
Renormalization flow of nonlinear electrodynamics

Holger Gies
1,2,3,*

and Julian Schirrmeister
1,†

1
Theoretisch-Physikalisches Institut, Abbe Center of Photonics, Friedrich Schiller University Jena,

Max Wien Platz 1, 07743 Jena, Germany
2
Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany

3
GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany

(Received 23 May 2024; accepted 3 September 2024; published 7 October 2024)

We study the renormalization flow of generic actions that depend on the invariants of the field strength

tensor of an Abelian gauge field. While the Maxwell action defines a Gaussian fixed point, we search for

further non-Gaussian fixed points or rather fixed functions, i.e., globally existing Lagrangians of the

invariants. Using standard small-field expansion techniques for the resulting functional flow equation, a

large number of fixed points is obtained, which—in analogy to recent findings for a shift-symmetric scalar

field—we consider as approximation artifacts. For the construction of a globally existing fixed function, we

pay attention to the use of proper initial conditions. Parametrizing the latter by the photon anomalous

dimension, both the coefficients of the weak-field expansion are fully determined and those of the large-

field expansion can be matched such that a global fixed function can be constructed for magnetic fields. The

anomalous dimension also governs the strong-field limit. Our results provide evidence for the existence of a

continuum of non-Gaussian fixed points parametrized by a small positive anomalous dimension below a

critical value. We discuss the implications of this result within various scenarios with and without

additional matter. For the strong-field limit of the 1PI QED effective action, where the anomalous

dimension is determined by electronic fluctuations, our result suggests the existence of a singularity free

strong-field limit, circumventing the standard conclusions connected to the perturbative Landau pole.
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I. INTRODUCTION

Relativistic models of nonlinear electrodynamics have an

extensive history in field theory, beginning with Born- or

Born-Infeld theory motivated by the removal of the diver-

gence of the electron’s self-energy in a classical setting [1–3],

reemerging also as an effective theory of the open string [4].

The Heisenberg-Euler theory [5–8] represents not only the

presumably correct theory of the nonlinear response of the

electrodynamic quantum vacuum according to quantum

electrodynamics (QED), but is also a hallmark of the concept

of effective field theory now being ubiquitous in quantum

field theory. Discovering the plethora of phenomena pre-

dicted by the Heisenberg-Euler action [9–12] is currently a

substantial research endeavor in strong-field physics.

Perturbative renormalizability arguments suggest that

nonlinear models of electrodynamics should not be viewed

as a fundamental theory, as the nonlinear interactions are

power-counting nonrenormalizable. Whether or not the

naive perturbative conclusion can be extended to a strong

coupling region is explored in the present work. In

principle, perturbative arguments fail in presence of non-

Gaussian fixed points which are a prerequisite for the

construction of high-energy complete theories based on the

concept of asymptotic safety [13,14].

Ultraviolet (UV) completeness of QED, i.e., including the

fluctuations of fermionic or scalar charged particles, has

been at the center of interest since the discovery of the

perturbative Landau pole [15–17]. Though the Landau pole

divergence of the coupling may or may not be an artifact of

perturbation theory, there is consensus among various

methods that the strong-coupling regime of conventional

QED cannot be connected to the weak-coupling regime

realized in nature because of chiral symmetry breaking and

mass generation [18–22]. Beyond the conventional scenar-

ios,UVcompletion in the large-flavor number limit [23–29],

at a non-Gaussian Pauli coupling fixed point [30–33], novel

resummation schemes [34], or UV completion mediated

by gravitational fluctuations [35,36] have recently been

discussed.

At first sight, it is thus not surprising that perturbative

renormalization group (RG) resummations also find a
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Landaupole divergence in the strong-field limit of the higher-

loopresummedHeisenberg-Eulereffectiveaction[37,37,38].

This holds both for the effective action as the 1PI generating

functional, as well as for the Schwinger functional that

include 1PR resummations [39–42]. At second glance, such

a strong-field divergence may appear less plausible at least

for the case of a homogeneous magnetic background. This is

because the latter does not transfer energy to charged

fluctuations and thus should not per se probe the high-

momentum regime where Landau-pole singularities may

play a role.

In the present work, we address the question of a possible

existence of UV-complete nonlinear electrodynamics (with-

out further chargedmatter degrees of freedom) as well as the

strong-field limit of Heisenberg-Euler-type theories (with a

minimum charged matter content), using methods of func-

tional renormalization. More specifically, we derive the

general nonperturbative RG flow equation for action func-

tionals depending on the gauge- and Lorentz-invariant

combinations of the field strength. For both aspects, we

find that the criterion of global existence of functions

satisfying the fixed-point equation for the action is most

relevant. This is, in fact, familiar from technically similar

searches for Wilson-Fisher-type fixed points [43–51], scal-

ing solutions in fermionic/Yukawa theories [52–54],

UV completions of gauged Higgs models [55,56] or gauged

Yukawa models [57–59], and studies in quantum gravity

[48,60–62].

As for the quest for matterless UV-complete asymptoti-

cally safe nonlinear electrodynamics, our answer is in the

negative as long as standard search methods for fixed points

based on improper initial conditions are used. For this case,

our results are rather similar to analogous studies of shift-

symmetric scalar theories or nonlinear Abelian models

based on the Maxwell invariant [63,64]. While the weak-

field expansion finds many potential fixed-point candidates

similar to [63], the picture is quite comparable to the shift-

symmetric scalar model, where the eigenperturbations

around the fixed points are not integrable with respect to

the induced measure [64]; therefore, only the trivial

Gaussian fixed point remains in this analysis.

By contrast, we do find globally existing fixed-point

actions, once the construction is based on proper initial

conditions. We parametrize the latter in terms of the

anomalous dimension of the photonic field which is either

a free parameter, or could effectively be provided by

charged matter fluctuations. With this parameter, we are

able to construct a global action in the direction of one of

the invariants by a nontrivial matching of the small- and

large-field expansions. The approximations involved can be

applied to the case of a purely magnetic field and thus

provide evidence for the absence of Landau-pole-type

singularities in the strong-field limit of this type.

The paper is structured as follows: in Sec. II, we

introduce the setting for general theories of nonlinear

electrodynamics including Minkowskian as well as

Euclidean formulations. In Sec. III, we derive the RG flow

on the considered theory space using the functional

renormalization group. On a fixed point, the resulting flow

equation reduces to a fixed-function equation, defining

scaling solutions for generic effective Lagrangians. We also

motivate and substantiate a set of approximations which

simplify the analysis of the differential equation. Section IV

is devoted to a standard analysis of the (reduced) fixed-

function equation including the critical regime based on a

conventional small-field expansion. Whereas this analysis

corresponds to improper initial conditions, Sec. V inves-

tigates the fixed-function equation using proper initial

conditions. A one-parameter family of global solutions is

constructed on small- and large-field expansions for small

positive anomalous dimensions. Our approximations are

checked in Sec. VI by tackling the full partial differential

equation in the small field regime. We interpret our results

in the light of various scenarios in Sec. VII and conclude in

Sec. VIII.

II. NONLINEAR ELECTRODYNAMICS

Maxwell’s theory of electrodynamics (ED) in vacuum is

a linear theory entailing a strict superposition principle.

It can be defined in terms of the gauge potential ðĀμÞ
in four-dimensional Minkowski space and the correspond-

ing field strength tensor ðF̄μνÞ with its components being

connected to the gauge potential in the usual way, F̄μν ¼

∂μĀν − ∂νĀμ.
1
Using the gauge and Lorentz invariant

scalars formed from the field strength tensor and its

Hodge dual ðð⋆F̄ÞμνÞ, that is

F̄ ≔
1

4
F̄μνF̄

μν; Ḡ ≔
1

4
F̄μνð⋆F̄Þ

μν ¼
1

8
εμνρσF̄μνF̄ρσ ð1Þ

(using the convention ε0123 ¼ 1), the free action reads

S½Ā� ¼

Z

R3;1

−F̄ ðĀðxÞÞd4x: ð2Þ

Further local invariants involve derivatives of the field

strength.

The most general effective action functional Γ of

nonlinear electrodynamics may depend on all possible

invariants; a generic theory can thus be parametrized by

a local Lagrangian depending on the field strength and its

derivatives:

1
For the gauge field, the field strength, and the action, we

consistently use a notation, where serifless fonts are used for
Minkowski-valued quantities. The standard notation is reserved
for the renormalized quantities on Euclidean space, which will be
defined later. An overbar indicates an unrenormalized and
typically dimensionful quantity.
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Γ½Ā� ¼

Z

R3;1

L̄
�

F̄ðxÞ; ∂μF̄ðxÞ; ∂ν∂λF̄ðxÞ;…
�

d4x: ð3Þ

In the present work, we ignore possible dependencies on

the derivative terms and concentrate on the full functional

dependence on the two invariants F̄ and Ḡ. This may be

viewed as the leading order of a systematic derivative

expansion of the action [65–70] in the spirit of the

Heisenberg-Euler expansion [5]. However, in contradis-

tinction to conventional derivative expansions where

higher-order derivatives have to be small compared to a

physical mass scale, our expansion is based on a compari-

son to a running RG scale k. The validity criterion therefore
is that the derivative terms should have a small influence on

the flow of the nonderivative terms at any scale k; they do

not necessarily have to be numerically small. We thus

approximate the general Lagrangian by an F̄-dependent

function, or equivalently a function of the invariants,

L̄ðF̄; ∂μF̄;…Þ ≈ L̄ðF̄; 0;…Þ≡ W̄ðF̄ ðF̄Þ; ḠðF̄ÞÞ, reducing

the action to

Γ½Ā� ≈

Z

R3;1

W̄
�

F̄ ðĀðxÞ
�

; Ḡ
�

ĀðxÞÞ
�

d4x: ð4Þ

This defines the class of action functionals covering non-

linear generalizations of vacuum electrodynamics to lead-

ing-derivative order. The corresponding equations of

motion generically represent hyperbolic second-order non-

linear partial differential equations for which initial-value

problems can be formulated.

In the following, we restrict ourselves to parity-invariant

theories. Since Ḡ is parity-odd, W̄ should be considered as

an even function of Ḡ, i.e., instead of W̄ðF̄ ; ḠÞ we write

W̄ðF̄ ; Ḡ2Þ.
As our renormalization group analysis will be performed

in Euclidean spacetime, let us detail the connection

between Minkowski-valued and Euclidean quantities: In

d ¼ 4 dimensional Minkowski space, the components of

the antisymmetric field strength tensor, F̄μν, are related to

the electric and magnetic field components by F̄0i ¼ Ēi and

F̄ij ¼ εijlB̄l. In terms of the fields, the invariant scalars read

F̄ ¼ 1
2
ðB̄2 − Ē2Þ and Ḡ ¼ −Ē · B̄.

In the Euclidean, we start from a Euclidean gauge

potential ðĀμÞ with field strength components F̄μν ¼

∂μĀν − ∂νĀμ and the components of its Hodge dual

ð⋆F̄Þμν ¼ 1
2
εμνρσF̄ρσ. The corresponding invariants read

F̄≔ 1
4
F̄μνF̄

μν and Ḡ ≔ 1
4
F̄μνð⋆F̄Þ

μν, where the Euclidean

metric is used for the contractions. Identifying the

Euclidean field strength components as F̄0i ¼ Ēi and

F̄ij¼εijlB̄l, we obtain for the invariants F̄¼ 1
2
ðB̄2þĒ2Þ

and Ḡ ¼ Ē · B̄.
On the level of the invariants F̄ and F̄ , the transition

betweenMinkowskian and Euclidean spacetime is captured

by the field replacement rule ðĒ; B̄Þ ↔ ð−{Ē; B̄Þ. This also

implies a relation between Ḡ and Ḡ , which in total yields:

F̄ ↔ F̄ and Ḡ ↔ {Ḡ .
Including the Wick rotation in coordinate space, the

corresponding Euclidean action, e.g., of Maxwell’s theory

reads

S½Ā� ¼

Z

R4

F̄
�

ĀðxÞ
�

d4x: ð5Þ

Analogously to Eq. (4), the corresponding class of general

nonlinear theories of electrodynamics investigated in this

work is described by a Euclidean action

Γ½Ā� ≔

Z

R4

W̄

�

F̄
�

ĀðxÞ
�

; Ḡ
�

ĀðxÞ
�

2

�

d4x; ð6Þ

where the function W̄ is the Euclidean analog of W̄. On

the level of the Lagrangian, the transition from Euclidean

back to Minkowskian spacetime is thus performed by the

replacements W̄ → −W̄, F̄ → F̄ , and Ḡ → −{Ḡ. The

latter implies Ḡ 2
→ −Ḡ2.

III. RG FLOW AND FIXED FUNCTIONS

Let us list the ingredients for our functional RG analysis

for theories based on the action in Eq. (6). For conceptual

and technical details, we refer the reader to reviews on the

functional RG [71–77].

A. Scale-dependent effective action

Using the functional RG, we quantize nonlinear electro-

dynamics in a Wilsonian sense momentum shell by

momentum shell. Quantization over a finite amount of

scales is always possible in the spirit of an effective field

theory. In addition, we intend to search for fixed points, or

rather fixed functions, of the RG flow that have the

potential to allow for a consistent quantization on all

scales. For this, we use the Wetterich equation [78–81]

for a scale-dependent one-particle irreducible (1PI) effec-

tive action Γk,

k∂kΓk½Ā� ¼
1

2
Tr

h

ðΓ
ð2Þ
k þRkÞ

−1
k∂kRk

i

½Ā�; ð7Þ

where Γ
ð2Þ
k denotes the second functional derivative of Γk

with respect to the gauge field Ā. The quantity Rk is a

regulator that controls infrared (IR) mode suppression

below a momentum scale k and implements the

Wilsonian momentum-shell integration. For a given initial

condition, e.g., at a UV scale Γk¼Λ, the action Γk¼0 includes

all quantum fluctuations with momenta below Λ [71–77].

In the present work, we parametrize the action func-

tional Γk by a scale-dependent variant of the nonlinear

theory space spanned by Eq. (6) amended by a Lorenz

gauge-fixing term,
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Γk½Ā� ≔

Z

R4

�

W̄ kðF̄ ; Ḡ 2Þ þ
1

2α
Zkð∂μĀ

μÞ2
�

d4x; ð8Þ

where we have suppressed the x dependencies.

We assume that the function W̄ k features a weak-field

expansion of the form W̄ kðF̄ ; Ḡ 2Þ ¼ ZkF̄ þ � � �, where Zk

can be interpreted as a wave function renormalization. We

have included Zk also in the gauge-fixing term in order to

obtain a standard form of the gauge-fixed propagator

including the gauge-fixing parameter α∈R. Analogous

parametrizations of the effective action also including the

non-Abelian case have been studied in [22,82–85].

The scale dependence of Zk is encoded in the anomalous

dimension of the gauge field,

ηk ≔ −k∂k lnðZkÞ: ð9Þ

For the analysis of the RG flow, it is useful to introduce

dimensionless renormalized quantities. In d ¼ 4 dimen-

sions, the corresponding rescalings using the scale k read:

F ≔ Zkk
−4F̄ ; G ≔ Zkk

−4Ḡ ; wk ≔ k−4W̄ k: ð10Þ

The Zk rescaling of the field implies that the weak-field

expansion of the field-strength potential wk starts with

wk ¼ F þ � � �. In accordance with Eq. (10), we also

introduce a dimensionless-renormalized field strength

and a conveniently rescaled (though dimensionful) gauge

field:

F ≔
ffiffiffiffiffi

Zk

p

k−2F̄; A ≔
ffiffiffiffiffi

Zk

p

k−2Ā: ð11Þ

Note that A carries an inverse mass dimension, such that

the dimensionless field strength components Fμν maintain

their standard form, Fμν ¼ ∂μAν − ∂νAμ, and the scale-

dependent effective action yields

Γk½A� ¼ k4
Z

R4

�

wkðF ;G 2Þ þ
1

2α
ð∂μA

μÞ2
�

d4x: ð12Þ

Here, we have once again suppressed the x dependencies

under the integral.

B. RG flow equation

For the evaluation of the Wetterich equation, we need the

Hessian of the action:

ðΓ
ð2Þ
k Þμν½ĀðAÞ�ðx; x0Þ ¼ Zkk

−4
δ2Γk½A�

δAμðxÞδAνðx
0Þ
: ð13Þ

With respect to the continuous part of the spectrum, the

Hessian can be diagonalized in momentum space, since it

suffices to consider a homogeneous field strength in order

to extract information about the flow of wk. Then, using

Eq. (12), the following decomposition of Γ
ð2Þ
k in terms of

projectors, i.e., idempotent endomorphisms, acting on the

Lorentz components in field space is useful:

Γ
ð2Þ
k ¼ Zkk

2

�

XT
kPT þ XL

kPL þ
X

4

a¼1

Xa
kPa

�

: ð14Þ

The projection operators and their coefficients are listed in

Table I, using the shorthand notation

w0
k ≔

∂wk

∂F
and ẇk ≔

∂wk

∂ðG 2Þ
: ð15Þ

For convenience, we have also introduced a dimensionless

momentum space coordinate y ≔ p=k.
Let us elucidate some properties of the field space

projection endomorphisms. The projectors act as linear

operators on the space of gauge fields, that is the space of 1-

form fields X�ðR4Þ which contains smooth sections of the

cotangent bundle T�R4 with respect to the standard smooth

structure on four-dimensional Euclidean space. The images

of the projections are linear subspaces of X�ðR4Þ. In

particular, PTðX
�ðR4ÞÞ and PLðX

�ðR4ÞÞ define a trans-

versal and longitudinal component ofX�ðR4Þ, respectively.
They are orthogonal complements to each other, i.e.,

PT ∘ PL ¼ PL ∘ PT ¼ 0. In fact, the corresponding invo-

lution iT ≔ 1 − 2PT induces a natural Z2-gradation for

X�ðR4Þ. Since 1 ¼ PT þ PL, an arbitrary element

A∈X�ðR4Þ can thus be decomposed into transversal and

longitudinal parts:

A ¼ 1ðAÞ ¼ PTðAÞ þ PLðAÞ≡ AT þ AL: ð16Þ

The class of projectors Pa for a∈ f1; 2; 3; 4g refer to

further subtransversal projections, because Pa ∘ PL ¼
PL ∘ Pa ¼ 0. Due to 1 ¼ PT þ PL, we have PaðX

�ðR4ÞÞ ⊆
PTðX

�ðR4ÞÞ for all a. From compositions among sub-

transversal projections Pa, it is further noted that they

agree on an equal rank and likewise share the same

TABLE I. Algebraic expressions for projections and their

respective coefficients according to the expansion in Eq. (14).

The symbol⊗ denotes the dyadic product on R4 ×R4. Here, p is

a dimensionful momentum space coordinate, and y ¼ p=k its

dimensionless complement.

Projector Coefficient

PT ¼ 1 −
p⊗p

p2
XT
k ¼ w0

ky
2

PL ¼ p⊗p

p2 XL
k ¼ 1

α
y2

P1 ¼
ðFpÞ⊗ðFpÞ

ðFpÞ2
X1
k ¼ w00

kðFyÞ
2

P2 ¼
ð⋆FpÞ⊗ð⋆FpÞ

ð⋆FpÞ2
X2
k ¼ 2ðẇk þ 2G 2ẅkÞð⋆FyÞ

2

P3 ¼
ðFpÞ⊗ð⋆FpÞ

Gp2
X3
k ¼ 2G 2ẇ0

ky
2

P4 ¼
ð⋆FpÞ⊗ðFpÞ

Gp2
X4
k ¼ X3

k
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one-dimensional image. Hence it is not possible to span the

three-dimensional transversal subspace using a combina-

tion of the Pa; however, we can still make use of their

properties evaluating the explicit form of the flow and

allowing us to estimate the weight of individual contribu-

tions to it.

Correspondingly, we span the regulator Rk with the aid

of the transversal and longitudinal projectors, yielding in

momentum space:

RkðyÞ ¼ Zkk
2y2rðy2Þ

	

PT þ
1

α
PL




; ð17Þ

where the information about the details of the momentum-

mode regularization are encoded in the dimensionless shape

function r. Equations (14) and (17) read together form the

inverse of the regularized propagator, Γ
ð2Þ
k þRk ≡G−1

k , for

which we now need the operator inverse. For this, we take

advantage of the algebraic structure provided by the field

space projections and expand the regularized full propagator

as in Eq. (14):

Gk ¼

�

Γ
ð2Þ
k þRk

�

−1

¼
1

Zkk
2

�

YT
kPT þ YL

kPL þ
X

4

a¼1

Ya
kPa

�

: ð18Þ

The coefficients YT
k ; Y

L
k ; Y

a
k for a∈ f1; 2; 3; 4g are com-

pletely determined by the system of equations that follows

from 1 ¼ G−1
k Gk, using the composition table for the

projections. The solution is

YT
k ¼

1

XT
k þ y2r

; YL
k ¼

1

XL
k þ 1

α
y2r

;

Y1
k ¼ YT

k ·
ðX3

kÞ
2ξ−2 − X1

kðX
T
k þ X2

k þ y2rÞ

ðXT
k þ X1

k þ X3
k þ y2rÞðXT

k þ X2
k þ X3

k þ y2rÞ − ðX3
k þ X2

kξ
2ÞðX1

k þ X3
kξ

−2Þ
;

Y2
k ¼ YT

k ·
ðX3

kÞ
2ξ−2 − X2

kðX
T
k þ X1

k þ y2rÞ

ðXT
k þ X1

k þ X3
k þ y2rÞðXT

k þ X2
k þ X3

k þ y2rÞ − ðX3
k þ X2

kξ
2ÞðX1

k þ X3
kξ

−2Þ
;

Y3
k ¼ YT

k ·
X1
kX

2
kξ

2 − X3
kðX

T
k þ X3

k þ y2rÞ

ðXT
k þ X1

k þ X3
k þ y2rÞðXT

k þ X2
k þ X3

k þ y2rÞ − ðX3
k þ X2

kξ
2ÞðX1

k þ X3
kξ

−2Þ
;

Y4
k ¼ Y3

k; ð19Þ

with ξðF; yÞ ≔
Gy2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFyÞ2ð⋆FyÞ2
p :

As a useful consequence of the projection technique, the

RHS of the flow equation (7) decomposes into a sum of

traces over field space projectors.

Finally, the Tr operation in the flow equation runs over

Lorentz indices and momentum space. Furthermore,

because of field-strength homogeneity, the RG flow is

projected onto the field-strength potential wk. Introducing

an RG time t ≔ lnðk=ΛÞ, with an arbitrary reference scale

Λ∈Rþ, the RG flow finally is described by an autonomous

differential equation that reads:

∂twk þ 4wk − ð4þ ηkÞðw
0
kF þ 2ẇkG

2Þ

¼ −
1

32π4

Z

R4

y2
�

ηkrðy
2Þ þ 2y2r0ðy2Þ

�

YkðyÞd
4y; ð20Þ

where r0 denotes the derivative of r with respect to its

argument y2 and

Yk ≔ 3YT
k þ

1

α
YL
k þ Y1

k þ Y2
k þ 2Y3

k: ð21Þ

Equation (20) generalizes previously derived flow equa-

tions for actions depending solely on F [22,86] to the

general case of nonlinear ED, representing an important

intermediate result of this work.

C. Fixed-point sector

In perturbative QED, the flow analogous to Eq. (20)

develops singularities toward high energies, e.g., in the form

of the Landau pole. By contrast, the RG flow can be UV

complete if all operators spanning the action remain

bounded. The latter can be realized with the aid of RG fixed

points where the dimensionless flow vanishes and the theory

develops a quantum scale symmetry [87]. The existence of

such fixed points is a prerequisite for the asymptotic-safety

scenario of quantum field theories.
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In the following, we address the question as to whether

the quantized version of nonlinear ED as described by the

RG flow of Eq. (20) exhibits such a fixed point. If so, the

scale derivative of the field-strength potential vanishes,

∂twk ¼ 0, and the potential approaches a fixed function

w� ≔ wk→∞; in the language of statistical mechanics, w�

corresponds to a scaling function. A special focus on

properties like nontriviality and global existence for the

fixed function, if it exists, will be adopted later.

At the fixed point, w� satisfies the fixed-function

equation (FFE):

w�−

�

1þ
η�

4

�

ðw0
�F þ 2ẇ�G

2Þ

¼−
1

128π4

Z

R4

y2
�

η�rðy
2Þþ 2y2r0ðy2Þ

�

Y�ðyÞd
4y: ð22Þ

Here and in the following, quantities evaluated at the

fixed point are denoted with an asterisk. In particular,

the quantity Y� is obtained by evaluating Eq. (21) for

wk ¼ w�; note that Y� contains derivatives of w� up to

second order in both arguments, such that Eq. (22) corre-

sponds to a partial differential equation for w� as a function

of F and G 2.

D. Approximations

In order to investigate the fixed-function equation (22),

we use two approximations for simplifying the technical

complexity:

(A1) The RHS of the FFE involves a momentum-space

integral where spherical symmetry is broken by the

directions of electric and magnetic fields. For instance,

the term ðFyÞ2 can be written as

ðFyÞ2 ¼ y20E
2 þ y⃗2E2 cosðϑEÞ

2

þ y⃗2B2 sinðϑBÞ
2 þ 2y0y⃗ · ðE × BÞ; ð23Þ

where we have used a Euclidean space-time decomposition

of y ¼ ðy0; y⃗Þ
T with y⃗∈R3, and ϑE, ϑB denote the angles

enclosed by y⃗ and E, B respectively. The angle dependence

can be eliminated by (i) assuming that ϑE − ϑB ¼ nπ for

n∈Z, implying that E and B are either parallel or

antiparallel, and (ii) requiring E2 ¼ B2. It can be shown,

that these conditions are equivalent to (anti-)self-dual

nonlinear electrodynamics for which F ¼ �ð⋆FÞ (where
the minus sign corresponds to anti-self-duality); note that

self-duality as used here is meaningful only in d ¼ 4

dimensions. Using self-duality, Eq. (23) exhibits spherical

symmetry in momentum space,

ðFyÞ2 ¼ Fy2 ¼ ð⋆FyÞ2; ð24Þ

such that the momentum integral in Eq. (22) can be

done analytically for a variety of frequently used shape

functions.

We emphasize that the choice of a self-dual field

configuration for the evaluation of the RHS of the FFE

does not yet represent an approximation. The RHS still

contains the complete set of terms. With this choice, we,

however, lose the ability to distinguish between depend-

encies of the RHS on the two different variablesF or G. In

fact, since G 2 ¼ F2, every term of even power in F2

receives also contributions from the G 2 dependence. Our

first approximation (A1) therefore consists in accepting the

(mis)identification of these terms on the RHS of the flow

equation. As an advantage, the FFE now reduces to an

ordinary differential equation as the bi-argument depend-

ence of the fixed function w� merges to a single-argument

dependence solely on the invariant F .

(A2) The FFE can also be transformed into an ordi-

nary differential equation by truncating the theory space

down to a pure F dependence of w�, i.e., discarding the

G 2 dependence altogether. Then, the fact that ẇ� ¼ ẅ� ¼
ẇ0
� ¼ 0 implies that Y2

k ¼ Y3
k ¼ Y4

k ¼ 0 according to

Table I and using (19).

As a consequence, the scale-dependent propagator

Gk receives only a single subtransversal contribution,

cf. Eq. (18). Nevertheless, we believe that this truncation

still provides a good approximation, since the subtransver-

sal input arises from a unique one-dimensional subspace of

X�ðR4Þ and is likely to be of minor relevance compared to

the full three-dimensional transversal input generated by

PT . The latter is mediated through the coefficient YT
k which

remains unaffected from this truncation. At the same time,

this approximation yields a considerable simplification

of Eq. (22).

Conversely, it would not be reasonable to restrict to a

purely G 2-dependent theory space and discard theF sector

instead. This would eliminate the transversal input, only

retaining one-dimensional contributions that would not

cover the underlying four-dimensional field space. Also

the Maxwell term would be discarded from the weak-field

expansion of w�, thereby losing a relevant part of theory

space including the free theory and propagator.

We emphasize, that the approximations (A1) and (A2)

are not equivalent. Clearly (A2) ⇏ (A1), because a

truncation of theory space does not induce any specification

of the field strength used to build the invariants. (A1) is a

restriction rather on the information extracted for the fixed

function w� than on the theory space. In addition, also

(A1) ⇏ (A2), since self-duality retains information about

the G 2 dependence by means of a projection on the

F -related subspace of theory space. In this manner,

derivatives of w� with respect to its G 2 argument transform

to F derivatives and, in particular, do not imply ẇ� ¼ 0.

This is different from the demands of (A2).
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In previous studies [22,86], the truncation represented by

approximation (A2) has been applied. Specifically in [63],

the problem of the angle dependence has been solved by an

expansion and resummation technique. As we apply both

(A1) and (A2), our resulting FFE differs from that of [63]

by the terms kept from the identification of G 2 ¼ F2. On

the other hand, by performing the momentum integration

without expansion we have an unaffected access to the

large-field limit of the FFE.

IV. FIXED FUNCTIONS FOR IMPROPER

INITIAL CONDITIONS

In this section,we focus on the reduced FFE that we obtain

based on the approximations (A1) and (A2). We search for

solutions employing a weak-field expansion technique that

is widely used in the literature, e.g., for the analysis of

Wilson-Fisher-type fixed points in scalar field theories in a

local-potential approximation [44,50,71,74,88–90], generic

fermionic or Yukawa models [76,91–95], supersymmetric

models [96–99], or asymptotically safe fixed points in

gravity [100–106].

Even though this method is simple and has proven to

lead to robust results in many examples, it is based on a

choice of improper initial conditions for the FFE that do not

fix the solution uniquely without additional assumptions

and may, in fact, produce artifacts as will be discussed

below. Indeed, our results are similar to those of [63,64] as

we find many fixed-point candidates in addition to the

Gaussian fixed point. Subsequently, we will, however,

argue that proper initial conditions give a more immediate

access to fixed-point candidates for the present system.

A. Reduced fixed-function equation

Applying both approximations (A2) and (A1) in this

order reduces Eq. (22) significantly:

w�−

�

1þ
η�

4

�

w0
�F¼

1

64π2

	

3t4ð10Þ

�

w0
�;
η�

2

�

þ t4ð10Þ

�

1;
η�

2

�

−w00
�F t4ð11Þ

�

w0
�;ðw

0
�FÞ0;

η�

2

�


; ð25Þ

where we have introduced the threshold functions

tdðn1n2Þ
ðz1; z2; aÞ

≔

Z

∞

0

y
d
2
−1

−yr0ðyÞ − arðyÞ
�

z1 þ rðyÞ
�

n1
�

z2 þ rðyÞ
�

n2
dy: ð26Þ

If either n1 ¼ 0 or n2 ¼ 0, t does not depend on z1 or z2
respectively and we will just omit the redundant argument

in our notation, e.g., tdðn10Þ
ðz1;aÞ.

In the remainder of this section, we attempt to construct a

solution to Eq. (25) using analytical techniques based on

small-field expansions.

B. Small-field expansion

Assuming that the field-strength potential at the fixed

point can be expanded in a Taylor series near the origin,

w�ðFÞ¼
X

∞

i¼0

ui;�F
i

¼ u0;�þF þu2;�F
2þOðF3Þ asF→ 0; ð27Þ

we need to determine the generalized fixed-point couplings

ui;� from the FFE (25).

We implement the IR regularization using the Litim-type

regulator shape function [107],

rðyÞ ¼
1 − y

y
1½0;1ÞðyÞ; ð28Þ

in which 1½0;1Þ denotes the characteristic function on the

semi-open interval ½0; 1Þ ⊂ R. This choice transforms all

threshold functions (26) occurring in Eq. (25) into the

following:

t4ð10Þ

�

w0
�;
η�

2

�

¼
1

2

Z

1

0

y
2−η�ð1−yÞ

1− ð1−w0
�Þy

dy;

t4ð10Þ

�

1;
η�

2

�

¼
1

2

�

1−
η�

6

�

;

t4ð11Þ

�

w0
�;ðw

0
�FÞ0;

η�

2

�

¼
1

2

Z

1

0

y2
2−η�ð1−yÞ

�

1− ð1−w0
�Þy

��

1−
�

1− ðw0
�FÞ0

�

y
�dy: ð29Þ

Inserting the ansatz (27) into the reduced FFE (25) and

expanding the RHS in powers of F , we obtain a tower of

equations for the generalized fixed-point couplings ui;� by

comparison of coefficients, the first four of which are listed

below:

u0;� ¼
6 − η�

192π2
;

η� ¼
8u2;�

48π2 þ u2;�
;

u2;� ¼
1

2
ð4þ η�Þu2;� þ

3

320π2
ð10 − η�Þu

2
2;�

−
5

512π2
ð8 − η�Þu3;�;

u3;� ¼ −
1

48π2
ð12 − η�Þu

3
2;� þ

3

4
ð4þ η�Þu3;�

þ
3

80π2
ð10 − η�Þu2;�u3;� −

1

64π2
ð8 − η�Þu4;�: ð30Þ
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We observe that the vacuum energy u0;� is fully determined

by the anomalous dimension and completely decouples

from the higher-order couplings. Having fixed the wave

function renormalization such that u1;� ¼ 1, the anomalous

dimension is fully defined in terms of u2;�, such that the

equations for the higher-order couplings can structurally be

written as ui;� ¼ fiðu2;�;…; uiþ1;�Þ for i ≥ 2. The function

fi here features a linear dependence on the highest-order

coupling uiþ1;� involved.

This structure illustrates the role of initial conditions:

since the FFE is a second-order ODE, two initial conditions

are needed for specifying a solution. One initial condition is

given by u1;� ¼ 1 through our choice of the wave function

renormalization. A solution of the tower of equations, say

up to order N ∈N0, now requires one further initial

condition. In principle, any coupling u2;�;…; uNþ1;� could

be fixed for this purpose. In order to construct a systematic

expansion scheme, the standard strategy is to fix uNþ1;� to

some value, typically uNþ1;� ¼ 0, and then increase N until

some convergence criterion is met.

On the level of the FFE, this strategy corresponds to the

initial conditions w0
�ð0Þ ¼ 1 and w

ðNþ1Þ
� ð0Þ ¼ 0. We call

these initial conditions improper, because (i) they do not

guarantee a unique solution since the conditions of the

Picard-Lindelöf theorem are not matched, and (ii) they do

not cover the full space of possible initial conditions and

thus of the solution space.

In order to make this more precise, we define the partial

sum w�ðF ;NÞ ≔
P

N
i¼0 ui;�F

i as a truncation at order

N ∈N0. We can solve the resulting tower of equations (30),

expressing all couplings as functions of u2;�, i.e., ui;� ¼
ui;�ðu2;�Þ for all i∈N0;≤N . The improper initial condition

uNþ1;�ðu2;�Þ ¼ 0 yields a polynomial equation of degree

2N − 1 in u2;� for N ≥ 1. Therefore, it can at most admit

2N − 1 zeroes. For each odd N, we find Nð≤ 2N − 1Þ
distinct real solutions, whereas for each even N we instead

obtain N þ 1ð≤ 2N − 1Þ such solutions. The case N ¼ 0

corresponds to η�ðu2;�Þ ¼ 0 and immediately implies

u2;� ¼ 0 which describes the trivial solution. The solutions

up to order N ¼ 26 are shown in Fig. 1 (except for one

solution existing only for even N which we consider as an

artifact).

In addition to the noninteracting Gaussian fixed point

(GFP) characterized by vanishing fixed-point couplings, we

observe non-Gaussian fixed points (NGFP) which can be

classified according to their number of RG relevant direc-

tions. The latter are characterized by the critical exponents

Θ
ðNÞ
j derived from the spectrum of the truncated stability

matrixB
ðNÞ
� , being the Jacobian of the (column) vector of beta

functions, βðNÞ ¼ ðβ0; β2; β3;…; βNÞ
T where βi ≔ ∂tuiðkÞ

[note that β1 ¼ ∂tu1ðkÞ ¼ 0], with respect to the (column)

vector of couplings uðNÞ ≔ ðu0; u2; u3;…; uNÞ
T evaluated at

the fixed-point candidate u
ðNÞ
� ,

B
ðNÞ
� ¼ ðDβðNÞÞðu

ðNÞ
� Þ; −Θ

ðNÞ
j ∈ eigðB

ðNÞ
� Þ: ð31Þ

PositiveΘ
ðNÞ
j mark RG relevant directions, corresponding to

perturbations of a fixed point that grow large towards the IR

anddominate the long-range physics. The number of relevant

directions near a fixed point corresponds to the number of

physical parameters to be fixed for predicting all low-energy

observables. The increasing number of fixed-point candi-

dates for increasing truncation order N also exhibit an

increasing number of relevant directions. In Fig. 1, we have

connected all fixed-point candidateswith the samenumber of

relevant directions by dotted lines to guide the eye, and

labeled the non-Gaussian fixed points with the number of

relevant directions in parentheses.

For the GFP, the only relevant direction is associated

with the vacuum energy u0. For the interacting fixed points,
further nontrivial relevant directions appear in addition to

that of the vacuum energy which remains exactly at Θ
ðNÞ
0 ≡

Θ0 ¼ 4 for all N ∈N0, reflecting its canonical dimension.

Classifying the non-Gaussian fixed-point candidates

according to the same number of relevant directions for

increasing truncation order in terms of fixed-point classes

labeled by NGFPn as in Fig. 1, we observe that each class

is characterized by nþ 1 relevant directions, i.e. n non-

trivial directions apart from the one of the vacuum energy.

If real, each of the NGFPn could represent a new

universality class of nonlinear electrodynamics giving rise

to UV complete quantum field theories of interacting light.

However, following the standard reasoning in the literature

for small-field expansions, we expect only those NGFP

FIG. 1. Fixed-point candidates within the small-field expansion

using improper initial conditions, uNþ1;�ðu2;�Þ ¼ 0, as a function

of truncation order N ¼ 1;…; 26. The dotted lines connect fixed-
point candidates with the same number of relevant directions as

labeled in parentheses below the fixed-point designations: GFP,

NGFP1, etc. In addition to the Gaussian fixed point (black), we

observe a fixed-point candidate with one relevant direction (red)

and subsequent higher-order candidates (blue and gray), each of

which moves toward weaker fixed-point couplings for increasing

truncation order.
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candidates to approximate a true interacting fixed point for

which the couplings ui;� and the critical exponents con-

verge with increasing truncation order N.
From Fig. 1, all fixed-point candidates NGFPn appear to

converge towards the GFP. In order to substantiate this

quantitatively, we plot the fixed-point value lnð−u2;�Þ as a
function of truncation order N for a sample of the NGFPs in

Fig. 2. We observe that the data follows linear fits, implying

an exponential convergencewithN:u2;�ðNÞ¼−aexpð−bNÞ
with fit constants a, b for each non-Gaussian fixed-point

class NGFPn, respectively. Assuming that this exponential

drop-off can be extrapolated to any N, we observe that u2;�
and presumably also the higher-order couplings deplete to

zero. Our data suggests that this also holds for higher-order

NGFPn albeitwith smaller damping rate.While this seems to

suggest that all NGFPn converge to the GFP, we emphasize

that we are dealing with different universality classes here,

since the NGFPn exhibit a different number of relevant

directions.

In order to check for the convergence of the critical

exponents, we concentrate on NGFP1 (marked in red in

Fig. 1) which exhibits one nontrivial relevant direction in

addition to the trivial vacuum-energy direction. For this

purpose, we track the evolution of B
ðNÞ
NGFP1 and its spectrum,

eigðB
ðNÞ
NGFP1Þ, for growing N. The result is depicted in Fig. 3.

In addition to the critical exponent corresponding tou0which

stays fixed at Θ
ðNÞ
0 ¼ 4 for all N ∈N0, the second relevant

exponent lies also close to the same value Θ
ðNÞ
2 ≈ 4; e.g., for

our highest truncation, we findΘ
ðN¼26Þ
2 − 4 < 10−5. The real

parts of subsequent critical exponents remain negative (RG

irrelevant) for all values ofN studied here, and exhibit a clear

tendency to approach the canonical mass dimensions of the

higher-order operators, cf. black ticks in Fig. 3, right side.

In particular, the convergence towards this asymptotic limit is

already apparent for the first few irrelevant exponents. In

addition, we also find complex conjugate pairs of critical

exponents, the real parts of which are indicated by open

squares. In theN range analyzed here, these complex pairs do

not yet exhibit a clear signature of convergence, as is also true

for the highest-order exponents. More definite answers

would require higher truncations.

Our findings so far show a close similarity to those

of [63] for nonlinear ED using a different truncation

scheme as well as to those of [63,64] studying shift-

symmetric scalar field theories both motivated by explora-

tions of the weak-gravity bound [36,108–115]. In fact, the

resulting FFEs in these systems show a great deal of

similarity such that qualitative and even quantitative

resemblance does not come as a surprise.

In the light of this similarity, we expect that also the

further results of [64] for the shift-symmetric scalar field

are also of relevance for nonlinear ED: for the eigenper-

turbations around the Gaussian fixed point of the scalar

theory, the corresponding differential equation can be

brought into Sturm-Liouville form which comes with an

integration measure. However, the eigenperturbations

around fixed points analogous to our NGFPn turn out

not to be square-integrable with respect to the Sturm-

Liouville measure. Reference [64] concludes for the shift-

symmetric scalar theory that these fixed points do not

represent legitimate physical fixed-point solutions and

should be discarded, cf. [116–121].

Based on the strong similarity, we conjecture that an

analogous Sturm-Liouville analysis leads to the same

FIG. 2. Logarithmic plot of the (negative) fixed-point coupling

−u2;�ðNÞ for selected interacting fixed point classes NGFPn for

increasing truncation order N. The results from the truncated

fixed-point equations can be fitted to an exponential with fit

parameters a, b such that −u2;�ðNÞ ¼ ae−bN (solid lines). The fit

parameters are listed in the legend.

FIG. 3. Real parts (ℜ) of critical exponents of the first non-

Gaussian fixed point (NGFP1) derived from the small-field

expansion as a function of truncation order N. Filled circles of

equal color correspond to evolutions of individual critical

exponents for increasing N. Open squares mark the real part

of critical exponents which show up in complex conjugate pairs.

The black dashed line follows the canonical mass dimension of

the highest operator F̄N included at each N. Short solid ticks at

the right edge mark the (negative of the) canonical mass

dimensions of all operators occurring in the polynomial expan-

sion, 4; 0;−4;−8;…;−100.
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verdict for the fixed points NGFPn derived here from the

small-field expansion using improper initial conditions.

Therefore, the only trustworthy fixed point so far is the

trivial Gaussian one with the field-strength potential

wGFPðFÞ ¼ 1

32π2
þF .

This seems to suggest that no nontrivial fixed points exist

in nonlinear ED; however, the argument is incomplete: as

we argue in the following, the small-field expansion using

improper initial conditions can be blind to further solutions.

In order to illustrate this already within the small-field

expansion, let us take a look at the behavior of the

anomalous dimension η� as a function of u2;�. As discussed
above, this relation is fully determined by theF -linear part

of the reduced FFE and can be found as the second equation

from above in (30). In fact, this relation also holds for more

general Taylor expansions of w�ðFÞ aroundF ¼ 0, where

u2;� has to be replaced by
1
2
w00
�ð0Þ. A plot of η� as a function

of u2;� is shown in Fig. 4. For values u2;� ∈ ð−∞;−48π2Þ,
the anomalous dimension is positive but large and reaches

its limit point η� ¼ 8 for u2;� → −∞. It moreover develops

a pole at u2;� ¼ −48π2, where beyond that pole in the range

u2;� ∈ ð−48π2; 0� the anomalous dimension assumes neg-

ative values and crosses the zero point for vanishing u2;�. In

the opposite half space of positive u2;�, η� is smooth

throughout, slowly monotonically growing and bounded

from above by the limit value η� ¼ 8 for u2;� → ∞.

All non-Gaussian fixed points within the NGFPn dis-

played in Fig. 1 are located in the slim blue shaded region

between the Gaussian solution and the pole. They cover

thus a limited range of negative values for η�. The shifted

branch of extra solutions existing only for even N and

essentially ignored in the discussion above corresponds to

the separated blue shaded region at large ju2;�j beyond the

pole. In fact, classifying this shifted branch as an artifact is

also justified by the fact that the anomalous dimension is

large, η� > 8. Since our ansatz for the action is based on a

derivative expansion, we expect the anomalous dimension

not to exceed values of Oð1Þ as a self-consistency criterion

of the expansion.

Most importantly, we observe that the small-field

expansion together with the improper initial condition does

not give access to solutions with small positive values of η�.

From the viewpoint of proper initial conditions, this

appears to be unnatural: a proper initial condition for the

FFE given, e.g., in terms of w00
�ð0Þ ¼ u2;� does naturally

include small positive values of u2;� implying likewise

small positive values of η�. Whether or not such initial

conditions lead to a legitimate fixed point and a global

solution of the FFE needs to be and is studied separately in

the following sections.

Let us conclude this section with a few comments on the

limitations of the small-field expansion: In general, we

expect the small-field expansion (27) to have a finite radius

of convergence (ROC). This radius typically does not cover

the maximal domain on which a full solution w� can be

defined, but rather a bounded interval F ∈ ½0;FROCÞ. In
the literature, numerical shooting methods have frequently

been used [46,47,52,118,122] to identify the initial con-

dition for u2;� by that value that maximizes FROC; this is

based on the argument that a true fixed-point solution

should be globally defined. Since our current form of the

FFE is not suitable for shooting, we refrain from using this

method, but complement our approach by a large-field

expansion below.

Finally, if we dropped assumption (A2) and reincluded

G 2 dependencies into w�, new features could appear in the

F part of theory space as the new couplings act nontrivially

on the RG flow. Since there is no concept of (Hodge)

duality for a scalar field, theories of nonlinear ED with

fixed functions ðF ;G 2Þ ↦ w�ðF ;G 2Þ may no longer be

comparable to shift-symmetric scalar systems. This may in

principle affect the implications that we have conjectured

from the FFE based on the analogy to the shift-symmetric

case. We will come back to this point in Sec. VI.

V. FIXED FUNCTIONS FOR PROPER

INITIAL CONDITIONS

In this section, we continue to use the approximations

(A1) and (A2), but now aim at solving the FFE using

proper initial conditions: as the reduced FFE (25) is a

second order ordinary differential equation, two initial

conditions are required to single out a unique solution.

As an example, consider initial conditions at zero field

amplitude, w0
�ð0Þ ¼ w1 and w00

�ð0Þ ¼ w2 with constants

FIG. 4. Anomalous dimension η� plotted as a function of the

coefficient u2;� of the F2 contribution to the small-field ex-

pansion (blue line), exhibiting a pole at u2;� ¼ −48π2 (red line).

The blue shaded areas indicate the regions where all fixed points

from the classes NGFPn based on the small-field expansion with

improper initial conditions for N ∈N≤26 have been found; the

blue shaded segment at the left margin contains all fixed-point

candidates classified as an artifact of the truncation, whereas the

region right to the pole comprises the fixed-point candidates

displayed in Fig. 1.
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w1; w2 ∈R. As discussed above, w1 ¼ 1 is already fixed by

our choice for the wave function renormalization. This

leaves us with a solution space, being a one-parameter

family fF ↦ w�ðF ;w2Þjw2 ∈Rg.
In the present case where w00

�ð0Þ ¼ u2;�, we could use

w2 ¼ u2;� for parametrizing this family. For reasons that

become clear later, we use the inversion of the exact

relation between u2;� and the anomalous dimension η� in

the second equation of (30),

u2;�ðη�Þ ¼ 48π2
η�

8 − η�
for η� ≠ 8; ð32Þ

in order to navigate through the space of solutions by using

η� ∈R excluding the value η� ¼ 8 where (32) diverges.

In order to single out the physical fixed-point solutions,

another criterion is needed. In many models, this criterion is

given by global existence. For instance, in Ising-type

systems, a generic choice for w2 yields a solution with a

singularity at a finite field amplitude [43,44], and only a

single value of w2 (or a discrete set) corresponds to a

solution which exists for any value of the amplitude.

The following subsections are devoted to a construction

of such global solutions using the analytical tools of small-

and large-field expansions.

A. Small-field expansion

Let us start again with the small-field expansion, now

implementing proper initial conditions. For this, we use

again the Taylor expansion (27), leading to the tower of

Eqs. (30). The essential difference for a given value

of η� now is that we can use the ith equation ui;� ¼
fiðu2;�;…; uiþ1;�Þ and solve it exactly for uiþ1;�. Here we

note two aspects: firstly, the solution is unique, since fi
depends linearly on uiþ1;� and secondly, it is stable against

increments of N for every admissible value of η�. The latter

means that the functional dependence of uiþ1;� on the

anomalous dimension is unaffected from the order of

truncation and, once determined explicitly, applies to

arbitrary N (provided that i ≤ N, otherwise uiþ1;� does

not yet exist). The explicit expressions for the first few

coefficients ui;� including the vacuum energy u0;� read:

u0;� ¼
6 − η�

192π2
;

u1;� ¼ 1;

u2;� ¼ 48π2
η�

8 − η�
;

u3;� ¼
6144π4

25

η�

ð8 − η�Þ
3
ð160þ 150η� − 19η2�Þ;

u4;� ¼
49152π6

125

η�

ð8 − η�Þ
5
ð102400þ 236800η�

þ 67520η2� − 24520η3� þ 1563η4�Þ: ð33Þ

From investigating also higher order couplings we can find

a general pattern, according to which the ith coupling for

i ≥ 2 can be written as a function of η� as

ui;�ðη�Þ ¼ Aiπ
2ði−1Þ η�

ð8 − η�Þ
2i−3

P2ði−2Þðη�Þ; ð34Þ

where Ai is a number and PD denotes a full polynomial of

degree D in η�.

For illustration, let us study some explicit results for

various choices of η�. Since the improper initial conditions

gave us access to negative values of η� only which we

argued to correspond to artifacts of the approximation, we

now concentrate on the branch η� > 0. Indeed, the fact that

we are now capable of inspecting fixed points at positive

anomalous dimensions is a notable difference between

improper and proper initial conditions. As our truncation

corresponds to a derivative expansion, we expect our

approximation to be justified for small values of η� ≲Oð1Þ.
Let w�ðF ; η�; NÞ denote the Nth partial sum of

Eq. (27). Several resulting field-strength potentials F ↦

w�ðF ; η�; NÞ in the range F ∈ ½0; 0.02�, for the choices

η�∈f10
−4;10−3;10−2;10−1;1;5g and N ∈ f10; 20; 30; 40g

are shown in Fig. 5. We observe that w� describes a

monotonically increasing function with a linear domain

close to the origin, where approximately w�ðF ; η�; NÞ−
u0;�ðη�Þ ≈F . The range of this domain depends sensitively

on the two parameters η� and N. For example, for

increasing N at fixed η�, the point of departure from the

linear behavior is shifted to smallerF. However, the speed

of this shift slows down rapidly for increasing N. Also for

increasing η� at fixed N, we observe a similar, if not more

pronounced, effect.

Analogously to many other FRG studies of fixed-point

potentials, we indeed expect the small field expansion to

exhibit a finite radius of convergence; the preceding

observed behavior is indicative for this. More quantita-

tively, let rðη�Þ denote the radius of convergence of the full
power series (27), our observations suggest that rðη�Þ
shrinks with increasing η�. From the polynomial relation

ui;�ðη�Þ ∝ P2i−4ðη�Þ, it is clear that limη�→∞ rðη�Þ ¼ 0,

whereas rð0Þ ¼ ∞, since η� ¼ 0 corresponds to the

Gaussian fixed point, where all ui≥2;� vanish identically.

In order to compute the radius of convergence in full

generality we would need to use Cauchy-Hadamard’s

theorem. Here, we confine ourselves to use a special case

of the theorem where r can be extracted from the ratio test if

all couplings are known, i.e., rðη�Þ ¼ limi→∞ jui;�ðη�Þ=
uiþ1;�ðη�Þj whenever the limit exists, provided that all

coefficients ui;� do not vanish above a certain index. The

latter requirement is certainly fulfilled in the case at hand

and we find the general result of the form

ui;�ðη�Þ

uiþ1;�ðη�Þ
¼

1

π2
Ai

Aiþ1

ð8 − η�Þ
2
P2ði−2Þðη�Þ

P2ði−1Þðη�Þ
; ð35Þ
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in which
Ai

Aiþ1
< 1 holds for all i studied in this work. The

sequence (35) is depicted in Fig. 6 for the values of η� also

considered in Fig. 5. Since each of these sequences exhibits

rapid convergence, we obtain estimates for rðη�Þ, e.g.,

rð10−4Þ ≈ 0.009 or rð1Þ ≈ 0.001 [and, as anticipated,

rð5Þ ≈ 0 for the extreme example of a large anomalous

dimension η� ¼ 5].

B. Large-field expansion

On our way to construct global solutions to the FFE, let

us next study a large-field expansion. In order to identify a

starting point, we use the following line of argument: On

the one hand, we expect the field-strength potential to be an

increasing function of the field amplitude. More specifi-

cally, we expect w�ðFÞ to diverge for F → ∞, reflecting

the fact that an infinitely large amplitude should cost an

infinite amount of Euclidean action. On the other hand, the

Sturm-Liouville analysis mentioned above suggests that the

field-strength potential should be polynomially bounded. It

is thus natural to assume that the field-strength potential

diverges like a power for large amplitude, w�ðFÞ ∼FΔ for

F → ∞, with a positive exponent Δ > 0. If so, both terms

on the left-hand side of Eq. (25) scale like ∼FΔ to infinity

at large fields. On the right-hand side, we observe that all

terms are bounded: for Δ > 1, all field-dependent terms are

suppressed ∼1=FΔ−1; for 0 < Δ ≤ 1, the right-hand side

approaches a constant.

FIG. 6. Ratio sequence for the highest-order series coefficient

uN;� of an Nth partial sum truncation of the small-field expansion

Eq. (27). Here, the set of η� values agrees with those of Fig. 5

following the same color code.

FIG. 5. (Partial) Fixed function w� plotted as a function of positiveF for different finite-dimensional truncations (N) and a selection

of η� values. The panes display results for increasing truncation order from N ¼ 10 (upper left) to N ¼ 40 (lower right) in steps of

ΔN ¼ 10. In each panel, w� is shown for values of η� ranging logarithmically from 10−4 to 1 in colors from blue (right-most) to orange,

respectively, also including the extreme example η� ¼ 5 (red/left-most) for illustrative purposes.
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Ignoring subleading constants, the reduced FFE (25)

therefore takes the asymptotic form

w� −

�

1þ
η�

4

�

w0
�F ∼ 0 ðF → ∞Þ: ð36Þ

Equation (36) corresponds to a first-order ordinary differ-

ential equation which can easily be solved analytically,

yielding a two-parameter family of solutions with one

integration parameter μ in addition to the anomalous

dimension η� parametrizing the proper initial condition

of the full equation:

w�ðF ; μ; η�Þ ∼ μFΔðη�Þ ðF → ∞Þ;

Δðη�Þ ≔
4

4þ η�
: ð37Þ

This demonstrates that our assumption of a power-law

ansatz for the large-field asymptotics is self-consistent as

long as η� > −4. Moreover, we observe that this asymp-

totics is governed by the anomalous dimension. This is in

complete analogy to many other examples in the literature

where the large-amplitude asymptotics is balanced by the

classical rescaling terms [i.e., the second term in Eq. (36)].

For the construction of the global solution below, the

parameter μ will be fixed by the requirement of merging

the small- and large-field solutions.

Using Eq. (37) as a leading order, we now need an ansatz

for a systematic large-field expansion. For better read-

ability, let us define X ≔ 1=F and rewrite the field-

strength potential in terms of X , w̃�ðX ; μ;Δðη�ÞÞ ¼
w�ðF ; μ; η�ÞjF¼X −1 . Then, we may parametrize w̃� for

small X as

w̃�ðX ; μ;ΔÞ ¼ cðμ;ΔÞ þ μX −Δ þ C̃�ðX ;ΔÞ; ð38Þ

where c is a constant for a fixed pair ðμ;ΔÞ, and C̃� provides
the subleading terms of higher orders in X . It is straight-

forward to check, that a naive power-series ansatz for C̃� in

general leads to artificial divergencies upon Taylor-expand-

ing the threshold functions. Therefore a more refined

strategy is needed.

The field-dependent part of the integrands of the

involved threshold functions given in (29) can be written

as either

1

1 − Ay
or

1

1 − Ay
·

1

1 − By
; ð39Þ

where A and B areX -dependent quantities and y∈ ½0; 1� is
the variable of integration. The expressions in (39) can be

expanded into a geometric series as long as jAj; jBj < 1.

Given the ansatz (38) for w̃�, these last-mentioned con-

ditions can be viewed as restrictive boundary conditions on

the applicability domain of X , the range of which will be

μ and Δ dependent. Using the explicit forms of A, B in

Eq. (29), these conditions read

0 < ΔμX 1−Δ −X 2C̃0�ðX ;ΔÞ < 2;

0 < Δ
2μX 1−Δ þX 2ð1þX C̃00�ðX ;ΔÞÞ < 2: ð40Þ

Here, a prime denotes the derivative with respect to the

argument, e.g., C̃0�ðX ;ΔÞ≡ dC̃�ðX ;ΔÞ
dX

. Since C̃� decreases

fast enough for X → 0 by assumption, these conditions

can be fulfilled if 1 − Δ > 0, such that contributions

proportional to X 1−Δ do not become arbitrarily large. It

is interesting to note that this implies, in particular, η� > 0,

which is in fact the regime of interest to us.

The geometric series expansions of (39) on the one hand

produce simple integrals over positive powers of y that can
be performed analytically at any order. On the other hand,

the resulting field dependencies arise from the correspond-

ing powers An or Bn (n∈N0) which also contain powers of

w̃� and its derivatives. This produces monomials ∝X mΔ

(m∈N) which cannot be covered by an ordinary power-

series ansatz for C̃�. It rather needs to be expressed in terms

of a formal Hahn series with ΓðΔÞ ⊂ N2 being a suitable

Δ-dependent ordered group from which the running index

of the corresponding sum is taken. Our final large-field

ansatz results from an iterative process that covers all

powers of X arising from the geometric-series expansion:

w̃�ðX ; μ;ΔÞ ¼
X

e∈ΓðΔÞ

veðμ;ΔÞX
pðeÞ

¼ cðμ;ΔÞ þ μX −Δ

þ
X

∞

I¼1

X

I

a¼1

vaI ðμ;ΔÞX
I−aΔ: ð41Þ

Here, vaI (ðI; aÞ ¼ e∈ΓðΔÞ ⊂ N2) are the μ- and

Δ-dependent coefficients to be determined and pðeÞ ≔
I − aΔ.
Unlike in the small-field regime, a truncation for the

large-field sector will thus be specified by two parameters

N1; N2 ∈N0. The former truncates the first series (41) to its

first N1 terms I ∈N≤N1
, including a total of 1

2
N1ðN1 þ 1Þ

terms because of the double sum. Besides the lowest order

contribution, which is always X 1−Δ, this also defines the

highest power of this expansion which is given by X N1−Δ.

Higher order contributions are neglected whenever they are

generated by the expansion of the reduced FFE. However,

this procedure is not fully self-consistent insofar as also

contributions proportional to X pðeÞ with 1 − Δ < pðeÞ <
N1 − Δ will emerge, but which are not part of our

truncation itself. Since those p’s can still be expressed

as pðeÞ ¼ I − aΔ for some pair ðI; aÞ ¼ e∈ΓðΔÞ, these
terms eventually get successively and consistently resolved

at higher truncations N1. In order to estimate the
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quantitative impact of these terms, we will compare two

different truncations and try to evaluate the weight of these

additional contributions. The second parameter N2 limits

the geometric series emerging through (39) to contain

only their firstN2 terms. The effect of choosing differentN2

values can be understood as follows: if we think of all

possible contributions ∝ X I−aΔ being classified by an

ordered sequence of sets which contain all exponents

according to their numerical value in the interval

In ≔ ½n; nþ 1Þ for n∈N0, the parameter N2 causes the

number of terms which actually appear on the RHS of the

reduced FFE from each of these classes to increase. For

instance, if Δ is less than, but close to, one (which

corresponds to small η�), terms with exponents I − aΔ
for a ¼ I give Ið1 − ΔÞ∈ ½1; 2Þ ¼ I1 for many values of I.
Given a fixed parameter value ofN1, we may generate more

and more terms that belong to the class I1 which are yet not
part of the truncation at hand ifN2 gets large enough. In this

sense, N2 controls the resolution at which the spectrum of

all potential contributions taken from the classes In and

emerging on the RHS of the reduced FFE is sampled.

However, only if we also raise N1 we would be able to

balance this effect with the LHS and reveal the information

available at this level of the resolution. Thus, it is advisable

to narrow the pertinent truncations on similar values,

e.g., N1 ¼ N2 þ 1.

C. Global fixed functions

Let us now proceed with the construction of global fixed

functions based on the analytic expansions for small and

large fields employing proper initial conditions. Since both

expansions generically have a finite radius of convergence,

it is a priori unclear whether both expansions have a finite

overlap region where they can be matched using the

parameter μ. For instance, for scalar OðNÞ models, such

an overlap region does exist. If so, it is typically not

possible to perform the matching for any set of proper

initial condition parameters. In fact for scalar models this is

possible only for a discrete set of initial conditions that

correspond to a discrete set of fixed points [123], such as

the Gaussian or the Wilson-Fisher fixed point. If this

standard scenario applies to the present case, we should

expect that it singles out specific values of η� for which

global fixed functions can be constructed. Incidentally,

there is a priori no guarantee that a finite overlap region for

the two expansions exists; see [59] for a counter example.

In this case, the present approach would not find a viable

global solution and more powerful methods such as those

of [48,59,124,125] are needed.

Let us now construct estimates for global fixed functions

obeying proper initial conditions using the following steps:

(1) First, we construct a solution wL
� from the large-field

expansion of the reduced FFE defined in terms of

the two truncation parameters N1 ∈N; N2 ∈N0. The

ansatz (41) together with the reduced FFE yields an

algebraic system from which we can determine the

constant c as well as the 1
2
N1ðN1 þ 1Þ unknown

coefficients vaI ∈ fv11; v
1
2; v

2
2; v

1
3;…; v

N1

N1
g. The latter

are derived as functions of μ and Δ.

(2) Second, we construct the small-field expansion wS
�

for proper initial conditions specified in terms of a

value for η� based on the highest-order truncation,

i.e., the largest value of N used in Sec. VA. The

proper initial condition, of course also fixes the Δ ¼
Δðη�Þ dependence of the coefficients vaI , and thus

that of the large-field solutionwL
� from step (1) which

retains only a μ dependence.

(3) In order to specify the remaining free parameter μ,

let us first quantify the overlap region of the two

approximate solutions wS
� and wL

� : from our con-

struction of wS
� , we also obtain an approximation of

the radius of convergence r, cf. Eq. (35) and Fig. 6.

Unfortunately, a formal Hahn series like (41) does

generally not allow for a proper notion of conver-

gence, let alone a radius of convergence; still, we

observe that wL
� develops a pronounced barrier bL

below which the derivative ðwL
� Þ

0 rapidly increases.

This happens for sufficiently small F numerically

comparable to some power of the coefficients vaI .
A numerical value for bL can be estimated by

bL ≈maxfðvaI Þ
1

I−aΔjI ∈N≤N1
; a ≤ Ig. We use bL as

a provisional substitute for a radius of convergence

for wL
�.

Then, we define the overlap region of wS
� and wL

�

in terms of the interval intersection ½0; r� ∩
½bL;∞Þ ¼ ½bL; r� if bL ≤ r. (If bL > r, there is no

overlap region and a construction of a global

solution cannot be based on the small- and large-

field expansions alone.) Even though bL carries a μ

dependence in principle, we observe this depend-

ence to be rather weak; in practice, the approxima-

tion bL ≈ const: can hence be used for a wide range

of μ values.

Now, we fix the free parameter μ by demanding

that the square-deviation integral in the overlap

region,

δ2ðμÞ ≔

Z

½bL;r�
ðwS

�ðFÞ − wL
� ðF ; μÞÞ2dF ; ð42Þ

becomes minimal,

μ→ μ0∶ ðδ2Þ0ðμ0Þ ¼ 0 ∧ ðδ2Þ00ðμ0Þ > 0: ð43Þ

In case of several local minima, we pick the μ0 value

for the global minimum of δ2. Inserting μ0 into wL
�

finally completes the large-field solution.

(4) As a last step, both wS
� and wL

� are suitably glued

within the interval ½bL; r�. A simple procedure is to
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use an intersection point of the two expansions. If

more than one intersections appear, sayF1;F2;…,

we choose the one for which the absolute difference

jðwS
�Þ

0ðFlÞ − ðwL
� Þ

0ðFl; μ0Þj is minimal to achieve

the smoothest transition possible with this direct

method. Suppose we have chosen such a point of

intersection in this way, Fl for some index l, then

replace Fl → F0 and let F0 ∈ ½bL; r�. With this

choice, we obtain an approximate global solution

from

w�ðFÞ ¼ ðwS
� · 1½0;F 0Þ þ wL

� · 1½F0;∞ÞÞðFÞ: ð44Þ

The results for two different truncations ðN1; N2Þ∈
fð2; 1Þ; ð4; 3Þg are presented in Fig. 7.

Based on the quantitative results, we can first and

foremost conclude that satisfactory approximations to

continuous global fixed functions can be constructed for

a variety of different η� values and truncations. With our

matching condition (43) we even obtain comparatively

smooth fixed functions at the fusion point F0 for suffi-

ciently small η� > 0. For the case η� ¼ 1, it is evident from

Fig. 7 that this gluing procedure leads to a visible kink at

the matching point. This may already be taken as an

indication that η� ¼ 1 lies beyond the range of η� values

for which the present procedure yields a valid approxima-

tion of a global fixed function. This is discussed in more

detail in the next section, where also another gluing

procedure will be presented that yields differentiable global

approximations.

Let us finally comment on the convergence properties of

our truncated expansion forN;N1; N2 → ∞. For this, we use

the dependence of the overlap region ½bL; r�ðN;N1; N2; η�Þ
on the truncation parameters and the anomalous dimension

as an indicator. For fixed N and η� we can infer from

Fig. 7 that the interval obeys the inclusion relation

½bL; r�ðN;N1;N2;η�Þ ⊃ ½bL; r�ðN;N1þmþ 1;N2þm;η�Þ,
for m∈N. More generally, we expect that increasing the

FIG. 7. Global continuous fixed functions and residuals of small- and large-field expansions for various values of the anomalous

dimension η� for different truncation orders. The color code for different values of η� corresponds to that of Fig. 5. The large-field

asymptotics is given by a power law with exponent Δ ¼ 4
4þη�

, cf. upper left legends. The small-field expansion is truncated beyond

N ¼ 40, whereas the large-field truncation parameters ðN1; N2Þ are taken to be either (2,1) (dashed) or (4,3) (solid). In each panel, the

colored lines show combined global solutions according to Eq. (44), where the parameters μ0 and F 0 are such that (43) is fulfilled and

the intersection has the least slope difference. Numerical values are given in the boxes in the lower right corners. Moreover, gray lines

represent pure large-field solutions in both truncations, whereby the pure small-field solution is distinguished from them by the black

dotted line in each panel. The overlap region, i.e., the interval ½bL; r� is indicated by the colored regions.

RENORMALIZATION FLOW OF NONLINEAR ELECTRODYNAMICS PHYS. REV. D 110, 076010 (2024)

076010-15



large-field truncation makes the overlap region smaller for

fixed N and η�. Increasing both N and η� in addition

amplifies this effect, because it reduces the radius of

convergence r. Quantitatively, the overlap regions depend

sensitively on N1, N2 and η�. For instance, for η� ¼ 1 at

ðN1; N2Þ ¼ ð4; 3Þ the overlap spansmuch less thanone order

of magnitude. For small anomalous dimensions, the overlap

is considerably larger, but also contracts sizably when going

from the (2,1) truncation to the (4,3) truncation. Still, the

overlap remains sufficiently large to obtain a comparatively

smooth global approximation in contrast to the η� ¼ 1 case.

Of course, if the small- and/or large-field expansion

is only an asymptotic series, then the overlap region

will eventually vanish for large truncation parameters.

Nevertheless, finite truncations would then still represent

quantitatively trustworthy approximations that serve to

construct global solutions. We consider the approximations

constructed in the present section to provide satisfactory

evidence for the existence of a continuous family of

solutions for small values of η�.

D. Absence of a movable singularity

The existence of a continuous family of fixed functions

for small positive η� evidenced by our preceding con-

struction is rather unusual. While the initial conditions,

in principle, allow for a continuous solution family, the

intrinsic nonlinearity of the FFE reduces this continuous set

typically to a discrete set of solutions.

For instance for the paradigm example of scalar OðNÞ
models, the matching of small- and large-field expansions

imposes a condition that is only satisfied for a finite set of

solutions (typically only one solution corresponding to the

Wilson-Fisher fixed point). This can also be rephrased as

follows: the proper initial conditions at small field ampli-

tude can also be reformulated as boundary conditions to be

imposed in the small- and large-field limit, e.g., in terms of

the potential derivative at zero field and the large-field

asymptotics. While an initial-value problem can feature

continuous solution sets, a boundary-value problem can

single out discrete solutions.

Another way to see this reduction or “quantization” of

fixed-function solutions goes as follows: bringing the FFE

to normal form, the differential equation, e.g., for the OðNÞ
model reads

v00ðφÞ ¼
eðv; v0;φÞ

sðv; v0;φÞ
; ð45Þ

where v denotes the potential, φ the field amplitude, and e
and s are functions of the potential and its first derivative. In
particular, s typically corresponds to the scaling term, i.e., the

OðNÞ analog of the left-hand side of the FFE (25). For

generic initial conditions imposed atφ ¼ 0, the denominator

s develops a zero at some finite φwhich is called a movable

singularity of the FFE. If such a movable singularity exists, a

global solution for vðφÞ can only be constructed provided

that e also vanishes at this zero of s. This imposes another

condition on the initial values and thus leads to a quantization

of solutions [46,47,52,118,122].

For the present case, this implies that our continuous

family of solutions to the FFE for small η� persists only if

the FFE (25) does not feature such a movable singularity.

Unfortunately, this is difficult to check directly, since we

cannot bring Eq. (25) analytically into normal form.

In order to collect indirect evidence, we proceed as

follows: we first expand the integrands of the threshold

functions in Eqs. (29) in a geometric series and perform the

loop integration term by term. For instance, to lowest

nontrivial order, we obtain the differential equation

a0 þ a1 · ðFw00
�Þ þ a2 · ðFw00

�Þ
2 ¼ 0; ð46Þ

with coefficients

a0ðF ; w0
�; η�Þ ¼ 280 − 45η�

þ 5

	

η� − 8 − 96π2
�

1 −
1

Δðη�Þ
F

�


w0
�;

a1ðw
0
�; η�Þ ¼ ð13η� − 124Þ − 2ð5η� − 54Þw0

�

þ 2ðη� − 12Þw0
�
2;

a2ðw
0
�; η�Þ ¼ ð5η� − 54Þ þ 2ðη� − 12Þw0

�: ð47Þ

Equation (46) is a quadratic polynomial in Fw00
� and can

straightforwardly be brought into normal form analogously

to Eq. (45). To this order, it turns out that the resulting

condition for the absence of a movable singularity is

satisfied if and only if a2 ≠ 0. Conversely, if a movable

singularity is present, say at F ¼ Fms, then we find

w0
�ðFms; η�Þ ¼ −

1

2

54 − 5η�

12 − η�
: ð48Þ

Since our attention is devoted to small η� > 0, this

expression signifies a negative slope of the field strength

potential at the movable singularity. However, if the

convergence criterion of the geometric series expansion

of the threshold functions is fulfilled, that is if

∀F ∈R
þ
0 ∶ w0

�ðFÞ; w0
�ðFÞ þFw00

�ðFÞ∈ ½0; 2Þ; ð49Þ

then Eq. (48) cannot be true for anyF and thus there is no

movable singularity.

In order to check this, we have to construct global

solutions which are differentiable at least twice. For this,

we use an interpolation of the small- and large-field

expansions in the overlap region ½bL; r� by means of an

affine combination:

w� ¼ gSw
S
� þ gLw

L
� ¼ wL

� þ gSðw
S
� − wL

� Þ; ð50Þ
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where we have used that the weight functions gS; gL add up
to unity; gS þ gL ¼ 1.

The interpolation via gS is constructed in such a way that
the contributions of the more reliable approximation

dominates the derivatives near the edges of the overlap

region, e.g., wS
� dominates near bL and w

L
� dominates near r.

This construction therefore avoids artifacts and contami-

nations from the less trustworthy approximation in the

derivatives. On the level of the field-strength potential, gS
gives full weight to the small-field expansion at F ¼ bL,
but suppresses it completely atF ¼ r, i.e., gSðbLÞ ¼ 1 and

gSðrÞ ¼ 0. This guarantees a seamless transition at the

interval endpoints; w�ðbLÞ ¼ wS
� and w�ðrÞ ¼ wL

� . For

concreteness we consider the following one-parameter

family of weights for any fixed overlap interval ½bL; r�:

gSðF ; αÞ ¼
1

2

"

1 −
tanh

�

α

�

F−bL
r−bL

− 1
2

��

tanhðα
2
Þ

#

; ð51Þ

with a continuous parameter α∈Rnf0g. By varying α we

can control the profile of the weight function between the

endpoints and regulate the transition sharpness from wS
� to

wL
� near the midpoint at F ¼ 1

2
ðbL þ rÞ. Small values of α

provide only slight deviations from the linear weight

function, whereas larger values progressively pronounce

the kink of the tanh graph. In order to avoid artifacts

induced by the derivative of the weight function itself,

which could, in particular, jeopardize the convergence

criteria in (49), α should not be chosen excessively large.

On the other hand, for reasonably large values of α, gS
becomes flat near the endpoints. In this way we can neglect

derivatives of gS in the corresponding region if α is not too

small and confer derivatives of the field strength potential

to any order a form similar to Eq. (50). This behavior is

indeed suited for a smooth transit to the more reliable

approximations beyond the overlap interval. Hence, the

discussion suggests to find an adequate compromise

between relatively flat ends and a gentle slope for

gSj½bL;r�. Reasonable choices for α are usually of order

one but can be varied by an order of magnitude.

Studying the convergence criteria (49), we have veri-

fied explicitly that our global solutions for η� ¼
10−4; 10−3; 10−2; 10−1 satisfy these criteria for a wide range
of parameter values α and thus are compatible with the

absence of a movable singularity. In addition, we have

verified that this statement also holds for the FFE to next

order in the geometric-series expansion (the resulting FFE

are too extensive to be written down explicitly here).

By contrast, the criterion for the convergence of the

geometric series expansion is violated by the solution for

η� ¼ 1, independently of α. While this may solely indicate

a failure of this expansion, we take this as an indication that

the FFE may possess a movable singularity for sufficiently

large η�. If so, further solutions may still exist for discrete

values of η�. However together with the fact that the

directly glued solutions exhibit a kink and that the overlap

region of the expansions is rather small, we consider the

present observation as a further piece of evidence that

η� ¼ 1 as well as larger values do not support a global

solution to the FFE.

We conjecture that a continuous family of global fixed-

function solutions exists for a finite interval η� ∈ ð0; ηcrÞ
where the critical anomalous dimension ηcr lies in between

1=10 and 1.

E. Near critical regime

Having constructed a global fixed function for nonlinear

electrodynamics in the truncated theory space, we now

return to the analysis of the near critical region for our

solutions found with proper initial conditions. Of central

interest are the critical exponents of perturbations and the

classification of (ir)relevant directions.

In principle, we would have to construct eigenperturba-

tions of the global fixed function in order to reliably read off

the eigenvalues of the stability matrix after insertion of the

global solution. In view of the complexity of the FFE, we

resort to a simpler method which we expect to give

reasonable results for the leading-order exponents: we

simply use the stability matrix arising from the small-field

expansion inserting the fixed-point results for the coefficients

ui;� that we obtain from the small-field expansion using

proper initial conditions. As the latter can all be expressed as

functions of η�, the stability matrix Bðη�Þ ¼ ðDβÞðηÞjη¼η�

becomes a function of only the anomalous dimension η�.

Truncating the small-field expansion at order N, the

stability matrix reduces to an N × N submatrix BðNÞðη�Þ,
the eigenvalues of whichwe can determine straightforwardly

in order to obtain the critical exponents Θ
ðNÞ
j ðj∈N0Þ, cf.,

Eq. (31). The latter are thus computable as functions of η� for

increasing truncation N. As before, Θ
ðNÞ
0 ≡ Θ0 ¼ 4 reflect-

ing the canonical dimension of the vacuum energy holds

independently of the truncation. At low truncation orders,

also the leading-order results for the critical exponents can be

worked out analytically. It is instructive to take a look at the

leading nontrivial exponent Θ2 associated essentially with

the coupling u2;�. At order N ¼ 2, we have

Θ
ð2Þ
2 ðη�Þ ¼ −

640þ 1360η� − 153η2�

20ð8 − η�Þ
: ð52Þ

In the limit η� → 0, we rediscoverΘ
ð2Þ
2 ð0Þ ¼ −4 equaling the

canonicalmass dimensionof the dimensionful coupling ū2 as
it should. For small η� > 0, the exponent receives small

corrections. At higher truncation order, the critical exponent

can pick up an imaginary part, so that we focus on the

real part (ℜ) in the following. For instance at truncation

order N ¼ 3, the expression ℜ½Θ
ð3Þ
2 �ðη�Þ is more extensive,
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but essentially of the form (52) replacing the quadratic

polynomial in the numerator by a cubic plus the square root

of a septic polynomial in η� and the denominator by

40ð8 − η�Þ
2. A similar modification applies for the transi-

tions from ℜ½Θ
ð3Þ
2 � to ℜ½Θ

ð4Þ
2 � and thereafter to ℜ½Θ

ð5Þ
2 �.

Consequently, Eq. (52) admits a pole at η� ¼ 8, as expected:

this pole must always be present for all critical exponents at

each order N since all couplings diverge at that param-

eter value.

As another check, we can make contact with our results

for the critical exponents using improper initial conditions,

as studied in Sec. IV B. Therein, we found a positive critical

exponent Θ
ðNÞ
2 for all truncations studied (with hindsight

considered as an artifact of the improper initial conditions).

This suggests that Θ
ðNÞ
2 should feature a zero as a function

of η�. In fact, for Θ
ð2Þ
2 we find a zero at η� ≈ −0.448≕ η̃

ð2Þ
� ,

using Eq. (52). At N ¼ 2, larger anomalous dimensions

η� ∈ ðη̃
ð2Þ
� ; 8Þ, thus produce an irrelevant coupling u2;�ðη�Þ.

It becomes relevant for smaller values η� < η̃
ð2Þ
� in agree-

ment with our findings of Sec. IV B.

Moving to N ¼ 3, we can essentially observe the same

behavior forℜ½Θ
ð3Þ
2 � with the zero shifting to a larger value,

η� ≈ −0.229≕ η̃
ð3Þ
� . In addition, we find several regions

where Θ
ð3Þ
2 switches from a real- to a complex-valued

number, especially near the pole. Hence, ℜ½Θ
ð3Þ
2 � has

discontinuities at these points. Whenever Θ
ð3Þ
2 ðη�Þ∈C in

these regions, then, by the complex conjugate root theorem,

also its complex conjugate Θ
ð3Þ
2 ðη�Þ must be an eigenvalue.

Now, becauseΘ
ðNÞ
0 ¼ 4 is true for allN ∈N0, we must have

Θ
ð3Þ
2 ¼ Θ

ð3Þ
3 , i.e., the critical exponents belonging to u2;�

and u3;� must combine to complex conjugate pairs. The

situation only marginally changes when we increase the

truncation to N ¼ 4 and N ¼ 5. The switching behavior of

Θ
ð4Þ
2 andΘ

ð5Þ
2 betweenR andC is unpredictably chaotic. On

the other hand, the zeroes η̃
ð4Þ
� ≈ −0.13 and η̃

ð5Þ
� ≈ −0.079

where u2;� becomes relevant move closer to 0. For reasons

of continuity, we do not expect that this sequence of zeroes,

ðη̃
ðNÞ
� ÞN ∈N, crosses zero, where Θ

ðNÞ
2 ð0Þ ¼ −4 must hold to

all orders. The continuity assumption hence implies that

η̃
ðNÞ
� < 0 for all N ∈N. In this scenario, u2;� would be an

irrelevant coupling for all positive η�, at least sufficiently

below the pole at η� ¼ 8. Whether this continuity scenario

applies to all orders remains an open question.

For even larger N ≥ 6, no elementary closed-form

solutions to the characteristic polynomial of BðNÞðη�Þ for
arbitrary η� exist according to the Abel-Ruffini theorem.

Therefore, we continue with specific η� values as done in

Figs. 5 and 6, and discuss some properties of the full spectra

eigðBðNÞðη�ÞÞ up to N ¼ 26.

Let us start with the first nontrivial critical exponents

Θ
ðNÞ
2 and Θ

ðNÞ
3 . Their η� dependence and evolution for an

increasing dimension of theory space N is presented in

Fig. 8. For small η�, both u2;� and u3;� describe irrelevant

couplings and are numerically close to the canonical mass

dimension of their respective dimensionful versions with

minimal variation throughout various N. As η� gets larger,

both of the real parts approach each other, which is

particularly noticeable for small N, before they eventually

combine to a complex conjugate pair. Most importantly, in

either case both real parts seem to converge in the large-N
limit and thus indicate a well-defined critical structure for

the fixed functions constructed from a small-field expan-

sion up to the third-order operator F3.

Unfortunately, the small-field expansion technique used

here for an estimate of the leading critical exponents fails for

even higher exponents Θ
ðNÞ
4 ;Θ

ðNÞ
5

;…. Of course, for any

finite N, estimates for the exponents are computable, but we

do not observe any sign of convergence even for large values

FIG. 8. Real parts of the leading nontrivial critical exponents

ℜ½Θ
ðNÞ
2 � (filled circles) andℜ½Θ

ðNÞ
3 � (filled diamonds) correspond-

ing to u2;� and u3;�, respectively, as a function of the truncation

order N up to N ¼ 26 for a logarithmic selection of anomalous

dimension values η� (color code on top of diagram). Complex

pairs of critical exponents are marked by open squares. Note the

shifted scale of the vertical axis in the lowest plot.
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of N. A determination of the spectrum to higher orders

thus appears to require a global study of the perturbations.

E.g., using an ansatz wkðFÞ ¼ w�ðFÞ þ e−ΘtδwðFÞ, a

linearization of the flow to leading order in δwðFÞ can

give access to the spectrum of the resulting differential

operator and thus to all eigenvalues Θ. However, this goes

beyond the analytical methods concentrated on in the

present work.

In summary: the accessible part of the leading critical

exponents covers the trivial exponent [leaving aside the

superscript (N)] Θ0 ¼ 4 for the vacuum energy, as well as

the two leading nontrivial ones Θ2 and Θ3. The latter are

close to their canonical values −4 and −8, respectively, for

small η� > 0, and are shifted to even more negative values

for increasing η�. Assuming that this pattern holds also for

the subleading critical exponents Θj≥4, we find indications

that all nontrivial exponents are negative. This implies that

all nontrivial perturbations of the fixed point are RG

irrelevant, i.e. the fixed function is fully attractive in the

long-range limit. The physical implications are discussed

below.

VI. EXPLORING THE FULL NONLINEAR

SYSTEM AT LEADING-DERIVATIVE ORDER

The flow of the full nonlinear system at leading-deriva-

tive order is described by Eq. (20); the corresponding fixed

points satisfy the FFE (22). In the preceding sections we

have specialized to the reduced system characterized by the

two approximations of self duality (A1) and the exclusion

of G 2 dependencies (A2). Let us now check the validity of

these approximations, by exploring the corrections arising

from the inclusion of G 2 contributions to the flow. For this,

we now drop the approximation (A2), but keep (A1) in

order to exploit the simplicity arising from self-duality for

the operator traces. This suffices to include the contribu-

tions from the additional operators to the flow and monitor

their quantitative relevance.

For a convenient quantitative comparison, we go back to

the improper initial conditions and employ the small-field

expansion. While the resulting fixed-point candidates

presumably are artifacts of the truncation, they allow us

to quantify the influence of the G 2-dependent terms. More

specifically, we study the following series of increasing

truncations:

T1∶w
ð1Þ
k ðF ;G 2Þ ¼ ck þF þ

1

2
m1;kF

2 þ
1

2
m2;kG

2;

T2∶w
ð2Þ
k ðF ;G 2Þ ¼ w

ð1Þ
k ðF ;G 2Þ þ

1

2
σ1;kF

3 þ
1

2
σ2;kFG 2;

T3∶w
ð3Þ
k ðF ;G 2Þ ¼ w

ð2Þ
k ðF ;G 2Þ þ

1

3
λ1;kF

4 þ
1

3
λ2;kF

2G 2

þ
1

3
λ3;kG

4: ð53Þ

In T1 we account for the effects of flow contributions

proportional to ẇk, where in T2 we also include nontrivial

mixed-derivative inputs proportional to ẇ0
k. Finally, T3

considers nonvanishing derivatives of wk to all occurring

orders in Eq. (20).

We emphasize that the self-duality approximation (A1) is

used only after we have performed all functional derivatives

to obtain the Hessian of the action. For instance on the

operator level at quartic order in the field strength, we have

both terms 1
2
m1;kF

2 þ 1
2
m2;kG

2. The evaluation of the final

traces using (A1) then corresponds to a projection in

coupling space, m1;k; m2;k ↦ mk, since F2 and G 2 are

identified.

Using the abbreviation ρq;kðηkÞ ≔ ð2q − ηkÞ for q∈Q,

the beta functions for truncation T3 read:

∂tck≡βc ¼−4ckþ
ρ3;k

48π2
;

∂tmk≡βm ¼−2ρ−1;kmkþ
1

640π2
ð11ρ5;km

2
k−20ρ4;kσkÞ;

∂tσk≡βσ ¼−3ρ−4
3
;kσk

−
1

960π2
ð29ρ6;km

3
k−84ρ5;kmkσkþ45ρ4;kλkÞ;

∂tλk≡βλ ¼−4ρ−3
2
;kλkþ

1

6720π2
ð415ρ7;km

4
k

−1596ρ6;km
2
kσkþ756ρ5;kσ

2
kþ966ρ5;kmkλkÞ: ð54Þ

The corresponding beta functions for truncations T2 and T1

can be inferred from (54) by setting λk ¼ 0 for T2 and

additionally σk ¼ 0 for T1. Furthermore, the scale-depen-

dent anomalous dimension is given by

ηkðmkÞ ¼
10

�

mk

2

�

48π2 þ 5
4

�

mk

2

� : ð55Þ

At a fixed point, the anomalous dimension is only

marginally modified compared to Eq. (30) upon identifying
m�

2
with u2;�. This identification indeed is consistent: the

approximations (A2) and (A1) (performed in this order)

reduce the quadratic term of each truncation T1, T2, and T3

to
m�

2
F2 at a fixed point. In the same way, u3;� can be

identified with
σ�
2
and u4;� with

λ�
3
. Interestingly, η�ðm�Þ is

obtained exactly from the expression in (30) by replacing

u2;� with 1.2u2;�.

In Table II, we list all fixed-point values appearing in

each truncation. Table III displays the corresponding

anomalous dimension and the critical exponents. From

this data, we deduce the following results:

(1) As a zeroth-order check, also the full system shows a

Gaussian fixed point which is characterized by

η� ¼ 0 andwhere all couplings except for the constant

c� vanish identically. The latter takes the samevalue as

in the (A2) and (A1) reduced system. Therefore, the
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Gaussian fixed function is still and, in fact, exactly,

given by wGFPðF ;G 2Þ ¼ wGFPðFÞ ¼ 1

32π2
þF.

The critical exponents agree with the canonical mass

dimensions of corresponding dimensionful couplings.

(2) In addition to the Gaussian fixed point, we find

further non-Gaussian fixed points, the number of

which increases from truncation TN to TðN þ 1Þ
exactly in the same way as in our previous analysis

of Sec. IV for the reduced FFE. A direct comparison

between the NGFP1 branch of Fig. 1 and the m�

2

column of Table II reveals an initial relative numeri-

cal deviation of about 8% while qualitatively show-

ing the same falloff behavior towards the Gaussian

fixed point as we increase the truncation order. The

same can be seen for the NGFP2 branch and is

expected to continue for higher-order non-Gaussian

fixed-point classes. Since it is still possible to

express each coupling σ�; λ�;… as a function of

m�, small deviations between m�

2
and u2;� imply

likewise small deviations between
σ�
2
and u3;�,

λ�
3
and

u4;�, etc. The same argument applies to the anoma-

lous dimension.

(3) For the critical exponents, we essentially obtain the

same picture as in Sec. IV B. According to Table III,

the fixed-point class NGFPn exhibits nþ 1 relevant

directions. Moreover, Θm shows only a minor

numerical discrepancy with our previous findings,

cf. Fig. 3.

In summary, we found that the additional G 2-dependent

terms in the full nonlinear theory to leading-derivative order

contribute only quantitatively marginal effects in compari-

son to the purely F -dependent description of the fixed-

point action and the near critical regime. This conclusion

holds at least for the small-field expansion using the

conventional improper initial conditions. Here, we do

not observe any relevant changes in the system’s overall

behavior and conclude that the assumption (A2) serves a

legitimate and efficient approximation in addition to self-

duality. It demonstrates the self-consistency of our geo-

metrical line of argument discussed in Sec. III D.

VII. INTERPRETATION SCENARIOS

Let us assume that our nonperturbative results observed

for nonlinear electrodynamics also hold beyond the lead-

ing-derivative order. Of course, while corrections from

higher derivative order are guaranteed to feed back into the

lower orders, their contributions to the near critical regime

can be expected to remain power-counting suppressed by

their higher canonical dimension. This statement is exact at

the Gaussian fixed point; and since our solutions for proper

initial conditions feature a small anomalous dimension, we

expect power-counting arguments to be reliable also in this

immediate vicinity of the Gaussian fixed point.

In the following, we discuss several interpretation

scenarios. All scenarios are based on the global fixed-point

solutions which we found for proper initial conditions, but

differ due to additional assumptions or the inclusion of

further degrees of freedom.

A. UV-complete nonlinear electrodynamics

The existence of further non-Gaussian fixed points in

theory space is a prerequisite for the asymptotic-safety

scenario. The global fixed functions which we constructed

with proper initial conditions with a positive η� can then be

viewed as scaling solutions of a continuous set of UV fixed

points. Each fixed point defines a universality class of

UV-complete theories of nonlinear electrodynamics. The

long-range behavior in each universality class is then

governed by the RG relevant directions of each fixed point.

Interestingly, the only relevant direction is given by the

vacuum energy according to our results of Sec. V E, all

other directions for which we have reliable data are RG

irrelevant. This implies that the nontrivial part of the fixed

functional is also IR attractive. For the theory initiated on

an RG trajectory emanating from the fixed point in the UV,

it remains on the quantum-scale-invariant solution over all

TABLE II. Fixed-point coordinates for increasing truncations

T1, T2, and T3 of theory space of full self-dual nonlinear

electrodynamics at leading derivative order using conventional

improper initial conditions.

Truncation c�
m�

2

σ�
2

λ�
3

T1 0.0032 0 = =
0.0038 −46.108

T2 0.0032 0 0 =
0.0035 −25.631 −1787.8

0.0041 −66.245 4504.7

T3 0.0032 0 0 0

0.0033 −14.657 −1573.9 −107521

0.0038 −48.181 338.58 249995

0.0042 −76.839 7955.8 −523227

TABLE III. Anomalous dimension and critical exponents at the

fixed points of Table II. The order of the associated fixed points,

read from top to bottom, is the same as given in Table II.

Truncation η� Θc Θm Θσ Θλ

T1 0 4 −4 = =
−1.108 4 4.5096

T2 0 4 −4 −8 =
−0.5803 4 4.2625 −5.2259

−0.6556 4 4.8249 14.919

T3 0 4 −4 −8 −12

−0.3218 4 4.1465 −5.2411 −11.065

−1.1652 4 4.5389 −5.4326 19.2

−2.0344 4 5.0627 10.636 33.336
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scales; in other words, it never leaves the fixed point. The

scaling solution, parametrizing the effective action in

the form of a nontrivial fixed function, thus governs also

the nonlinear interactions of the long-range physics. Apart

from the trivial vacuum energy to be fixed by a renorm-

alization condition (and ignored in the following discus-

sion), the full quantum effective action in the low-energy

limit is thus given by Γk0
½A� ¼

R

R4 w�ðF ;G 2Þd4s, where s
is a dimensionless integration variable and k0 means some

fiducial low-energy scale that serves as a measurement

scale for all dimensionful quantities such as the field

amplitudes, and F ;G 2 are understood to be measured in

units of this scale. Such a theory then has no free parameter

and is maximally predictive. In the present scenario, the

value of η� does not play the role of a parameter of the

theory, but rather characterizes different theories each

forming a universality class labeled by η�.

In this scenario, it remains a question as to whether this

low-energy theory is a genuinely nontrivial theory. For

instance, in the reduced version where we have studied only

the dependence on the invariantF , the effective Lagrangian

LðFÞ ¼ w�ðF ; 0Þ is a positive and monotonic function in

the Euclidean. This suggests that we could perform a

nonlinear field transformation of the classical fields, i.e.,

the expectation values of the quantum fields, A→ Â, such

that LðFÞ ¼ w�ðF ; 0Þ≡ F̂ assumes the form of the non-

interacting Maxwell Lagrangian for the transformed gauge

field Â. However, since our results of Sec. VI suggest that the
scaling solution also depends nontrivially on the invariantG ,

a transformationw�ðF ;G 2Þ→ F̂ doesmost likely not exist.

In this case, the scaling solution does represent a nontrivial

interacting theory on macroscopic scales.

It is instructive to study the effective action also in

Minkowski space. Using k0 as an IR reference scale, the

effective Lagrangian expressed in terms of the dimension-

less Minkowski-valued invariants reads to lowest order:

L̄ðF̄ ; Ḡ2Þ

k40
¼ −F −

1

2
m1F

2 þ
1

2
m2G

2: ð56Þ

This form of the Lagrangian is well known from the weak-

field analysis of the Heisenberg-Euler action [5]. The

leading-order nonlinear coefficients m1;2 can be related

to the properties of light propagation in an external field,

cf. [9,126,127]. Now, causality can be argued to impose

constraints on the values of these coefficients [128,129];

more precisely, requiring that the phase velocities of low-

energy photons do not exceed the vacuum speed of light,

implies [9,128,129]

m2 −m1 ≥ 0: ð57Þ

While the more relevant quantity for causality actually is

the front velocity which is given by the high-frequency

limit of the phase velocity, it has been argued that the front

velocity is always bound from below by the low-fre-

quency phase velocity for a nonamplifying ground

state [129–131]. Therefore, our resulting effective action

needs to satisfy the causality constraint Eq. (57). For the

present truncation, we find m2 −m1 ¼ 0 as a result of the

self-dual approximation rather than of a full calculation.

Whether or not the fixed-point action does satisfy all

necessary causality constraints hence requires further

investigation going beyond the self-dual techniques used

in the present work.

In summary, we conclude that our fixed functions

constitute a UV-complete version of nonlinear electrody-

namics which is essentially parameter free, as the long-

range physics is also governed by the scaling solution. We

emphasize that this scenario does not solve the triviality/

Landau-pole problem of QED, since the latter arises from

interactions with matter which are not included in the

present scenario.

B. Low-energy QED effective action

Within the context of QED, the inclusion of electron

matter degrees of freedom modifies the picture for pure

nonlinear electrodynamics in several ways. First, electron

fluctuations induce an anomalous dimension for the gauge

field. In QED, we have at one-loop order η ¼ 2
3π
α. For

α ≈ 1=137, this yields η ≈ 0.00155. This value is well

within the regime where we have been able to construct

global fixed functions.

A second modification arises from the fact that the

electronic fluctuations, of course, also contribute to the

flow of the effective action. On the level of the flow

equation, this contribution serves as an inhomogeneous

source term, depending on the gauge field, but not on the

field-strength potential wk. For instance, integrating only

this source contribution leads to the one-loop Heisenberg-

Euler effective action [5]. From a perturbative viewpoint,

the contributions arising from integrating the flow induced

by the terms depending nonlinearly on wk and its deriv-

atives correspond to resumming higher-loop contributions.

In the perturbative domain, these terms are subleading

compared to the one-loop terms at least in the small-field

domain.

The situation is less clear at large field amplitudes where

the size of the amplitude can make up for a small-coupling

value. If η ≈ const for a sizable number of scales, the IR

attractive nature of our fixed-point solution can win out

over the matter induced direct terms. In this case, we expect

the Minkowskian-valued effective Lagrangian at some low-

energy scale k0 to assume the asymptotic strong-field form,

cf. Eq. (37),

L̄ðF̄ ;…Þ

k40
∼ −FΔðηÞ ðF̄ →∞Þ; ΔðηÞ ¼

4

4þ η
: ð58Þ
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Using η ¼ 2
3π
α and expanding Eq. (58) in powers of α for

the example of a magnetic background B, we obtain to

order α at large fields:

L̄ðBÞ

k40

�

�

�

�

α

∼
α

6π
B2 lnðBÞ: ð59Þ

Identifying k0 with the electron mass scale, k0 ¼ me, this

result corresponds precisely to the strong magnetic field

limit of the one-loop Heisenberg-Euler Lagrangian.

Incidentally, if we had used the correct two-loop anomalous

dimension, we would have found the correct two-loop

strong-field limit in line with an argument relating the

strong-field limit with the trace anomaly of the energy-

momentum tensor [132,133].

While we consider this observation as reassuring for our

result for the strong-field limit, note that the argument based

on the trace anomaly relies on identifying the RG scale with

the strong-field scale. This identification is also used for

leading-log resummations of the perturbative strong-field

series [37,38]. In complete analogy to the leading-log

resummation for the running coupling, such resummations

lead to a Landau-pole singularity in the effective action at

exponentially large field strength B̄ ∼m2
ee

3π=α.

By contrast, the resummation implicitly performed by the

functional RG flow equation does not rely on scale identi-

fication. Thus, there is no reason for the Landau pole of the

running coupling at high momenta to be translated into a

similar singularity for large field strength. In fact, the

asymptotic form suggested by Eq. (58) as well as our full

global solutions are free of any singularity. Therefore, we

conjecture that Eq. (58) describes the strong magnetic field

limit of the 1PI effective action of QED. We emphasize that

this is not in contradiction with strong-field results for the

Heisenberg-Euler action based on the Schwinger functional

dominated byone-particle reducible (1PR) diagrams [40,41].

More precisely, we consider Eq. (58) to hold as long as

the magnetic field is the dominating scale with all other

energy scales (test particles, photons, etc.) being much

smaller and in the perturbative domain. Also, Eq. (58) does

not hold for the equivalent electric case which is dominated

by Schwinger pair production and an energy transfer to

particle degrees of freedom. We emphasize that the singu-

larity-free strong-field limit Eq. (58) does also not solve the

Landau pole problem nor render QED UV complete, since

the high-energy behavior remains dominated by η growing

large (with a Landau-pole singularity as a perturbative

artifact) and thus a UV limit being precluded by a causally

disconnected chirally broken phase [19,22].

As a last comment, it is tempting to speculate if our fixed

functional may have any relevance for the deep IR limit of

QED far below the electron mass threshold, since the

matter induced photon self-interactions render the effective

theory an interacting one. However, at the same time, the

leading matter dominated contributions to the anomalous

dimension decouple below the electron mass threshold,

ηjk≪me
→ 0, such that the mechanisms leading to our

nontrivial solutions disappear towards the deep IR. Of

course, a more precise answer requires a full (numerical)

solution of the RG flow for wk including the matter source

terms and the electron decoupling.

C. High-energy hypercharge sector

of the standard model

In the full standard model, our results may find appli-

cation for the hypercharge sector above the electroweak

scale. Here, the anomalous dimension at one-loop order is

given by ηY ¼ 41
3

g2
Y

ð4πÞ2
, cf. [134]. At the electroweak scale,

we have gY ≈ 0.36 for a NNLO fixing at the top mass

scale [135] increasing mildly to gY ≈ 0.48 at about the

Planck scale. This corresponds to values of the anomalous

dimension of about ηY ≈ 0.01…0.02 and thus well in the

range of values for which we find global solutions with a

strong-field asymptotic limit given by Eq. (58) in the

magnetic field direction.

Our conclusion for this application is therefore similar to

that for QED discussed in the preceding subsection:

provided the global fixed function is sufficiently attractive

under the RG flow, the 1PI effective action exists globally

for any value of the hypercharge magnetic field.

VIII. CONCLUSIONS

We have investigated the renormalization flow in the

theory space of Abelian quantum gauge fields, i.e., non-

linear electrodynamics, using the nonperturbative func-

tional RG. For this, we have concentrated on the RG flow

of the 1PI effective action to leading order in a derivative

expansion. The resulting flow equation (20) for the

effective Euclidean Lagrangian or field-strength potential

represents a main result of our work and generalizes a

previous result for the magnetic theory space [63] to the full

space of nonderivative invariants F and G 2.

In order to explore the phase diagram in this theory space

on nonlinear electrodynamics, we focus on the possible

existence of fixed points and construction of corresponding

fixed functionals. Most of our explicit results refer to an

approximation scheme relying on simplifications for a self-

dual choice of the electromagnetic field; in addition, we

provide evidence that our results are only mildly modified if

these approximations are dropped. For the construction of

fixed-point actions, we have used two approaches: The first

one corresponds to a conventionally used small-field expan-

sion. This procedure corresponds to an implicit use of

improper initial conditions for the fixed-point equation

yielding a large number of artifact fixed points. We observe

a pattern different from Wilson-Fisher-like systems but

similar to that discovered for shift-symmetric theories [63,64].

Following [64], we arrive at the conclusion that none of the
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nontrivial fixed points using improper initial conditions

approximates a valid fixed point in full theory space.

In the second approach, we have used proper initial

conditions and studied small- and large-field expansions.

Emphasizing the importance of the criterion of global

existence, i.e., the absence of singularities of the effective

action in amplitude space, we have been able to construct

full fixed functionals. In fact, our construction provides

evidence for the existence of a continuous family of fixed

points as a function of the anomalous dimension η� > 0 of

the field amplitude. This quantity parametrizes naturally the

initial condition of the fixed-function equation at small field

amplitude as well as governs the large-field asymptotics.

We have also checked whether a quantization of the fixed-

function solutions is induced by the presence of a movable

singularity in the fixed-function equation. Our results are

compatible with the absence of a movable singularity thus

facilitating the presence of a continuous solution family.

Still our results suggest the existence of a critical value of η�
above which no valid solution exists.

Finally, we have explored the critical region of the fixed-

point solutions. Our results are compatible with this

continuum of fixed points being fully IR-attractive apart

from the trivial vacuum energy. However, a more definite

conclusion requires also a global analysis of the perturba-

tions around the fixed point beyond our analysis so far.

We have discussed several scenarios for which our

results could be relevant. Imminently, these non-

Gaussian fixed points can serve to define an interacting

theory of nonlinear electrodynamics without matter with

the fixed-point action being equivalent to the long-range

action as the fixed point is fully IR attractive. We also offer

several applications to scenarios that include matter as the

source of a nontrivial anomalous dimension. In this cases,

our fixed-point action has the potential to dominate the

magnetic strong-field limit of the effective action. We

consider this an attractive feature as it removes the puzzle

of a Landau-pole type singularity in the leading-log

resummed strong-field limit based on scale identification.

As our flow equation approach does not need scale-

identification arguments and goes beyond the leading-log

resummation, we consider the existence of a global

Lagrangian as being in line with the fact that magnetic

fields do not transfer energy to charged fluctuations;

therefore the strong magnetic field limit can behave differ-

ently from the high-momentum limit of the theory.

We emphasize that our observation of fixed points in

pure nonlinear electrodynamics does not resolve the trivi-

ality problem of QED. The latter is tightly linked to charged

particle fluctuations not being part of our pure Abelian

gauge theory setting. Also, we do not observe an immediate

mechanism that could balance the charged fluctuations

within nonlinear electrodynamics. Still, the family of non-

Gaussian fixed points observed in this work could play a

useful role in models with gauge-kinetic or nonminimal

interactions to other particle sectors, potentially contribut-

ing to mechanisms of UV completion.
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