09(�1) �4.525 67(�1)

7 �1.464 75(�2) �7.810 70(�2) �2.598 84(�1) �3.237 13(�1) �4.213 66(�1) –

5 �7.120 44(�4) �4.394 68(�2) �2.290 25(�1) �3.002 92(�1) – –

3 �6.996 72(�3) �1.799 08(�1) �2.619 72(�1) – –

TABLE III. Same as Table II but for the potential in Eq. (6) with ki¼ 0.

h

rs

0.01 0.05 0.1 0.5 1 5 10 50 100

1000 �1.964 08(�1) �3.415 44(�1) �3.836 92(�1) �4.452 78(�1) �4.608 29(�1) �4.821 92(�1) �4.873 59(�1) �4.943 22(�1) �4.959 84(�1)

700 �1.563 39(�1) �3.152 20(�1) �3.634 19(�1) �4.351 22(�1) �4.534 52(�1) �4.787 72(�1) �4.849 20(�1) �4.932 23(�1) �4.952 08(�1)

500 �1.175 78(�1) �2.872 93(�1) �3.415 44(�1) �4.239 27(�1) �4.452 78(�1) �4.749 57(�1) �4.821 97(�1) �4.919 95(�1) �4.943 43(�1)

300 �6.101 43(�2) �2.391 41(�1) �3.028 04(�1) �4.034 36(�1) �4.302 02(�1) �4.678 50(�1) �4.771 13(�1) �4.897 06(�1) �4.927 33(�1)

100 �1.175 78(�1) �1.964 09(�1) �3.415 49(�1) �3.837 04(�1) �4.453 39(�1) �4.609 43(�1) �4.824 85(�1) �4.877 12(�1)

70 �7.739 19(�2) �1.563 40(�1) �3.152 31(�1) �3.634 41(�1) �4.352 42(�1) �4.536 70(�1) �4.792 93(�1) �4.855 29(�1)

50 �4.301 05(�2) �1.175 80(�1) �2.873 12(�1) �3.415 86(�1) �4.241 52(�1) �4.456 79(�1) �4.758 41(�1) �4.832 00(�1)

30 �6.199 71(�3) �6.101 78(�2) �2.391 86(�1) �3.029 10(�1) �4.040 08(�1) �4.311 87(�1) �4.697 71(�1) �4.791 99(�1)

10 �1.178 22(�1) �1.970 91(�1) �3.453 47(�1) �3.896 21(�1) �4.541 05(�1) �4.695 54(�1)

7 �7.776 43(�2) �1.575 06(�1) �3.219 08(�1) �3.734 85(�1) �4.488 20(�1) –

5 �4.350 51(�2) �1.194 22(�1) �2.983 53(�1) �3.576 46(�1) – –

3 �6.630 48(�3) �6.420 58(�2) �2.613 87(�1) �3.336 86(�1) – –
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bound region and are systematically lower than the predictions of
Shalenov et al.48 The single-parameter variational method utilizing
hydrogenic wave functions employed by those authors probably
loses its accuracy in the system critical bound limit.71

The comparison between Figs. 2(a) and 2(b) indicates that the
inclusion of the ionic screening effect (ki 6¼ 0) further reduces the
binding energy of the electron-ion subsystem in plasmas, leading to a
more loosely bound system. To take a clear view of the ionic screening
effect in highly charged ions, we present in Fig. 3 the ground state
energies of the H-like Al12þ ion (Z¼ 13) in the semiclassical dense

plasmas,72 where the thermodynamic equilibrium condition of ne
¼ 13ni is employed in formulating ke, ki, and kD. Results for the
plasma temperatures of kBTe ¼ 50, 100, 200, 400, 800, and 1000 eV
and ne ¼ 1� 1019 to 1� 1028 cm�3 are shown in Figs. 3(a) and 3(b)
for ki 6¼ 0 and ki¼ 0, respectively. It can be clearly observed that the
ionic screening effect plays a more important role in heavier charged
ions to decrease the system binding energies, especially in the dense
plasma region where the bound state eventually merges into contin-
uum. A systematic investigation of the variation of bound state ener-
gies for different charged ions is nevertheless beyond the scope of the
present work. Additionally, we restrict our discussion on the semiclas-
sical dense hydrogen plasmas and focus on the critical region where
the systemmakes a bound-continuum phase transition.

FIG. 2. Ground state energies of the H atom in semiclassical dense hydrogen plas-
mas. (a) Comparison of the energies under potential with ki 6¼ 0 at kBTe ¼ 100,
400, and 800 eV and ne ¼ 1018 to 1026 cm�3. (b) Comparison of the energies
under potential with ki¼ 0 at kBTe ¼ 300 and 1100 eV and ne ¼ 1018 to
1026 cm�3. In both figures, solid lines represent the variational calculations of
Shalenov et al.,48 dashed–dotted lines are the present GPS numerical calculations,
and solid dots are from Chen et al.13 using the Stanton–Murillo model potential.63

The insets in both figures show an enlarged view of the critical bound region.

FIG. 3. Same as Fig. 2 but for the H-like Al ion (Z¼ 13) in semiclassical dense
plasmas. (a) The ground state energies of Al12þ ion under the Ramazanov potential
with ki 6¼ 0 at kBTe ¼ 50, 100, 200, 400, 800, and 1000 eV and ne ¼ 1019 to
1028 cm�3. (b) The ground state energies under the Ramazanov potential with
ki¼ 0.
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B. Critical parameters and critical bound region

The critical bound-continuum transition of quantum systems has
attracted long-term interest in past decades from both fundamental
quantum mechanics and mathematical physics.52–56 For example, the
asymptotic behavior of bound states in the Debye–H€uckel screened
Coulomb potential has been extensively investigated in the literature
by many authors, and the corresponding critical screening parameters
have been determined to very high accuracy (see Ref. 68 and references
therein). The mathematical foundation of the quantum phase transi-
tion in the critical region was built by Klaus and Simon73 and Kais and
Serra.53 Those authors have shown that for a short-range potential
with a linear parameter l, i.e., the Hamiltonian is given by
H ¼ T þ lV , the leading order of eigenenergies of the s-wave bound
states near the transition threshold follows the quadratic law:

EðlÞ / l� lcð Þ2; (20)

where lc is the critical parameter. In view of the variation of the
ground state energies shown in Fig. 2, it is of great interest to investi-
gate the corresponding asymptotic behavior in the transition region.

Figure 4 displays the asymptotic behavior of the ground state
energies of the electron-ion subsystem in semiclassical dense plasmas
at rs¼ 0.1 near the critical degeneracy parameter of hc, for both ki 6¼ 0
and ki¼ 0. The values of hc were calculated using the combination of
the GPS numerical method with Brent’s minimization algorithm,74

and the computational details are available in Ref. 68. In general, the
critical parameters can be efficiently determined with a similarly high
accuracy as the bound state energies of the system. For rs¼ 0.1, it is
obtained that hc ¼ 22:983 028 913… and 11.490 596239… for ki 6¼ 0
and ki¼ 0, respectively. From Fig. 4, it can be interestingly found that
the ground state energies of the system under the model potential
Eq. (6) follow exactly the same quadratic law as Eq. (20). The power-
law fittings of the numerical calculations yield

E1s � �1:84� 10�4 h� hcð Þ2 for ki 6¼ 0;

E1s � �7:37� 10�4 h� hcð Þ2 for ki ¼ 0:
(21)

Although the dependence of Eq. (6) upon the parameter h is not as
straightforward as a linear parameter, we find that a similar quadratic
law applies to a wide variety of short-range potentials.70 Variation of
the ground state energies of the electron-ion subsystem at fixed values
of h with varying electron density parameter ne also follow the qua-
dratic law (the results are not shown here for simplicity). These find-
ings explain very well the asymptotic behavior of the ground state
energies shown in the insets of Fig. 2.

The critical degeneracy parameters of hc for the ground state of
the electron-ion subsystem in semiclassical dense plasmas are summa-
rized in Table IV for the density parameters rs ranging from 10�2 to
10, within the potential valid range. It was found that hc decreases
monotonically with increasing rs and the values of ki¼ 0 are always
smaller than those of ki 6¼ 0. This indicates that inclusion of the ionic
screening effect in the model potential pushes the critical bound region
into a stronger non-degenerate (classical) region. The critical degener-
acy parameters for rs � 5 (hc � 0:28) are also provided in the table for
completeness, although we must keep in mind that they are in the
degenerate quantum plasma region.

FIG. 4. Asymptotic behavior of the ground state energies of the hydrogen atom in
semiclassical dense plasmas at rs¼ 0.1 near the critical bound region of h. The crit-
ical electron degeneracy parameters hc are calculated using the GPS method. Dots
are the present numerical calculations and solid lines are the power-law fittings
based on Eq. (21).

TABLE IV. Critical degeneracy parameters of hc for the ground state of the electron-
ion subsystem in semiclassical dense plasmas under Eq. (6) at some selected values
of rs.

rs hc (ki 6¼ 0) hc (ki¼ 0)

0.01 229.836 406 114.918 194

0.015 153.224 261 76.612 109 9

0.02 114.918 181 57.459 054 1

0.03 76.612 082 3 38.305 958 4

0.05 45.967 129 3 22.983 334 9

0.07 32.833 473 0 16.416 286 4

0.1 22.983 028 9 11.490 596 2

0.15 15.321 050 8 7.658 462 40

0.2 11.489 376 8 5.741 030 24

0.3 7.655 745 28 3.819 715 95

0.5 4.581 884 50 2.269 023 25

0.7 3.255 405 26 1.586 737 62

0.85 2.664 285 64 1.274 149 67

1 2.245 903 10 1.046 014 65

1.15 1.932 667 54 0.868 816 87

1.4 1.552 935 57

1.5 1.434 489 37

1.6 1.329 928 19

5 0.282 198 73

6 0.222 218 80

7 0.183 439 32

8 0.156 424 05

10 0.121 258 03

12 0.099 299 44

15 0.078 317 48
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A systematic view of the critical bound-continuum transition
in the present system is given in Fig. 5. Figure 5(a) is displayed in
terms of the dimensionless parameters rs and h, while Fig. 5(b) is
the transformed diagram depending upon the electron density ne
and temperature kBTe. Both figures are shown in the logarithmic
scale. Also included in these figures are the h¼ 1 line which sepa-
rates the classical and quantum plasmas and the C ¼ 1 line divid-
ing the weakly and strongly coupled plasmas. In Fig. 5(a), the
electron-ion bound region is located in the upper right part of the
figure, which generally lies in the classical and weakly coupled
plasma region. This is consistent with our previous approximation
of the electron thermal de Broglie wavelength that the electron

quantum degenerate and exchange-correlation effects are not
important in the calculation of bound state energies in these plas-
mas. The critical transition line for ki 6¼ 0 is broken by the forbid-
den region, while the line for ki¼ 0 only exists in the upper part of
the figure and lies slightly lower than the ki 6¼ 0 line. Figure 5(b) is
obtained by transforming Fig. 5(a) via the variable transformations
in Eqs. (11) and (12). It can be clearly observed that bound states
exist in comparably low electron densities and relatively high
temperatures.

We further show in Fig. 6 the contour plots of the ground state
energies in terms of variables rs, h and ne, kBTe, for both ki 6¼ 0 and
ki¼ 0. In all situations, the contour lines generally follow a similar
slope as the critical transition lines, except near the forbidden region
where the contour lines are slightly distorted. Figures 6(b) and 6(d) are
obtained via the variable transformations from Figs. 6(a) and 6(c),
respectively, and therefore, some contour lines near the critical transi-
tion region may appear slightly distorted. A distinct feature that can be
observed from Figs. 6(b) and 6(d) is that the bound state energies
change rapidly when the plasmas approach the critical transition line.
In other regions, the electrons are either well-bounded by the ions or,
on the contrary, move as free particles. These figures provide a system-
atic view of and fast access to the distribution of the electron-ion
ground state energies in semiclassical dense hydrogen plasmas and
potentially serve as a useful tool in diagnosing plasma parameters and
modeling the electron-ion collisional dynamics.

C. Oscillator strengths and polarizabilities

The transition and polarization quantities of atomic systems
embedded in plasmas play a crucial role in understanding the macro-
scopic optical properties of plasmas and the nonlinear response of
micro electron-ion subsystems under the influence of external electric
field.7–11,75–77 In this section, we focus on the dipole transitions and
static dipole polarizabilities of the hydrogen atom in its ground state
under different plasma conditions, with special attention paid to their
asymptotic behavior in the critical bound region. By employing the
sum-over-states method within the framework of standard perturba-
tion theory,77,78 the static dipole polarizability for an atom in the initial
i state is given by

ai ¼
X

f

�o fi

ðDEfiÞ2
; (22)

where DEfi ¼ Ef � Ei represents the transition energy from the initial
i to the final f states and �o fi refers to the mean dipole transition oscilla-
tor strength that has been averaged over the initial-state orientation
degeneracy and summed over the final-state degeneracy,79

�o fi ¼
8p

3

DEfi

2li þ 1

X

mi

X

mf

jhnf lfmf jrY1qðr̂Þjnilimiij2: (23)

The summation in Eq. (22) ideally extends over all possible final states
which include both bound and continuum spectra of the system in a
given symmetry.

With the help of the Wigner–Eckart theorem and the selection
rule of the 3j symbol, the dipole transition from an initial state in the s-
wave symmetry ensures that only p-wave states are allowed in the final
states (Dl ¼ 61). It is then readily obtained that

FIG. 5. Diagrams of the critical bound region of the electron-ion subsystem in semi-
classical dense plasmas. (a) Critical lines in terms of dimensionless parameters rs
and h. (b) Critical lines in terms of electron density ne and plasma temperature
kBTe. In both figures, the h¼ 1 and C ¼ 1 lines and the forbidden region of effec-
tive potential with ki 6¼ 0 are included to guide the eyes. The system bound region
lies above the critical transition lines.
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�ops ¼ 2DEpsjhrips j
2 1 1 0

0 0 0

	 
2

¼ 2

3
DEpsjhrips j

2; (24)

where

hrinf lfni li
¼
ð1

0

wnf lf
ðrÞrwni li

ðrÞdr; (25)

defines the radial dipole transition matrix element. In the present
work, all system radial wave functions wnlðrÞ were obtained by solving
Eq. (18) using the GPS numerical method mentioned in Sec. IID. The
computational convergence can be estimated by checking the normali-
zation condition (Thomas–Reiche–Kuhn sum rule79) of the dipole
transition oscillator strength, i.e., S ¼

P

f �o fi 	 1 for the one-electron
systems.

In Fig. 7(a), we show the variation of the oscillator strength for
the strongest 1s ! 2p dipole transition of the hydrogen atom at some
selected values of plasma temperatures kBTe same as those in Fig. 2(a),
for both ki 6¼ 0 and ki¼ 0. At extremely low densities where the
plasma screening effect is negligible, all oscillator strengths approach

the analytical free-atom value of 213=39 ¼ 0:416 196 7. With gradually
increasing the plasma density, the oscillator strength decreases mono-
tonically to zero, which represents a continuous lowering of the radia-
tive transition probability from the ground state to the 2p excited state.
Such a trend can be understood from Eq. (24) that the oscillator
strength is primarily determined by the radial transition matrix ele-
ment of Eq. (25). The plasma screening potential has a stronger effect
of expanding the 2p wave function in the configuration space than that
of the ground state and, as a result, the “overlap” between these two
states decreases with gradually enhancing the screening effect (i.e.,
increasing ne). The comparison between Figs. 2(a) and 7(a) reveals an
interesting phenomenon that the 1s ! 2p transition oscillator strength
(actually for all 1s ! np transitions) becomes zero much faster than
the ground state energy. This is because the critical plasma density for
the 2p state is much smaller than that of the ground state under the
same plasma temperature [e.g., at kBTe ¼ 100 eV the critical densities
log ðneÞ for the 1s and 2p states are 24.15 and 22.68 cm�3, respec-
tively]. The similar phenomenon has also been observed in the Debye–
H€uckel screened Coulomb potential.11 When the 2p state is absorbed

FIG. 6. Contour plots of the ground state energies of the electron-ion subsystem in semiclassical dense plasmas. (a) Energy distribution with ki 6¼ 0 given in terms of rs and h.
(b) Same as (a) but in terms of ne and kBTe. (c) Energy distribution with ki¼ 0 given in terms of rs and h. (d) Same as (c) but in terms of ne and kBTe.
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into the continuum, the individual 1s ! 2p transition loses its physical
significance and only the summation of an infinite number of contin-
uum spectra contributes to the normalization condition of the oscilla-
tor strength S 	 1.

The shift of the system eigenenergies under a weak external elec-
tric field up to the second-order correction is determined by

EnlðFÞ ¼ E0
nl �

anl

2
F2 �…; (26)

where E0
nl is the system eigenenergy without the electric field [solution

of Eq. (18)] and F is the strength of electric field. It should be kept in
mind that the first-order energy correction is exactly zero due to the

odd parity of the dipole interaction operator.77 The static polarizability
anl can be efficiently calculated through the summation of oscillator
strengths via Eq. (22). In Fig. 7(b), the variation of the ground state
dipole polarizability of the hydrogen atom in semiclassical dense plas-
mas is displayed as a function of the plasma density, at fixed values of
plasma temperatures. The fast increase in dipole polarizability at large
densities indicates that the system ground state wave function can be
easily distorted by the external electric field, resulting in a large energy
shift. This is consistent with the monotonic increase in the ground
state energies (E0

1s) shown in Fig. 2, i.e., the electron-ion subsystems in
the semiclassical dense plasmas become more loosely bound in stron-
ger screening conditions. The opposite behavior of the oscillator
strengths in Fig. 7(a) and polarizabilities in Fig. 7(b) further manifests
that the contribution of individual discrete bound states in calculating
polarizability becomes increasingly small (and eventually disappears)
at large plasma densities.

From Eqs. (20) and (21), we know that near the system critical
bound limit, the ground state energy (without electric field)
approaches zero by following a quadratic law. It is therefore of great
interest to investigate the asymptotic behavior of the polarizability
when the system approaches the bound limit. Figure 8 displays the var-
iation of the ground state dipole polarizability for the hydrogen atom
in semiclassical dense plasmas at rs¼ 0.1 (for both ki 6¼ 0 and ki¼ 0)
near corresponding critical degeneracy parameters hc. They are shown
in a similar logarithmic scale as those of Fig. 4. Our numerical calcula-
tions based on the GPS method are denoted by dots. The power-law
fittings (denoted by solid lines) yield

a1s � 1:84� 106 h� hcð Þ�4
for ki 6¼ 0;

a1s � 1:15� 105 h� hcð Þ�4
for ki ¼ 0:

(27)

The fast increase in dipole polarizability, in contrast to the fast decrease
in the field-free energy (in Fig. 4), represents the failure of the second-
order correction formula in Eq. (26) at relatively large values of field

FIG. 7. (a) Oscillator strength for the 1s ! 2p transition at plasma temperatures
kBTe ¼ 100, 400, and 800 eV for both ki 6¼ 0 and ki¼ 0. (b) Same as (a) but for
the dipole polarizability of the ground state of the hydrogen atom in semiclassical
dense plasmas. The accidental overlap between curves of kBTe ¼ 800 eV (ki 6¼ 0)
and kBTe ¼ 400 eV (ki¼ 0) is due to the similar critical screening parameters under
these plasma parameters for both the 1s and 2p states.

FIG. 8. Asymptotic behavior of the ground state polarizabilities of the hydrogen
atom in semiclassical dense plasmas at rs¼ 0.1 near the critical bound region of h.
Dots are the present numerical calculations and solid lines are the power-law fittings
based on Eq. (27).
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strength F. When a system is nearing its bound-continuum transition
limit, the loosely bound character of the system wave function mani-
fests a highly nonlinear response under the distortion of the external
electric field, indicating the failure of finite-order perturbation methods
in approximating the system. From the discussion in Sec. III B, we may
conjecture that for a quantum system described by the Hamiltonian
H ¼ T þ lV , where V is a short-range potential and l the linear
parameter, the dipole polarizability of the s-wave bound states near the
transition threshold probably follows an inverse biquadratic law:12

aðlÞ / l� lcð Þ�4; (28)

where lc is the critical parameter.
For a systematic view of the variation of dipole polarizability for

the plasma-embedded hydrogen atom over a wide range of plasma
parameters, we show in Table V the present numerical calculations at
a large collection of plasma density parameter rs and electron degener-
acy parameter h. Full computational convergence is achieved by gradu-
ally increasing the dimension of discretization in the GPS method as
well as by estimating the normalization condition of the oscillator
strengths. All numerical values are expected to be accurate up to their
last reported digits. In the top-right section of the table, where the
non-degenerate classical plasma has extremely low densities and high
temperatures, the embedded electron-ion subsystems can be well-
approximated by free atoms and the dipole polarizabilities are close to
the analytical value of 9/2 for the hydrogen atom.79 The magnitude of
polarizability increases monotonically with either increasing the
plasma density or decreasing the temperature (more specifically,
increasing the electron quantum degenerate effect). Especially when
the system approaches the critical bound limit, the polarizability
increases by several orders of magnitude. A similar table but for the
plasma potential with ki¼ 0, i.e., without considering the screening
effect of ions, is given in Table VI. All numerical values shown in
Table VI are systematically smaller than those in Table V at the same
plasma parameters. The comparison between these two tables guides
us to the same conclusion as in the comparison between Tables II and

III that the more tightly bound of the system gives rise to a smaller
value of polarizability.

D. Limitations and perspectives

The existence of multiply charged ions in real plasmas makes the
simulation of multi-electron systems in semiclassical dense plasmas
more valuable (and also more challenging) than that of the simplest
one-electron system investigated in the present work. On the other
hand, the investigation of multi-electron systems and the correspond-
ing collision and radiation processes in different screening potentials
would provide generally a comprehensive view of the structural infor-
mation and dynamic properties of atomic and ionic pieces in different
plasma environments. In this regard, we would like to mention that
there exist in the literature a large number of research focused on the
multi-electron systems in plasmas utilizing different microscopic
model potentials. Those are, for example, the two-electron He atom
and He-like charged ions,80–90 the exotic systems including posi-
tron,91–95 and the more complex multi-electron atoms and ions
described either by model potentials or by explicit treatment of full
electronic interactions.96–104 On the other hand, various electron-
atom, positron-atom, and ion-atom scattering processes as well as the
nonlinear response of atoms irradiated by intense laser field105–109 also
attract considerable interest in the literature in recent years (see, e.g.,
Ref. 9 for a thorough review of quantum collision dynamics in plas-
mas). To the best of our knowledge, most of these research were per-
formed under the Debye–H€uckel2,17 and ion-sphere18 model
potentials for the weakly and strongly coupled plasmas, respectively,
and the modified exponential-cosine Debye-H€uckel potential26

designed specially for the quantum dense plasmas.
For the semiclassical dense plasmas considered in this work, the

model potentials developed by Ramazanov et al.29–32 provide a system-
atic and consistent description of the electron–electron, ion–ion, and
electron-ion effective interactions between pairs of charged particles
based on the momentum-space dielectric function in linear response
approximation. The application of these potentials to the structure

TABLE V. Dipole polarizabilities of the hydrogen atom in semiclassical dense plasmas under Eq. (6) with ki 6¼ 0. Those places without data are due to either the nonexistence
of bound states or being out of the valid range of the interaction potential (labeled by “–”). Polarizability has the dimension of volume in atomic units, and therefore numerical
results are given in units of a30. Numbers in parentheses represent powers of ten.

h

rs

0.01 0.05 0.1 0.5 1 5 10 50 100

1000 1.481 496(1) 5.781 638 5.132 416 4.632 059 4.567 502 4.514 011 4.507 062 4.501 360 4.500 629

700 2.622 327(1) 6.384 188 5.404 979 4.686 410 4.595 370 4.519 875 4.510 023 4.501 906 4.500 870

500 6.449 963(1) 7.276 184 5.781 637 4.758 122 4.632 050 4.527 611 4.513 930 4.502 611 4.501 180

300 2.013 675(3) 9.897 230 6.742 297 4.924 177 4.716 342 4.545 385 4.522 891 4.504 181 4.501 863

100 6.449 929(1) 1.481 485(1) 5.781 466 5.132 121 4.630 863 4.565 513 4.511 179 4.504 911

70 4.177 875(2) 2.622 281(1) 6.383 793 5.404 337 4.684 007 4.591 561 4.515 264 4.506 717

50 1.509 306(5) 6.449 690(1) 7.275 274 5.780 274 4.753 494 4.625 094 4.520 418 4.509 026

30 2.013 129(3) 9.893 550 6.737 759 4.911 707 4.699 354 4.531 623 4.514 151

10 6.416 448(1) 1.471 065(1) 5.675 873 5.025 690 4.580 583 4.537 667

7 4.108 972(2) 2.580 072(1) 6.169 052 5.215 090 4.609 522 –

5 1.320 043(5) 6.205 119(1) 6.847 198 5.455 880 – –

3 1.598 633(3) 8.581 888 5.997 769 – –
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calculations of multi-electron systems and the large variety of collision
processes would be of great interest and also of practical importance
for the simulation of fundamental atomic processes in plasmas and the
diagnosis of plasma parameters. It is worth mentioning that in calcu-
lating the multi-electron atoms in semiclassical dense plasmas, the
original Coulomb potential between electrons should be substituted by
the electron–electron effective interaction potential given by Eq. (8) of
Ref. 32. The similar substitution applies in the investigation of elec-
tron- or positron-atom scattering in the semiclassical dense plasmas.
On the other hand, the ion–ion effective interaction potential given by
Eq. (9) of Ref. 32 would probably exhibit its importance in modeling
the plasma-screened molecular systems (e.g., the H2 molecule and Hþ

2

molecular ion110–113) and the ion-atom scattering processes.9 The pre-
sent work which focuses only on the structure properties of the sim-
plest H atom represents a preliminary attempt to such an effort.

IV. CONCLUSION

In this work, we investigated the bound state energies and critical
bound region of the electron-ion subsystem in semiclassical dense
hydrogen plasmas. The effective interaction between charged particles
is represented by the Ramazanov model potential, which takes into
account both the quantum effects of diffraction and symmetry between
colliding particles and the screening effect of the plasma environment.
Accurate ground state energies, either with or without considering the
ionic screening effect, are obtained by numerically solving the
Schr€odinger equation using the GPS method. The present results are
compared with previous calculations based on a different choice of
electron wavelength. Good agreement of the potential energy curves
and ground state energies indicates that in the system bound region,
the electron quantum degeneracy and exchange-correlation effects do
not play significant roles. We further calculated the critical plasma
parameters where the bound-continuum transition occurs and found
that the ground state energies follow a quadratic law in the critical
bound region. The ground state energies of the electron-ion subsystem
and corresponding static dipole polarizabilities were reported for a
wide range of plasma parameters where the effective potential is valid.
Investigation of the critical stability and asymptotic behavior of

physical quantities of multi-electron-ion subsystems, especially the
helium-like atoms,114–117 in semiclassical or quantum dense plasmas
would be of great interest in the future study.

Extension of the present work to the potential forbidden region is
worth investigating in the future by employing the modified effective
interaction potential developed by Ramazanov et al.32 By removing the
imaginary unit, the new potential takes a complicated form containing
oscillating terms in the analytical expression. Accurate calculation of
the system bound state energies and other physical quantities, how-
ever, need more careful examination of the computational conver-
gence. Another more practical way is to use the alternative definition
of the electron wavelength employed by Kodanova et al.42 and
Shalenov et al.48 Such a choice extends the valid range of the potential
into the deep degenerate quantum plasma region and is of particular
interest in our future work.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China (Grant No. 2022YFE0134200), the
National Natural Science Foundation of China (Grant No.
12174147), and the Natural Science Foundation of Jilin Province,
China (Grant No. 20220101016JC).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Tong Yan: Data curation (equal); Writing – original draft (equal). Li
Guang Jiao: Funding acquisition (equal); Project administration
(equal); Writing – original draft (equal). Aihua Liu: Funding acquisi-
tion (equal); Methodology (equal). Yuan Cheng Wang: Formal analy-
sis (equal); Validation (equal). H. E. Montgomery, Jr.: Investigation
(equal); Writing – review & editing (equal). Yew Kam Ho:
Conceptualization (equal); Writing – review & editing (equal).

TABLE VI. Same as Table V but for the potential in Eq. (6) with ki¼ 0.

h

rs

0.01 0.05 0.1 0.5 1 5 10 50 100

1000 8.158 831 5.132 417 4.820 499 4.567 504 4.534 392 4.507 074 4.503 547 4.500 643 4.500 269

700 1.046 754(1) 5.404 979 4.953 828 4.595 373 4.548 678 4.510 047 4.505 034 4.500 885 4.500 357

500 1.481 496(1) 5.781 637 5.132 416 4.632 055 4.567 495 4.513 974 4.506 992 4.501 187 4.500 463

300 3.729 008(1) 6.742 299 5.559 826 4.716 357 4.610 688 4.523 007 4.511 471 4.501 823 4.500 674

100 1.481 491(1) 8.158 778 5.132 268 4.820 225 4.566 328 4.532 421 4.504 245 4.501 396

70 2.622 304(1) 1.046 739(1) 5.404 656 4.953 250 4.593 027 4.544 915 4.505 443 4.501 726

50 6.449 826(1) 1.481 452(1) 5.780 951 5.131 238 4.627 576 4.560 653 4.506 793 4.502 085

30 2.013 402(3) 3.728 625(1) 6.740 002 5.556 240 4.704 521 4.594 141 4.509 266 4.502 710

10 1.476 098(1) 8.108 722 5.040 617 4.720 904 4.515 988 4.504 246

7 2.600 143(1) 1.033 131(1) 5.228 329 4.781 090 4.518 323 –

5 6.318 614(1) 1.441 615(1) 5.454 581 4.845 818 – –

3 1.771 168(3) 3.406 775(1) 5.904 670 4.954 421 – –

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 042110 (2024); doi: 10.1063/5.0185339 31, 042110-13

VC Author(s) 2024

 25 April 2024 11:01:16



Stephan Fritzsche: Resources (equal); Writing – review & editing
(equal).

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES
1D. Salzman, Atomic Physics in Hot Plasmas (Oxford University Press, Oxford,

1998).
2J. Weisheit and M. Murillo, “Atoms in dense plasmas,” in Springer Handbook

of Atomic, Molecular, and Optical Physics, edited by G. Drake (Springer New

York, New York, NY, 2006), Chap. 86, p. 1303.
3J. Bauche, C. Bauche-Arnoult, and O. Peyrusse, Atomic Properties in Hot

Plasmas: From Levels to Superconfigurations (Springer International

Publishing, Cham, 2015).
4Y.-D. Jung, Phys. Plasmas 10, 502 (2003).
5B. Saha and S. Fritzsche, J. Phys. B 40, 259 (2007).
6A. N. Sil, S. Canuto, and P. K. Mukherjee, Adv. Quantum Chem. 58, 115

(2009).
7Y. Y. Qi, Y. Wu, J. G. Wang, and Y. Z. Qu, Phys. Plasmas 16, 023502 (2009).
8A. Bhattacharya, M. Z. M. Kamali, A. Ghoshal, and K. Ratnavelu, Phys.

Plasmas 22, 023512 (2015).
9R. K. Janev, S. B. Zhang, and J. G. Wang, Matter Radiat. Extrem. 1, 237

(2016).
10G. P. Zhao, Y. Y. Qi, L. Liu, J. G. Wang, and R. K. Janev, Phys. Plasmas 26,

063509 (2019).
11L. Zhu, Y. Y. He, L. G. Jiao, Y. C. Wang, and Y. K. Ho, Phys. Plasmas 27,

072101 (2020).
12L. G. Jiao, Y. Y. He, Y. Z. Zhang, and Y. K. Ho, J. Phys. B 54, 065005 (2021).
13Z.-B. Chen, Y.-Y. Qi, H.-Y. Sun, G.-P. Zhao, and P.-F. Liu, Phys. Plasmas 27,

072105 (2020).
14Z.-B. Chen, P.-F. Liu, H.-Y. Sun, Y.-Y. Qi, G.-P. Zhao, X.-Z. Shen, L.-G.

Jiao, K. Ma, K. Wang, and X.-D. Li, Int. J. Quantum Chem. 122, e26842

(2022).
15S. Mondal, S. K. Nayek, and J. K. Saha, Eur. Phys. J. Plus 137, 373 (2022).
16Z.-B. Chen, Phys. Plasmas 29, 102102 (2022).
17P. Debye and E. H€uckel, Z. Phys. 24, 185 (1923).
18S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).
19
“There exists in the literature an alternative definition of the quantum degen-

erate parameter which is given by the ratio of electron fermi energy to the

thermal energy.2”
20P. K. Shukla and B. Eliasson, Phys. Rev. Lett. 108, 165007 (2012).
21P. K. Shukla and B. Eliasson, Phys. Rev. Lett. 108, 219902 (2012).
22P. K. Shukla and B. Eliasson, Phys. Rev. Lett. 109, 019901 (2012).
23M. Akbari-Moghanjoughi, Phys. Plasmas 22, 022103 (2015).
24B. Eliasson and M. Akbari-Moghanjoughi, Phys. Lett. A 380, 2518 (2016).
25M. Akbari-Moghanjoughi, A. Abdikian, and A. Phirouznia, Phys. Plasmas 27,

042107 (2020).
26P. K. Shukla and B. Eliasson, Phys. Lett. A 372, 2897 (2008).
27M. Bonitz, T. Dornheim, Z. A. Moldabekov, S. Zhang, P. Hamann, H. K€ahlert, A.

Filinov, K. Ramakrishna, and J. Vorberger, Phys. Plasmas 27, 042710 (2020).
28D. Kang, Y. Hou, Q. Zeng, and J. Dai, Matter Radiat. Extrem. 5, 055401

(2020).
29T. S. Ramazanov and K. N. Dzhumagulova, Phys. Plasmas 9, 3758 (2002).
30T. S. Ramazanov, K. N. Dzhumagulova, Y. A. Omarbakiyeva, and G. R€opke,

J. Phys. A 39, 4369 (2006).
31T. S. Ramazanov, K. N. Dzhumagulova, and M. T. Gabdullin, Phys. Plasmas

17, 042703 (2010).
32T. S. Ramazanov, Z. A. Moldabekov, and M. T. Gabdullin, Phys. Rev. E 92,

023104 (2015).
33C. Deutsch, Phys. Lett. A 60, 317 (1977).
34K. N. Dzhumagulova, E. O. Shalenov, T. S. Ramazanov, and G. L. Gabdullina,

Contrib. Plasma Phys. 55, 230 (2015).

35T. S. Ramazanov, S. M. Amirov, and Z. A. Moldabekov, Contrib. Plasma

Phys. 58, 155 (2018).
36K. N. Dzhumagulova, E. O. Shalenov, Y. A. Tashkenbayev, and T. S.

Ramazanov, J. Plasma Phys. 88, 905880119 (2022).
37K. N. Dzhumagulova, E. O. Shalenov, and G. L. Gabdullina, Phys. Plasmas 20,

042702 (2013).
38E. O. Shalenov, K. N. Dzhumagulova, and T. S. Ramazanov, Phys. Plasmas 24,

012101 (2017).
39K. N. Dzhumagulova, E. O. Shalenov, Y. A. Tashkenbayev, and T. S.

Ramazanov, Phys. Plasmas 29, 012101 (2022).
40E. O. Shalenov, S. Rosmej, H. Reinholz, G. R€opke, K. N. Dzhumagulova, and

T. S. Ramazanov, Contrib. Plasma Phys. 57, 486 (2017).
41S. K. Kodanova, T. S. Ramazanov, M. K. Issanova, G. N. Nigmetova, and Z. A.

Moldabekov, Contrib. Plasma Phys. 55, 271 (2015).
42S. K. Kodanova, M. K. Issanova, S. M. Amirov, T. S. Ramazanov, A.

Tikhonov, and Z. A. Moldabekov, Matter Radiat. Extrem. 3, 40 (2018).
43E. O. Shalenov, K. N. Dzhumagulova, T. S. Ramazanov, G. R€opke, and H.

Reinholz, Phys. Plasmas 25, 082706 (2018).
44E. O. Shalenov, K. N. Dzhumagulova, T. S. Ramazanov, H. Reinholz, and G.

R€opke, Contrib. Plasma Phys. 59, e201900024 (2019).
45M. K. Issanova, S. K. Kodanova, T. S. Ramazanov, N. K. Bastykova, Z. A.

Moldabekov, and C.-V. Meister, Laser Part. Beams 34, 457 (2016).
46S. K. Kodanova, T. S. Ramazanov, A. K. Khikmetov, and M. K. Issanova,

Contrib. Plasma Phys. 58, 946 (2018).
47M. M. Seisembayeva, H. Reinholz, E. O. Shalenov, M. N. Jumagulov, and K.

N. Dzhumagulova, Contrib. Plasma Phys. 62, e202200014 (2022).
48E. O. Shalenov, A. T. Nuraly, and K. N. Dzhumagulova, Contrib. Plasma

Phys. 62, e202200017 (2022).
49R. M. More, Adv. At. Mol. Phys. 21, 305 (1985).
50A. Anders, S. Anders, A. Forster, and I. G. Brown, Plasma Sources Sci.

Technol. 1, 263 (1992).
51N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).
52J. P. Neirotti, P. Serra, and S. Kais, Phys. Rev. Lett. 79, 3142 (1997).
53S. Kais and P. Serra, “Finite-size scaling for atomic and molecular systems,” in

Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice (Wiley,

New York, 2003), Vol. 125 Chap. 1, p. 1.
54C. S. Estienne, M. Busuttil, A. Moini, and G. W. F. Drake, Phys. Rev. Lett.

112, 173001 (2014).
55H. E. Montgomery, Jr., K. D. Sen, and J. Katriel, Phys. Rev. A 97, 022503

(2018).
56L. G. Jiao, R. Y. Zheng, A. Liu, H. E. Montgomery, Jr., and Y. K. Ho, Phys.

Rev. A 105, 052806 (2022).
57R. Bredow, T. Bornath, W.-D. Kraeft, and R. Redmer, Contrib. Plasma Phys.

53, 276 (2013).
58W. Ebeling, Contrib. Plasma Phys. 56, 163 (2016).
59M. M. Gombert and C. Deutsch, Phys. Lett. A 47, 473 (1974).
60C. Deutsch, M. M. Gombert, and H. Minoo, Phys. Lett. A 66, 381 (1978).
61C. Deutsch, M. M. Gombert, and H. Minoo, Phys. Lett. A 72, 481 (1979).
62H. Minoo, M. M. Gombert, and C. Deutsch, Phys. Rev. A 23, 924 (1981).
63L. G. Stanton and M. S. Murillo, Phys. Rev. E 91, 033104 (2015).
64G. Yao and S.-I. Chu, Chem. Phys. Lett. 204, 381 (1993).
65S.-I. Chu and D. A. Telnov, Phys. Rep. 390, 1 (2004).
66L. Zhu, Y. Y. He, L. G. Jiao, Y. C. Wang, and Y. K. Ho, Int. J. Quantum Chem.

120, e26245 (2020).
67A. Deloff, Ann. Phys. 322, 1373 (2007).
68L. G. Jiao, H. H. Xie, A. Liu, H. E. Montgomery, Jr., and Y. K. Ho, J. Phys. B

54, 175002 (2021).
69L. G. Jiao, L. Xu, R. Y. Zheng, A. Liu, Y. Z. Zhang, H. E. Montgomery, Jr., and

Y. K. Ho, J. Phys. B 55, 195001 (2022).
70L. Xu, L. G. Jiao, A. Liu, Y. C. Wang, H. E. Montgomery, Jr., Y. K. Ho, and S.

Fritzsche, J. Phys. B 56, 175002 (2023).
71X. H. Ji, Y. Y. He, L. G. Jiao, A. Liu, and Y. K. Ho, Phys. Lett. B 823, 136718

(2021).
72
“It should be noted that in calculating the ground state energy of the H-like Al

ion, some plasma parameters near the critical bound region are in the poten-

tial forbidden region, where Eq. (6) fails. In these situations, the Eq. (15) of

Ref. 32 is employed with the same asumption of kei ¼ 0.”

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 042110 (2024); doi: 10.1063/5.0185339 31, 042110-14

VC Author(s) 2024

 25 April 2024 11:01:16



73M. Klaus and B. Simon, Ann. Phys. 130, 251 (1980).
74W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in Fortran 77 (Cambridge University Press, New York, 1992).

75Y. Y. Qi, J. G. Wang, and R. K. Janev, Phys. Rev. A 80, 032502 (2009).
76N. Mukherjee, C. N. Patra, and A. K. Roy, Phys. Rev. A 104, 012803 (2021).
77Y. Y. He, Z. L. Zhou, L. G. Jiao, A. Liu, H. E. Montgomery, Jr., and Y. K. Ho,
Phys. Rev. E 107, 045201 (2023).

78J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43, 202001 (2010).
79H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron
Atoms (Dover Publications, New York, 2008).

80S. Kar and Y. K. Ho, Phys. Rev. A 80, 062511 (2009).
81Y.-C. Lin, C.-Y. Lin, and Y. K. Ho, Phys. Rev. A 85, 042516 (2012).
82L. G. Jiao and Y. K. Ho, Phys. Rev. A 90, 012521 (2014).
83S. Kar, Y.-S. Wang, and Y. K. Ho, Phys. Rev. A 99, 042514 (2019).
84S. Bhattacharyya, J. K. Saha, and T. K. Mukherjee, Phys. Rev. A 91, 042515 (2015).
85S. K. Chaudhuri, L. Modesto-Costa, and P. K. Mukherjee, Phys. Plasmas 23,
053305 (2016).

86J. K. Saha, S. Bhattacharyya, and T. K. Mukherjee, Phys. Plasmas 23, 092704
(2016).

87M. K. Bahar and A. Soylu, Phys. Plasmas 25, 022106 (2018).
88S. Mondal, A. Sadhukhan, K. Sen, and J. K. Saha, J. Phys. B 56, 155001 (2023).
89N. Das, A. Ghoshal, and Y. K. Ho, Phys. Plasmas 30, 063511 (2023).
90N. Das, A. Ghoshal, and Y. K. Ho, “Helium atom embedded in non-ideal clas-
sical plasmas: Doubly excited singlet S states,” Contrib. Plasma Phys. (pub-
lished online 2024).

91S. Chakraborty and Y. K. Ho, Phys. Rev. A 77, 014502 (2008).
92Y. Ning, Z.-C. Yan, and Y. K. Ho, Phys. Plasmas 22, 013302 (2016).
93Y. Ning, Z.-C. Yan, and Y. K. Ho, Atoms 4, 3 (2016).
94Z. Jiang, Y.-Z. Zhang, and S. Kar, Phys. Plasmas 22, 052105 (2015).
95N. Masanta, A. Ghoshal, and Y. K. Ho, Phys. Plasmas 29, 053505 (2022).

96M. Das, Phys. Plasmas 21, 012709 (2014).
97S. Dutta, J. K. Saha, R. Chandra, and T. K. Mukherjee, Phys. Plasmas 23,
042107 (2016).

98B. K. Sahoo and M. Das, Eur. Phys. J. D 70, 270 (2016).
99M. Das and A. C. Pradhan, Phys. Plasmas 24, 112706 (2017).

100S. K. Chaudhuri, P. K. Mukherjee, R. K. Chaudhuri, and S. Chattopadhyay,
Phys. Plasmas 25, 042705 (2018).

101M. Das, Eur. Phys. J. D 77, 7 (2023).
102L. Sharma, B. K. Sahoo, P. Malkar, and R. Srivastava, Eur. Phys. J. D 72, 10

(2018).
103L. G. Jiao, L. R. Zan, L. Zhu, J. Ma, and Y. K. Ho, Comput. Phys. Commun.

244, 217 (2019).
104M.-A. Martínez-S�anchez, C. Martínez-Flores, R. Vargas, J. Garza, R. Cabrera-

Trujillo, and K. D. Sen, Phys. Rev. E 103, 043202 (2021).
105S. Lumb, S. Lumb, and V. Prasad, Phys. Rev. A 90, 032505 (2014).
106S. Lumb, S. Lumb, and V. Prasad, Indian J. Phys. 89, 13 (2015).
107S. L. Talwar, S. Lumb, K. D. Sen, and V. Prasad, J. Phys. B 56, 225002 (2023).
108R. Joshi, Spectrosc. Lett. 55, 192 (2022).
109R. Joshi, Eur. Phys. J. D 77, 186 (2023).
110L. Bertini, M. Mella, D. Bressanini, and G. Morosi, Phys. Rev. A 69, 042504

(2004).
111S. Kar and Y. K. Ho, Phys. Rev. A 86, 014502 (2012).
112M. Pawlak, M. Bylicki, and P. K. Mukherjee, J. Phys. B 47, 095701 (2014).
113A. F. Ord�o~nez-Lasso, F. Martín, and J. L. Sanz-Vicario, Phys. Rev. A 95,

012504 (2017).
114A. Ghoshal and Y. K. Ho, J. Phys. B 42, 175006 (2009).
115L. U. Ancarani and K. V. Rodriguez, Phys. Rev. A 89, 012507 (2014).
116A. Sadhukhan, S. K. Nayek, and J. K. Saha, Eur. Phys. J. D 74, 210 (2020).
117X. N. Li, Y. Z. Zhang, L. G. Jiao, Y. C. Wang, H. E. Montgomery, Jr., Y. K. Ho,
and S. Fritzsche, Eur. Phys. J. D 77, 96 (2023).

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 042110 (2024); doi: 10.1063/5.0185339 31, 042110-15

VC Author(s) 2024

 25 April 2024 11:01:16


