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Abstract We test the physical viability of a recent pro-

posal for an asymptotically safe modification of quantum

electrodynamics (QED), whose ultraviolet physics is dom-

inated by a non-perturbative Pauli spin-field coupling. We

focus in particular on its compatibility with the absence of

dynamical generation of fermion mass in QED. Studying the

renormalization group flow of chiral four-fermion operators

and their fixed points, we discover a distinct class of behavior

compared to the standard picture of fixed-point annihilation

at large gauge couplings and the ensuing formation of chi-

ral condensates. Instead, transcritical bifurcations, where the

fixed points merely exchange infrared stability, are observed.

Provided that non-chiral operators remain irrelevant, our the-

ory accommodates a universality class of light fermions for

Nf > 1 irreducible Dirac flavors. On the contrary, in the spe-

cial case of Nf = 1 flavor, this comes only at the expense of

introducing one additional relevant parameter.

1 Introduction

Quantum electrodynamics (QED) is an extremely well-

tested theory, exhibiting remarkable agreement with preci-

sion experiments at low energies [1–5]. Of course, high-

energy tests are also passed by the theory though at lower

precision [6,7] and ultimately require the embedding of QED

into the electroweak sector of the standard model. Still, the

high-energy behavior of pure QED remains of interest in

its own right, as it has constituted a puzzle since the early

days of quantum field theory: perturbation theory predicts a

divergence of the minimal gauge coupling at a finite Landau

pole [8,9]. While this may simply signal the expected break-

down of perturbation theory in the strong-coupling regime,

a e-mail: kevin.tam@univie.ac.at (corresponding author)

the conclusion of the existence of a finite scale of maximum

ultraviolet (UV) extension is supported by lattice simulations

[10–12] and functional methods [13].

The picture obtained from such nonperturbative methods

is, however, decisively different from simple perturbation

theory: a strong coupling phase of QED – even if it existed

– can generically not be connected by a line of constant

physics to physical QED because of chiral symmetry break-

ing. Strong gauge interactions induce fermion mass genera-

tion with masses on the order of the high scale being incom-

patible with the observed existence of a light electron. In con-

tinuum computations, the symmetry breaking can be traced

back to fermionic self-interactions turning into relevant oper-

ators at strong coupling and triggering condensate formation

[13–16]. The corresponding long-range limit of such a theory

would then be a free photon theory.

As a resolution, a recent proposal has been based on

the observation that the Pauli spin-field coupling term

ψ̄σµν Fµνψ has the potential to screen the Landau pole –

and thus the strong-coupling regime – within an effective

field theory [17]. In fact, a self-consistent analysis of pure

QED with a Pauli term has provided evidence for the exis-

tence of interacting fixed-points potentially rendering QED

asymptotically safe [18,19] and thus high-energy complete.

As a dimension-5 operator with only a single derivative with

respect to the photon, the Pauli term represents the unique

next-to-leading-order contribution in a combined deriva-

tive and power-counting operator expansion of the effective

action.

By the techniques of functional renormalization, the

extended theory space has been shown to include two non-

trivial fixed points B and C at vanishing gauge coupling [18],

each of which provides an ultraviolet (UV) completion of

QED as an asymptotic safety scenario. Specifically, the fixed

point C occurring at a finite Pauli coupling κ is compatible
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with a renormalization group (RG) trajectory reproducing

the long-range values of phenomenological QED. As it fea-

tures three relevant directions, the long-range physics is fully

predictive, once three parameters have been fixed by exper-

iment (e.g., the electron mass, the fine structure constant,

and the anomalous magnetic moment of the electron). (By

contrast, fixed point B predicts unphysically large values of

the anomalous magnetic moment in the infrared (IR); while

being potentially consistent and UV complete, this univer-

sality class is observationally not viable.)

In view of the impossibility to connect conventional

strong-coupling QED with the observed existence of light

electrons, an obvious question needs to be answered: does an

asymptotically safe UV completion based on the Pauli term

preserve chiral symmetry along its RG trajectories towards

the infrared (IR)? This is not at all evident, since fixed point

C – though featuring a vanishing mass – occurs at a deeply

nonperturbative value of the Pauli coupling κ∗ = 3.82, inde-

pendently of fermion flavor number [19].

To further scrutinize the physical relevance of this contin-

uum theory, we go beyond the Pauli term in the truncation of

the effective action. Operators of particular interest are given

by dimension-6 four-fermion channels of the Nambu–Jona-

Lasinio (NJL) type, which appear in an effective theory of

spontaneous chiral symmetry breaking in quantum chromo-

dynamics [20,21]. Just as the formation of chiral condensates

is responsible for the constituent quark masses, the focus of

this work is to investigate whether the strong coupling regime

at fixed point C dynamically generates mass at a UV scale,

for example at the Planck scale, which would be in contra-

diction to the observation of light fermions of the Standard

Model. Similar problems are known to impede non-trivial

formulations of pure QED [10,13–15].

In QED, chiral symmetry is broken explicitly by the mass

term. In the same manner, the Pauli spin-field coupling is

also a source of explicit breaking, both of which we con-

sider as small in agreement with observation. While such

small breakings allow for the appearance of many further

four-fermion interactions, we concentrate here on an other-

wise Fierz-complete basis of NJL-type channels, assuming

that they play a dominant role in the case of interaction-

induced dynamical chiral symmetry breaking. This assump-

tion is similar to low-energy effective theories for QCD where

explicit chiral breaking terms can be treated as a small per-

turbation.

In this setting, we discover that the distinct coupling of the

two NJL-type channels by the Pauli term qualitatively alters

the bifurcation behavior known from strong QED or QCD:

instead of annihilation upon collision, the NJL fixed points

merely exchange stability such that an IR attractor persists

at arbitrarily strong Pauli coupling for more than Nf = 1

fermion flavor. In such cases, there exists a universality class

where the RG flow remains bounded and mass generation

can be avoided without further fine-tuning. A similar con-

clusion can be drawn from our initial analysis for fixed point

B, despite the different role played by the aforementioned

bifurcation.

The structure of this paper is as follows: In Sect. 2, we

introduce the abelian gauged NJL model with a Pauli term.

Section 3 then presents the corresponding RG flow equation.

Section 4 is allocated to analyzing the fixed point structure in

the four-fermion sector of our theory, drawing comparisons

to previous results in relation to the pure NJL model (4.1)

and the introduction of a gauge field (4.2).

2 Gauged NJL model with Pauli term

We consider the massless limit of an abelian gauged NJL

model with a Pauli term. Satisfying Osterwalder–Schrader

reflection positivity in Euclidean spacetime, the effective

action reads

Ŵk =
∫

d4x
{

ψ̄a
(

i Zψ /∂ + ē /A + i κ̄σµν Fµν
)

ψa

+
Z A

4
Fµν Fµν +

Z A

2ξ

(

∂µ Aµ
)2

+
1

2
λ̄+ (V + A) +

1

2
λ̄− (V − A)

}

. (1)

Here a = 1, . . . , Nf labels the Dirac flavors ψa interact-

ing with a U(1) gauge field Aµ. The couplings ē, κ̄ and

λ̄±, as well as the wave function renormalizations Zψ,A, are

dependent on the RG scale k. We further work in the Landau

gauge ξ = 0 as a fixed point of the RG flow [22,23]. For

our purposes, it suffices to consider the point-like approxi-

mation where the four-fermion couplings λ̄(p1, p2, p3) →
λ̄(0, 0, 0) are approximated by their low-momentum limit

[24]. Neglecting the explicit breaking of a chiral SU(Nf)L⊗
SU(Nf)R symmetry by the Pauli term, the four-fermion chan-

nels

(V ± A) ≡
(

ψ̄aγµψa
)2 ±

(

ψ̄aiγµγ5ψ
a
)2

, (2)

would form a Fierz-complete basis under the RG flow. The

(V + A) channel is Fierz equivalent to the conventional NJL

channel. In the limit of vanishing κ̄, λ̄± (and upon inclusion

of an explicit fermion mass term), the present model is iden-

tical to QED. If RG trajectories exist that match the QED

long-range behavior, then a high-energy complete trajectory

in the present model can be viewed as a UV-complete version

of QED. In the search for scale-invariant fixed points facil-

itating UV-complete trajectories, it is convenient to define

further dimensionless renormalized couplings

λ± =
k2λ̄±

Z2
ψ

, e =
ē

Zψ

√
Z A

, κ =
kκ̄

Zψ

√
Z A

. (3)
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For the present study, we use the functional RG based on

the effective average action Ŵk which interpolates between

the classical bare action Ŵk→� = S and the full quantum

effective action Ŵk→0 = Ŵ [24–29]. Defining the RG time

as t = ln k, the flow through theory space is governed by the

Wetterich equation [30–33]

∂tŴk =
1

2
STr

[

∂t Rk

(

Ŵ
(2)
k [φ] + Rk

)−1
]

, (4)

where Rk(p2) acts as a momentum-dependent regulator,

screening the contribution of IR modes with momenta below

the cutoff k.

3 Flow equations

With the effective action Ŵk expressed in terms of the opera-

tors in (1), the Wetterich equation (4) can be projected onto

the four-fermion sector to yield the beta functions

∂tλ+ = (2 + 2ηψ ) λ+ + 4v4 l
(F)
4 (0, 0)

×
[

6λ2
+ +

(

dγ N f + 4
)

λ+λ−
]

− 24v4 l
(B, F)
4 (0, 0) e2λ+ − 48v4 l

(1, B, F)
4 (0, 0) κ2λ−

+ 6v4 l
(B2, F)
4 (0, 0) e4 − 48v4 l

(1, B2, F)
4 (0, 0) e2κ2

+ 96v4 l
(2, B2, F)
4 (0, 0) κ4, (5)

∂tλ− = (2 + 2ηψ )λ− + 2v4 l
(F)
4 (0, 0)

×
[

(

dγ N f − 4
)

λ2
− + dγ N f λ

2
+

]

+ 24v4 l
(B, F)
4 (0, 0) e2λ− − 48v4 l

(1, B, F)
4 (0, 0) κ2λ+

− 6v4 l
(B2, F)
4 (0, 0) e4 + 48v4 l

(1, B2, F)
4 (0, 0) e2κ2

− 96v4 l
(2, B2, F)
4 (0, 0) κ4. (6)

Here we have adopted the notation for threshold functions

introduced in [18]. The anomalous dimension

ηψ = −∂t ln Zψ (7)

implements an RG improvement by resummation of 1PI dia-

grams contributing to the propagator, as depicted in Fig. 1.

In the point-like limit, four-fermion corrections to ηψ must

vanish, as momentum conservation in the tadpole diagram

of Fig. 1a ensures the independence of the loop momentum

from external momentum. As such, the fermionic anomalous

dimension at fixed point C remains at the value of η∗
ψ = −1

due to Pauli contributions (Fig. 1b). This precisely renders

the dimension-5 Pauli operator marginally relevant in d = 4,

even before considering higher-order diagrams.

Likewise, the scaling terms in Eqs. (5)–(6) vanish, and

thus the relevance of the NJL channels is decided entirely by

λ±

(a)

κ κ

(b)

Fig. 1 1PI Feynman diagrams contributing to the fermionic anomalous

dimension ηψ . a The tadpole diagrams vanish in the point-like limit

where the momentum dependence of the NJL couplings λ± is neglected.

b The self-energy diagrams result in the value of ηψ = −1 at fixed

point C, which renders both Pauli coupling κ and NJL coupling λ±
perturbatively marginal in the absence of higher-order terms

the higher-order terms of the beta functions, as represented

by Fig. 2.

4 Fixed point analysis

4.1 Pure NJL model

Before we examine the fate of the NJL channels in the pres-

ence of the Pauli term, we first review the RG flow of the

pure NJL model (e = κ = ηψ = 0) [24,34,35], shown

in Fig. 3 for the case of Nf > 1 irreducible flavors, for

which the Dirac representation has dimension dγ = 4. As

the beta functions (5)–(6) form a pair of quadratic func-

tions of the NJL couplings λ±, there exist in general four

fixed points Fi =
(

λ∗i
+ , λ∗i

−
)

, i = 1, . . . , 4. We quantify the

fixed-point properties in terms of their critical exponents θ

which are related to the eigenvalues of the stability matrix

Bi j := ∂(∂tλi )/∂λ j |λ∗ : θ = −eig(B). Positive values of

θ denote RG relevant directions that correspond to physical

parameters to be fixed. Negative exponents, in turn, charac-

terize RG irrelevant directions that do not exert an influence

on the long-range IR physics.

As expected from power counting, the Gaussian fixed

point F1 is purely IR attractive with critical exponents both

being θ = −2. The interacting fixed points F2 and F3 each

has one relevant direction, while the fourth fixed point F4

is purely IR repulsive, i.e. relevant. Each of the fixed points

F2,3,4 has one relevant eigendirection (θ = 2) pointing along

the line that connects the fixed point Fi≥2 with the Gaussian

fixed point F1. This is in line with general theorems [34,36].

It is straightforward to also compute the remaining critical

exponents analytically.

We observe that the purely IR-repulsive F4 moves towards

infinity for Nf → 1 flavor. This is because the beta function

(6) becomes linear in λ−, with the vanishing fermionic loop

contribution ∼ λ2
− of Fig. 2a.

123



  477 Page 4 of 8 Eur. Phys. J. C           (2024) 84:477 

λ± λ±

(a)

κ

κ λ±

(b)

κ

κ

κ

κ

(c)

Fig. 2 1PI Feynman diagrams contributing to the flow of the four-

fermion vertex. a The fermionic loops carry flavor number dependence

such that the λ2
− contribution vanishes for a single irreducible flavor. b

The triangular diagrams only contribute to the RG flow in the chirally

invariant NJL subspace when the photon is exchanged between fermions

of identical flavor. Moreover, the flows of λ± are maximally coupled

by these diagrams, unlike their gauge coupling counterparts. c The box

diagrams can induce a finite NJL coupling λ± purely through photonic

fluctuations

The universality class defined by the Gaussian fixed point

F1 corresponds to a chirally symmetric phase (regions II and

IV) with massless fermions, as the NJL couplings λ± remain

finite under the RG flow and approach zero in the long-range

limit. Meanwhile, initial conditions within regions I and III

lead to divergence at a finite RG scale kSB, signaling the

formation of a condensate which dresses the fermions with

a mass mψ ∼ kSB . This phase of the model is used in low-

energy QCD effective models.

In the simplest incarnation of the NJL model, the coupling

λ− is set to zero, and the coupling λ+ corresponds to (−2)

times the more familiar scalar-pseudoscalar channel (S−P).

The fixed-point F2 (projected on the λ+ axis) then defines the

NJL critical coupling that separates the chirally symmetric

weak-coupling phase from the chirally broken phase at strong

coupling.

4.2 Finite gauge coupling

With a nonzero gauge coupling e, the beta functions (5)–(6)

reproduce the known result where the Gaussian fixed point

F1 is annihilated by collision with F2 at a critical value ecrit.

This – in a nutshell – illustrates the relevant mechanism that

screens the perturbative Landau pole and inhibits a UV com-

pletion of long-range QED: even if QED were UV complete

Fig. 3 Phase diagram of the NJL theory subspace spanned by the

(V ± A) channels for Nf = 2 irreducible Dirac flavors. Arrows indicate

flow towards the infrared. Separatrices (red curves) flowing between

fixed points Fi (blue points) delineate a universality class of light

fermions (regions II and IV; black) as observed in nature. On the con-

trary, the RG flow in regions I and III diverge, heralding the onset of

dynamical mass generation. For Nf = 1, F4 lies at infinity

in the strong coupling region, it would exhibit high-scale chi-

ral symmetry breaking and mass generation in contradiction

to the observed light mass of the electron [11–14]. In anal-

ogous nonabelian settings, the similar mechanism involving

the strong gauge coupling triggers the dynamical mass gen-

eration in the IR limit of quantum chromodynamics [24,37–

45].

Such an effect is already captured by the Fierz-incomplete

single-channel approximation λ− ≡ 0. The remaining beta

function, now represented by a parabola, is shifted vertically

by the finite gauge coupling until the fixed points undergo a

saddle-node bifurcation into the complex plane.

4.3 Finite Pauli coupling

In contrast to the theory space spanned by minimally cou-

pled QED, the inclusion of the Pauli coupling has provided

evidence for the existence of a new universality class gov-

erned by a non-Gaussian fixed point, called fixed point C

in [18]. This fixed point occurs at e∗ = 0, κ∗ ≃ 3.82 and

ηψ = −1 with the Pauli coupling and the minimal coupling

corresponding to relevant directions (in addition to the mas-

sive perturbation).

With regard to Eqs. (5) and (6), we note that the only qual-

itative difference lies in the terms ∂tλ± ∼ κ2λ∓ correspond-

ing to the exchange of a single photon (Fig. 2b). Unlike their

gauge coupling counterparts, these terms are non-diagonal

in the λ± basis. Ultimately, this is due to the anticommuta-

tivity of all Dirac matrices with the γ5 from the axial vector

channel in Eq. (2).
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Fig. 4 Phase diagram of the four-fermion subspace spanned by the

NJL-type (V ± A) channels at the Pauli-induced fixed point C (κ∗ =
3.82, ηψ = −1) for Nf = 2 irreducible Dirac flavors. Arrows indicate

flow towards the infrared. Compared to Fig. 3, F1 and F2 have under-

gone a transcritical bifurcation and exchanged their stability. There

remains a universality class of light fermions (region II)

For Nf > 1 we again observe a collision between fixed

points F1 and F2 at a critical value κcrit, but instead of anni-

hilation, they merely exchange stability such that both fixed

points continue to exist in the real coupling plane and F2 is

now purely IR attractive. The result of this transcritical bifur-

cation is shown in Fig. 4. The persistence of this attractor

in the strong coupling regime maintains a universality class

where mass generation is avoided (region II). This effect is

not captured in the single-channel approximation λ− ≡ 0.

For an interpretation of the fixed-points as possible routes

to UV completion or as critical couplings defining universal-

ity classes, we summarize their critical exponents in Table 1.

With the gauge system being at fixed point C with a non-

Gaussian Pauli coupling where ηψ = −1, the naive non-

Gaussian scaling of the four-fermion couplings suggests that

the largest critical exponent should be close to zero. We

therefore use large deviations from this expectation as an

indication for sizable truncation artefacts. This reasoning is

analogous to that applied to four-fermion models beyond 2

dimensions [24,34,36,46,47].

From this perspective, F3 and F4 represent fixed points

with large deviations from the expected scaling that are likely

to be dominated by truncation artefacts. While we do not

expect them to persist in larger truncations and they should

thus not be used for a construction of UV complete trajecto-

ries, they and their separatrices may still be used as a qual-

itative estimate of the boundaries of the chirally symmetric

phase II.

By contrast, F1 and F2 exhibit small leading exponents

close to zero. Fixed point F2 with two negative exponents

is fully IR attractive and thus should be viewed as a shifted

Gaussian fixed point [35,48], playing the role of the Gaus-

sian fixed point with a location at finite coupling due to the

residual non-Gaussian interactions induced by the Pauli cou-

pling. On the other hand, F1 also exhibits small deviations

from the expected scaling with a relevant direction that points

approximately along the NJL channel. Whether or not F1

could be used to define UV complete trajectories should be

checked in future investigations. For the present work, we

focus on the existence of F2 as a completely attractive fixed

point. This establishes that we find a qualitatively identical

phase diagram to Fig. 4 for more than one fermion flavor

even for the case that the Pauli coupling κ∗ is near fixed

point C. This statement holds independently of flavor num-

ber Nf [19] with the minor difference that the magnitude of

κ∗ is insufficient to induce the collision between F1 and F2

for larger flavor numbers > 5.25; in such cases, F1 sim-

ply remains the shifted Gaussian fixed point. A strong Pauli

coupling phase of QED could thus allow for the construc-

tion of UV complete trajectories without being endangered

by chiral symmetry breaking in contradistinction to a strong

minimal coupling phase. Incidentally, a further transcritical

bifurcation occurs for Nf � 4.94 between F3 and F4. This,

however, leaves our conclusions about UV completion in the

symmetric phase unaffected.

In the special case of Nf = 1, as with the pure NJL model

of Sect. 4.1, the quadratic term in λ− in Eq. (6) vanishes.

Combined with the vanishing scaling term due to ηψ = −1,

all dependences on λ− drop out from the beta function. A

transcritical bifurcation between F1 and F2 is still observed,

but the purely attractive F2 then lies at infinity along with the

purely repulsive F4 (Fig. 5). While this offers, in principle,

a construction of a similar UV complete scenario as in the

Nf > 1 case, the inherently large coupling values make it

difficult to control the expansion scheme. The remaining two

fixed points at finite coupling values F1 and F3 show large

leading exponents with large deviations from the expected

scaling, cf. Table 1. Our present study therefore does not

allow us to draw any definite conclusions about the existence

of UV complete trajectories controlled by the Pauli coupling

for the special case of Nf = 1.

We should note however, that the explicit violation of

chiral symmetry by the Pauli term generates further four-

fermion channels, e.g., an additional Gross–Neveu channel

outside the NJL subspace. This occurs through the exchange

of a Pauli-coupled photon between different flavors (in con-

trast to Fig. 2b). In Eqs. (5)–(6), we have discarded such con-

tributions for simplicity. A Fierz-complete analysis of the RG

relevance of such channels is beyond the scope of this work.

Nevertheless, the structure of the resulting Fierz-complete

equations remains similar to the chirally invariant subspace

studied here: the inclusion of n four-fermion channels can

potentially entail 2n fixed points in the corresponding cou-

pling space λi . As long as one of these fixed points features

properties of a shifted Gaussian fixed point similar to F2 for
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Table 1 Critical exponents θ of the fixed points in the plane of four-fermion interactions with the gauge system being at the fixed point C with a

non-Gaussian Pauli coupling

F1 F2 F3 F4

Nf = 2: (0.102,−4.41) (−0.101,−4.44) (4.41,−5.78) (10.0, 2.75)

Nf = 1: (3.14,−2.36) – (2.36,−6.30) –

Fig. 5 Phase diagram of the NJL theory subspace spanned by the

(V ± A) channels at the Pauli-induced fixed point C (κ∗ = 3.82, ηψ =
−1) for Nf = 1 irreducible Dirac flavor. Arrows indicate flow towards

the infrared. Compared to Fig. 4, F2 and F4 lie at infinity. This is because

the beta function (6) no longer depends on λ−, with the simultaneous

vanishing of the scaling term and fermionic loop contribution ∼ λ2
−

Nf > 1 in the present case, our main conclusions remain

unaffected.

For completeness, let us mention that we have applied the

same analysis to the compatibility of fixed point B discovered

in [18] with light fermions. As an approximation, we neglect

additional terms in the beta functions due to the finite fermion

mass m and take into account such threshold effects only

through the regulators in Eqs. (5)–(6). The most significant

difference lies in the larger fermionic anomalous dimensions

η∗
ψ < −1, which tends to reflect fixed points across the

origin and reverse the direction of the RG flow. Once again,

we observe a transcritical bifurcation between the now purely

IR repulsive would-be Gaussian F1 and F2, but the latter is

no longer responsible for avoiding heavy fermions. Instead,

this role is taken up by the IR-stable F4, which lies at finite

coupling values for Nf > 1.

5 Conclusion

We have studied the renormalization flow of chirally invari-

ant four-fermion operators when subject to a strong-coupling

regime as provided by a recently discovered fixed point in

QED including a non-Gaussian Pauli spin-field coupling. The

flow of these fermionic operators is a crucial litmus test for

the viability of an asymptotic safety scenario based on the

non-Gaussian fixed point C as discussed in [18,19]. This is

because strong-coupling has the potential to drive chiral sym-

metry breaking in QED and generate a heavy electron mass

incompatible with observation.

In fact, Pauli-induced asymptotic safety at fixed point C

demands that the fermionic anomalous dimension ηψ = −1

renders four-fermion couplings perturbatively marginal, at

least at the present level of truncation. At first glance, this

appears precarious as any prospective fixed points are then

maximally susceptible to removal by the Pauli coupling term

∼ κ4 of the beta function.

However, the flow in the full chirally invariant plane

spanned by the pointlike four-fermion interactions known

from NJL-type models captures the effects of single-photon

exchange (Fig. 2b). The resulting coupled flow of the NJL-

type couplings λ± exhibits transcritical bifurcations where

the fixed points merely exchange stability, in stark contrast

to the annihilation observed at strong minimal gauge cou-

pling. As such, for Nf > 1 irreducible Dirac flavors, there

remains an infrared attractor at arbitrarily strong Pauli cou-

pling, which prevents dynamical mass generation at a UV

scale. This attractor is reminiscent of a shifted Gaussian fixed

point. RG trajectories emanating from this fixed point are

UV complete and do not introduce further physical parame-

ters. We observe that this scenario is not visible in a Fierz-

incomplete chiral truncation based on a single NJL coupling.

On the other hand, for Nf = 1, the simultaneous vanishing

of the scaling term and fermionic loop contribution ∼ λ2
−

conspire to prevent the existence of a fully attractive fixed

point at finite coupling. While we do observe two fixed points,

they do not satisfy all of our validity criteria and would come

with further relevant directions, i.e., require a further physical

parameter.

The occurrence of a transcritical bifurcation with a stabil-

ity exchange of the fixed-point properties is rarely observed in

RG flows of similar systems. The generic picture is rather that

of a fixed-point merger/collision and subsequent annihilation

[40,49–51] specifically for QED [16]. A notable exception is

given by tensor O(N ) models near d = 6, where the annihi-

lation of the fixed points subsequent to a collision is inhibited

by the occurrence of an enhanced symmetry [52] that gives

rise to the stability-exchange scenario. In the present case,

we are not aware of a symmetry enhancement induced by

the Pauli term. Understanding the general conditions under

which stability exchange can occur in a quantum field theory

appears to be a worthwhile future research question.
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Our work may be further extended to include a Fierz-

complete basis including also the non-chiral four-fermion

interactions. This would accommodate the Gross–Neveu

channel generated by single-photon exchange between dif-

ferent flavors, resumming all ladder and crossed-ladder dia-

grams. The inclusion of further channels generically leads to

an increase in the number of fixed points [34,36]. Our current

scenario remains viable, if one of these fixed points remains

fully IR attractive similar to a shifted Gaussian fixed point.

While perfectly plausible, this remains to be confirmed.

We have not fully considered the feedback of the four-

fermion sector on the running of the gauge/Pauli cou-

plings. While such a feedback on the minimal gauge cou-

pling vanishes at the fermionic fixed points by virtue of the

Ward–Takahashi identities [34], a similar mechanism is not

expected for the feedback on the flow of the Pauli coupling.

But symmetry arguments ensure that such contributions be

proportional to the mass m, which vanishes at fixed point C

and can only affect the flow towards the IR.

In summary, our findings provide further evidence for a

scenario of an asymptotically safe UV completion of pure

QED based on a non-Gaussian Pauli spin-field coupling. We

identify a fixed-point collision with a subsequent exchange

of stability properties as a crucial mechanism to avoid chi-

ral symmetry breaking in the strong-coupling regime. This

mechanism is, however, operative only for Nf > 1.
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