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We study the renormalization flow of generic actions that depend on the invariants of the field strength
tensor of an Abelian gauge field. While the Maxwell action defines a Gaussian fixed point, we search for
further non-Gaussian fixed points or rather fixed functions, i.e., globally existing Lagrangians of the
invariants. Using standard small-field expansion techniques for the resulting functional flow equation, a
large number of fixed points is obtained, which—in analogy to recent findings for a shift-symmetric scalar
field—we consider as approximation artifacts. For the construction of a globally existing fixed function, we
pay attention to the use of proper initial conditions. Parametrizing the latter by the photon anomalous
dimension, both the coefficients of the weak-field expansion are fully determined and those of the large-
field expansion can be matched such that a global fixed function can be constructed for magnetic fields. The
anomalous dimension also governs the strong-field limit. Our results provide evidence for the existence of a
continuum of non-Gaussian fixed points parametrized by a small positive anomalous dimension below a
critical value. We discuss the implications of this result within various scenarios with and without
additional matter. For the strong-field limit of the 1PI QED effective action, where the anomalous
dimension is determined by electronic fluctuations, our result suggests the existence of a singularity free
strong-field limit, circumventing the standard conclusions connected to the perturbative Landau pole.
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I. INTRODUCTION

Relativistic models of nonlinear electrodynamics have an
extensive history in field theory, beginning with Born- or
Born-Infeld theory motivated by the removal of the diver-
gence of the electron’s self-energy in a classical setting [ 1-3],
reemerging also as an effective theory of the open string [4].
The Heisenberg-Euler theory [5—8] represents not only the
presumably correct theory of the nonlinear response of the
electrodynamic quantum vacuum according to quantum
electrodynamics (QED), but is also a hallmark of the concept
of effective field theory now being ubiquitous in quantum
field theory. Discovering the plethora of phenomena pre-
dicted by the Heisenberg-Euler action [9-12] is currently a
substantial research endeavor in strong-field physics.

Perturbative renormalizability arguments suggest that
nonlinear models of electrodynamics should not be viewed
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as a fundamental theory, as the nonlinear interactions are
power-counting nonrenormalizable. Whether or not the
naive perturbative conclusion can be extended to a strong
coupling region is explored in the present work. In
principle, perturbative arguments fail in presence of non-
Gaussian fixed points which are a prerequisite for the
construction of high-energy complete theories based on the
concept of asymptotic safety [13,14].

Ultraviolet (UV) completeness of QED, i.e., including the
fluctuations of fermionic or scalar charged particles, has
been at the center of interest since the discovery of the
perturbative Landau pole [15-17]. Though the Landau pole
divergence of the coupling may or may not be an artifact of
perturbation theory, there is consensus among various
methods that the strong-coupling regime of conventional
QED cannot be connected to the weak-coupling regime
realized in nature because of chiral symmetry breaking and
mass generation [18-22]. Beyond the conventional scenar-
ios, UV completion in the large-flavor number limit [23-29],
at a non-Gaussian Pauli coupling fixed point [30-33], novel
resummation schemes [34], or UV completion mediated
by gravitational fluctuations [35,36] have recently been
discussed.

At first sight, it is thus not surprising that perturbative
renormalization group (RG) resummations also find a
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Landau pole divergence in the strong-field limit of the higher-
loopresummed Heisenberg-Euler effective action [37,37,38].
This holds both for the effective action as the 1PI generating
functional, as well as for the Schwinger functional that
include 1PR resummations [39-42]. At second glance, such
a strong-field divergence may appear less plausible at least
for the case of a homogeneous magnetic background. This is
because the latter does not transfer energy to charged
fluctuations and thus should not per se probe the high-
momentum regime where Landau-pole singularities may
play a role.

In the present work, we address the question of a possible
existence of UV-complete nonlinear electrodynamics (with-
out further charged matter degrees of freedom) as well as the
strong-field limit of Heisenberg-Euler-type theories (with a
minimum charged matter content), using methods of func-
tional renormalization. More specifically, we derive the
general nonperturbative RG flow equation for action func-
tionals depending on the gauge- and Lorentz-invariant
combinations of the field strength. For both aspects, we
find that the criterion of global existence of functions
satisfying the fixed-point equation for the action is most
relevant. This is, in fact, familiar from technically similar
searches for Wilson-Fisher-type fixed points [43-51], scal-
ing solutions in fermionic/Yukawa theories [52-54],
UV completions of gauged Higgs models [55,56] or gauged
Yukawa models [57-59], and studies in quantum gravity
[48,60-62].

As for the quest for matterless UV-complete asymptoti-
cally safe nonlinear electrodynamics, our answer is in the
negative as long as standard search methods for fixed points
based on improper initial conditions are used. For this case,
our results are rather similar to analogous studies of shift-
symmetric scalar theories or nonlinear Abelian models
based on the Maxwell invariant [63,64]. While the weak-
field expansion finds many potential fixed-point candidates
similar to [63], the picture is quite comparable to the shift-
symmetric scalar model, where the eigenperturbations
around the fixed points are not integrable with respect to
the induced measure [64]; therefore, only the trivial
Gaussian fixed point remains in this analysis.

By contrast, we do find globally existing fixed-point
actions, once the construction is based on proper initial
conditions. We parametrize the latter in terms of the
anomalous dimension of the photonic field which is either
a free parameter, or could effectively be provided by
charged matter fluctuations. With this parameter, we are
able to construct a global action in the direction of one of
the invariants by a nontrivial matching of the small- and
large-field expansions. The approximations involved can be
applied to the case of a purely magnetic field and thus
provide evidence for the absence of Landau-pole-type
singularities in the strong-field limit of this type.

The paper is structured as follows: in Sec. II, we
introduce the setting for general theories of nonlinear

electrodynamics including Minkowskian as well as
Euclidean formulations. In Sec. III, we derive the RG flow
on the considered theory space using the functional
renormalization group. On a fixed point, the resulting flow
equation reduces to a fixed-function equation, defining
scaling solutions for generic effective Lagrangians. We also
motivate and substantiate a set of approximations which
simplify the analysis of the differential equation. Section IV
is devoted to a standard analysis of the (reduced) fixed-
function equation including the critical regime based on a
conventional small-field expansion. Whereas this analysis
corresponds to improper initial conditions, Sec. V inves-
tigates the fixed-function equation using proper initial
conditions. A one-parameter family of global solutions is
constructed on small- and large-field expansions for small
positive anomalous dimensions. Our approximations are
checked in Sec. VI by tackling the full partial differential
equation in the small field regime. We interpret our results
in the light of various scenarios in Sec. VII and conclude in
Sec. VIIIL.

II. NONLINEAR ELECTRODYNAMICS

Maxwell’s theory of electrodynamics (ED) in vacuum is
a linear theory entailing a strict superposition principle.

It can be defined in terms of the gauge potential (A,)
in four-dimensional Minkowski space and the correspond-

ing field strength tensor (F,,) with its components being
connected to the gauge potential in the usual way, I_:,,,, =
()”Ay - (),,Aﬂ.l Using the gauge and Lorentz invariant
scalars formed from the field strength tensor and its
Hodge dual ((xF)*), that is

FFY,  Gu=oF

4 M uv' po

(%Fp = G B (1)

0123

(using the convention ¢ = 1), the free action reads

S/A] = A —F(RG) 2)

Further local invariants involve derivatives of the field
strength.

The most general effective action functional I' of
nonlinear electrodynamics may depend on all possible
invariants; a generic theory can thus be parametrized by
a local Lagrangian depending on the field strength and its
derivatives:

'For the gauge field, the field strength, and the action, we
consistently use a notation, where serifless fonts are used for
Minkowski-valued quantities. The standard notation is reserved
for the renormalized quantities on Euclidean space, which will be
defined later. An overbar indicates an unrenormalized and
typically dimensionful quantity.
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FlAl = A L(F(x).0,F(x).0,0,F(x)...)d"%.  (3)

In the present work, we ignore possible dependencies on
the derivative terms and concentrate on the full functional
dependence on the two invariants 7 and G. This may be
viewed as the leading order of a systematic derivative
expansion of the action [65-70] in the spirit of the
Heisenberg-Euler expansion [5]. However, in contradis-
tinction to conventional derivative expansions where
higher-order derivatives have to be small compared to a
physical mass scale, our expansion is based on a compari-
son to a running RG scale k. The validity criterion therefore
is that the derivative terms should have a small influence on
the flow of the nonderivative terms at any scale k; they do
not necessarily have to be numerically small. We thus
approximate the general Lagrangian by an F-dependent
function, or equivalently a function of the invariants,
L(F,0,F....)~ L(F,0,...) = W(F(F),G(F)), reducing
the action to

M~ [ W(FAW).GAW)E. @

This defines the class of action functionals covering non-
linear generalizations of vacuum electrodynamics to lead-
ing-derivative order. The corresponding equations of
motion generically represent hyperbolic second-order non-
linear partial differential equations for which initial-value
problems can be formulated.

In the following, we restrict ourselves to parity-invariant
theories. Since G is parity-odd, YV should be considered as
an even function of G, i.e., instead of W(}" , g) we write
W(F.G%).

As our renormalization group analysis will be performed
in Euclidean spacetime, let us detail the connection
between Minkowski-valued and Euclidean quantities: In
d = 4 dimensional Minkowski space, the components of
the antisymmetric field strength tensor, Fm,, are related to
the electric and magnetic field components by Fo; = E; and
= = 81-.,-151. In terms of the fields, the invariant scalars read
F=1(B*-E?) and G=-E-B.

In the Euclidean, we start from a Euclidean gauge
potential (Aﬂ) with field strength components F,, =
6”AU - 6UA” and the components of its Hodge dual
(*F Jv = LemoF . The corresponding invariants read

F:=1F, F" and 4 :=1F, (xF)", where the Euclidean
metric is used for the contractions. Identifying the
Euclidean field strength components as Fy; = E; and
F;;=¢;;B), we obtain for the invariants .7 =1(B>+E?)
and 4 = E-B.

On the level of the invariants F and .Z, the transition
between Minkowskian and Euclidean spacetime is captured

by the field replacement rule (E, B) < (—iE, B). This also
1mp11es a relation between G and ¢, which in total yields:
F < Zand G < 9.

Including the Wick rotation in coordinate space, the
corresponding Euclidean action, e.g., of Maxwell’s theory
reads

S[A] = A4 T (A(x))d*x. (5)

Analogously to Eq. (4), the corresponding class of general
nonlinear theories of electrodynamics investigated in this
work is described by a Euclidean action

FML:A;%(Q@M@yQMQDﬂd%, (6)

where the function % is the Euclidean analog of Y. On
the level of the Lagrangian, the transition from Euclidean
back to Minkowskian spacetlme is thus performed by the
replacements % — -W, # — F, and 4 — —iG. The
latter implies 4> — —G>.

III. RG FLOW AND FIXED FUNCTIONS

Let us list the ingredients for our functional RG analysis
for theories based on the action in Eq. (6). For conceptual
and technical details, we refer the reader to reviews on the
functional RG [71-77].

A. Scale-dependent effective action

Using the functional RG, we quantize nonlinear electro-
dynamics in a Wilsonian sense momentum shell by
momentum shell. Quantization over a finite amount of
scales is always possible in the spirit of an effective field
theory. In addition, we intend to search for fixed points, or
rather fixed functions, of the RG flow that have the
potential to allow for a consistent quantization on all
scales. For this, we use the Wetterich equation [78-81]
for a scale-dependent one-particle irreducible (1PI) effec-
tive action I,

wnWZQHW9+mfwm$M (7)

where F ) denotes the second functional derivative of I
with respect to the gauge field A. The quantity R, is a
regulator that controls infrared (IR) mode suppression
below a momentum scale k& and implements the
Wilsonian momentum-shell integration. For a given initial
condition, e.g., ata UV scale I';_,, the action I';_ includes
all quantum fluctuations with momenta below A [71-77].

In the present work, we parametrize the action func-
tional I'; by a scale-dependent variant of the nonlinear
theory space spanned by Eq. (6) amended by a Lorenz
gauge-fixing term,
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T JA] = A ) <7/k(ﬁ% 4?) +%Zk(aﬂ2w)2> d*x, (8)

where we have suppressed the x dependencies.

We assume that the function %/, features a weak-field
expansion of the form 7_/,((3’, @2) = ZF + -+, where Z;
can be interpreted as a wave function renormalization. We
have included Z; also in the gauge-fixing term in order to
obtain a standard form of the gauge-fixed propagator
including the gauge-fixing parameter @ € R. Analogous
parametrizations of the effective action also including the
non-Abelian case have been studied in [22,82—-85].

The scale dependence of Z; is encoded in the anomalous
dimension of the gauge field,

Ny = —kak ln(Zk). (9)

For the analysis of the RG flow, it is useful to introduce
dimensionless renormalized quantities. In d =4 dimen-
sions, the corresponding rescalings using the scale k read:
F =7k F, G=7 k1Y,  we=kW (10)
The Z, rescaling of the field implies that the weak-field
expansion of the field-strength potential w, starts with
wy =% +---. In accordance with Eq. (10), we also
introduce a dimensionless-renormalized field strength
and a conveniently rescaled (though dimensionful) gauge
field:

Fi=\/Zk2F, A= .\/ZkA. (11)

Note that A carries an inverse mass dimension, such that
the dimensionless field strength components F,, maintain
their standard form, F,, =d,A, —0d,A,, and the scale-
dependent effective action yields

T 4] = K A 4 (wk(ﬁ,gz)—l—i(aﬂA”)z)d“x. (12)

Here, we have once again suppressed the x dependencies
under the integral.

B. RG flow equation

For the evaluation of the Wetterich equation, we need the
Hessian of the action:

&Ti[A]
8A,(x)6A,(x')

(T AA)) (x,x) = Zik™ (13)

With respect to the continuous part of the spectrum, the
Hessian can be diagonalized in momentum space, since it
suffices to consider a homogeneous field strength in order
to extract information about the flow of w;. Then, using

TABLE 1. Algebraic expressions for projections and their
respective coefficients according to the expansion in Eq. (14).
The symbol ® denotes the dyadic product on R* x R*. Here, p is
a dimensionful momentum space coordinate, and y = p/k its
dimensionless complement.

Projector Coefficient
Pr=1- ”ff;p X =wiy?

P, = % Xk = é y?

P = " X, = w{(Fy)?

P, = IS X7 = 20w + 29%0,) (¥ Fy)?
p, = Calsern) Xt = 2

P, = % Xi=X;

Eq. (12), the following decomposition of F,({z) in terms of

projectors, i.e., idempotent endomorphisms, acting on the
Lorentz components in field space is useful:

4
r = z,i2 <X{ P+ XLP, + ZXZPa). (14)

a=1

The projection operators and their coefficients are listed in
Table I, using the shorthand notation
_ aWk Owk

and Wy = @) (15)

/.

MY~

For convenience, we have also introduced a dimensionless
momentum space coordinate y := p/k.

Let us elucidate some properties of the field space
projection endomorphisms. The projectors act as linear
operators on the space of gauge fields, that is the space of 1-
form fields X*(R*) which contains smooth sections of the
cotangent bundle 7*R* with respect to the standard smooth
structure on four-dimensional Euclidean space. The images
of the projections are linear subspaces of X*(R*). In
particular, P(X*(R*)) and P, (X*(R*)) define a trans-
versal and longitudinal component of X*(R*), respectively.
They are orthogonal complements to each other, i.e.,
Py o P, =P; o Py =0. In fact, the corresponding invo-
lution iy := 1 —2P; induces a natural Z,-gradation for
X*(R*). Since 1=P;+P,, an arbitrary element
A€ X*(R*) can thus be decomposed into transversal and
longitudinal parts:

A=T1(A) =P (A)+P (A=A +A,.  (16)

The class of projectors P, for a€{1,2,3,4} refer to
further subtransversal projections, because P, o P; =
P, o P, =0.Dueto 1 = P; + P, we have P,(X*(R*)) C
P;(X*(R*)) for all a. From compositions among sub-
transversal projections P,, it is further noted that they
agree on an equal rank and likewise share the same
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one-dimensional image. Hence it is not possible to span the
three-dimensional transversal subspace using a combina-
tion of the P,; however, we can still make use of their
properties evaluating the explicit form of the flow and
allowing us to estimate the weight of individual contribu-
tions to it.

Correspondingly, we span the regulator R, with the aid
of the transversal and longitudinal projectors, yielding in
momentum space:

Ri) =207 [Pyt o R )

where the information about the details of the momentum-
mode regularization are encoded in the dimensionless shape
function r. Equations (14) and (17) read together form the

which we now need the operator inverse. For this, we take
advantage of the algebraic structure provided by the field
space projections and expand the regularized full propagator
as in Eq. (14):

-1
Gk - (FIEZ) + Rk)

1 4
_ﬁ<Y]{PT+YéPL+ E YZPa>. (18)
k a=1

The coefficients Y7, YL, Y¢ for a€{1,2,3,4} are com-
pletely determined by the system of equations that follows
from 1= G;'G,, using the composition table for the

inverse of the regularized propagator, F,({z) + Ry =G;!, for  projections. The solution is
|
T _ 1 YL = 1
k XT + r’ k X _|_
kY y r
YI_YT ( )26 - X1<XT+X2+y2r)
R XT XL X ) (XD + X2+ X+ ) — (X + XA (XL + X3e?)
Y2_yT. ( )252_X2<XT+X1+yr)
X X+ (X X+ X ) - (G + X (G + X8
- X8 — (KT + X3 + %)
TR X+ XL+ X+ (X + X3+ X+ ) — (X + X8 (XE + XiE7?)
Yi =}, (19)
@y?
with &(F.y) =~
(Fy)*(xFy)
[
As a useful consequence of the projection technique, the vt L or 1 ) 4
RHS of the flow equation (7) decomposes into a sum of V=3V, + aYk HY+ Y 42V (21)

traces over field space projectors.

Finally, the Tr operation in the flow equation runs over
Lorentz indices and momentum space. Furthermore,
because of field-strength homogeneity, the RG flow is
projected onto the field-strength potential w;. Introducing
an RG time 7 := In(k/A), with an arbitrary reference scale
A €RT, the RG flow finally is described by an autonomous
differential equation that reads:

owy + 4wy — (4 + ) (We.F + 2, G?)

- Y () +252r (7)) Vi)', (20)

327

where r' denotes the derivative of r with respect to its
argument y”> and

Equation (20) generalizes previously derived flow equa-
tions for actions depending solely on .7 [22,86] to the
general case of nonlinear ED, representing an important
intermediate result of this work.

C. Fixed-point sector

In perturbative QED, the flow analogous to Eq. (20)
develops singularities toward high energies, e.g., in the form
of the Landau pole. By contrast, the RG flow can be UV
complete if all operators spanning the action remain
bounded. The latter can be realized with the aid of RG fixed
points where the dimensionless flow vanishes and the theory
develops a quantum scale symmetry [87]. The existence of
such fixed points is a prerequisite for the asymptotic-safety
scenario of quantum field theories.
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In the following, we address the question as to whether
the quantized version of nonlinear ED as described by the
RG flow of Eq. (20) exhibits such a fixed point. If so, the
scale derivative of the field-strength potential vanishes,
d,w; =0, and the potential approaches a fixed function
W, = Wi_; In the language of statistical mechanics, w,
corresponds to a scaling function. A special focus on
properties like nontriviality and global existence for the
fixed function, if it exists, will be adopted later.

At the fixed point, w, satisfies the fixed-function
equation (FFE):

W, — (1 +%> (W..F + 2,92

1

T 128 A Y (ner(y?) +2y77 (%)) Yo (y)dty.  (22)

Here and in the following, quantities evaluated at the
fixed point are denoted with an asterisk. In particular,
the quantity Y, is obtained by evaluating Eq. (21) for
wy; = w,; note that Y, contains derivatives of w, up to
second order in both arguments, such that Eq. (22) corre-
sponds to a partial differential equation for w, as a function
of .7 and 4°.

D. Approximations

In order to investigate the fixed-function equation (22),
we use two approximations for simplifying the technical
complexity:

(A1) The RHS of the FFE involves a momentum-space
integral where spherical symmetry is broken by the
directions of electric and magnetic fields. For instance,
the term (Fy)? can be written as

(Fy)* = y3E* + Y E* cos(9g)*
+ ¥*B?sin(95)? + 20y - (E x B), (23)

where we have used a Euclidean space-time decomposition
of y = (y0,%)" with y€R3, and 9z, 95 denote the angles
enclosed by y and E, B respectively. The angle dependence
can be eliminated by (i) assuming that 9 — 95 = nx for
n€Z, implying that E and B are either parallel or
antiparallel, and (ii) requiring E> = B?. It can be shown,
that these conditions are equivalent to (anti-)self-dual
nonlinear electrodynamics for which F = £(xF) (where
the minus sign corresponds to anti-self-duality); note that
self-duality as used here is meaningful only in d =4
dimensions. Using self-duality, Eq. (23) exhibits spherical
symmetry in momentum space,

(Fy)? = Fy* = (xFy)?, (24)

such that the momentum integral in Eq. (22) can be
done analytically for a variety of frequently used shape
functions.

We emphasize that the choice of a self-dual field
configuration for the evaluation of the RHS of the FFE
does not yet represent an approximation. The RHS still
contains the complete set of terms. With this choice, we,
however, lose the ability to distinguish between depend-
encies of the RHS on the two different variables .% or 4. In
fact, since 4> = .%2, every term of even power in .72
receives also contributions from the 4> dependence. Our
first approximation (A1) therefore consists in accepting the
(mis)identification of these terms on the RHS of the flow
equation. As an advantage, the FFE now reduces to an
ordinary differential equation as the bi-argument depend-
ence of the fixed function w, merges to a single-argument
dependence solely on the invariant 7.

(A2) The FFE can also be transformed into an ordi-
nary differential equation by truncating the theory space
down to a pure .% dependence of w,, i.e., discarding the
42 dependence altogether. Then, the fact that w, = v, =
W, =0 implies that Y? =Y} =Y{=0 according to
Table I and using (19).

As a consequence, the scale-dependent propagator
G, receives only a single subtransversal contribution,
cf. Eq. (18). Nevertheless, we believe that this truncation
still provides a good approximation, since the subtransver-
sal input arises from a unique one-dimensional subspace of
X*(R*) and is likely to be of minor relevance compared to
the full three-dimensional transversal input generated by
P;. The latter is mediated through the coefficient Y7 which
remains unaffected from this truncation. At the same time,
this approximation yields a considerable simplification
of Eq. (22).

Conversely, it would not be reasonable to restrict to a
purely ¢¥?-dependent theory space and discard the .% sector
instead. This would eliminate the transversal input, only
retaining one-dimensional contributions that would not
cover the underlying four-dimensional field space. Also
the Maxwell term would be discarded from the weak-field
expansion of w,, thereby losing a relevant part of theory
space including the free theory and propagator.

We emphasize, that the approximations (A1) and (A2)
are not equivalent. Clearly (A2) # (Al), because a
truncation of theory space does not induce any specification
of the field strength used to build the invariants. (A1) is a
restriction rather on the information extracted for the fixed
function w, than on the theory space. In addition, also
(Al) & (A2), since self-duality retains information about
the ¢ dependence by means of a projection on the
F-related subspace of theory space. In this manner,
derivatives of w, with respect to its ¢* argument transform
to .# derivatives and, in particular, do not imply w, = 0.
This is different from the demands of (A2).
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In previous studies [22,86], the truncation represented by
approximation (A2) has been applied. Specifically in [63],
the problem of the angle dependence has been solved by an
expansion and resummation technique. As we apply both
(A1) and (A2), our resulting FFE differs from that of [63]
by the terms kept from the identification of 4> = .%2. On
the other hand, by performing the momentum integration
without expansion we have an unaffected access to the
large-field limit of the FFE.

IV. FIXED FUNCTIONS FOR IMPROPER
INITIAL CONDITIONS

In this section, we focus on the reduced FFE that we obtain
based on the approximations (A1) and (A2). We search for
solutions employing a weak-field expansion technique that
is widely used in the literature, e.g., for the analysis of
Wilson-Fisher-type fixed points in scalar field theories in a
local-potential approximation [44,50,71,74,88-90], generic
fermionic or Yukawa models [76,91-95], supersymmetric
models [96-99], or asymptotically safe fixed points in
gravity [100-106].

Even though this method is simple and has proven to
lead to robust results in many examples, it is based on a
choice of improper initial conditions for the FFE that do not
fix the solution uniquely without additional assumptions
and may, in fact, produce artifacts as will be discussed
below. Indeed, our results are similar to those of [63,64] as
we find many fixed-point candidates in addition to the
Gaussian fixed point. Subsequently, we will, however,
argue that proper initial conditions give a more immediate
access to fixed-point candidates for the present system.

A. Reduced fixed-function equation

Applying both approximations (A2) and (Al) in this
order reduces Eq. (22) significantly:

_ AW B P d M\ L [

(1 + 4>W*J ~ i {3%0 (w*, 2) —|—t(10) <1, 2)
R

where we have introduced the threshold functions

t?”l"z)(zl’ 22 a)

_ [ () —ary)
-7 ) Y PR A )

If either n;y = 0 or n, = 0, t does not depend on z; or z,
respectively and we will just omit the redundant argument
in our notation, e.g., t o(213a).

In the remainder of th1s sectlon we attempt to construct a
solution to Eq. (25) using analytical techniques based on
small-field expansions.

B. Small-field expansion

Assuming that the field-strength potential at the fixed
point can be expanded in a Taylor series near the origin,

:uo$*+3“+u2,*5“2+0(ﬁ’3) as. -0, (27)

we need to determine the generalized fixed-point couplings
u; . from the FFE (25).

We implement the IR regularization using the Litim-type
regulator shape function [107],

1—y
r(y) = 71[01 (), (28)

in which 1y ;) denotes the characteristic function on the
semi-open interval [0, 1) C R. This choice transforms all
threshold functions (26) occurring in Eq. (25) into the
following:

1
.\ 1 [ 2-n(l-y)
t L =2 |y dy,
<1°><W* 2) z/yl—u—w;)y Y
0

_11 2 2_’7*(1_}’)
_Z{y (1—(1—W’*)y) (1_(1—(W;<95)’)y)dy' (29)

Inserting the ansatz (27) into the reduced FFE (25) and
expanding the RHS in powers of .%, we obtain a tower of
equations for the generalized fixed-point couplings u; , by
comparison of coefficients, the first four of which are listed
below:

_6—1,
U = 1922°
8us .
487 + up,

1
Py (4 + 77*)”2*

2
5
51272
1 3
Uz = 4871’ (12 77*)”2* 1(4 + ’7*)”3.*

3 1
W<10 - ’/[*)MZ,*MS_* - 641 )

N =

Uy = (10 ’7*)

3
32072

(8 n*)u% *9

+ (8 = )us. (30)
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We observe that the vacuum energy u, , is fully determined
by the anomalous dimension and completely decouples
from the higher-order couplings. Having fixed the wave
function renormalization such that «; , = 1, the anomalous
dimension is fully defined in terms of u,,, such that the
equations for the higher-order couplings can structurally be
written as u; . = f;(Uy,, ..., u;y 1) for i > 2. The function
fi here features a linear dependence on the highest-order
coupling u;, . involved.

This structure illustrates the role of initial conditions:
since the FFE is a second-order ODE, two initial conditions
are needed for specifying a solution. One initial condition is
given by u; , = 1 through our choice of the wave function
renormalization. A solution of the tower of equations, say
up to order N€N,, now requires one further initial
condition. In principle, any coupling u, ,, ..., Uy, could
be fixed for this purpose. In order to construct a systematic
expansion scheme, the standard strategy is to fix uy, . to
some value, typically uy ., = 0, and then increase N until
some convergence criterion is met.

On the level of the FFE, this strategy corresponds to the

initial conditions w/,(0) = 1 and wiNH)(O) =0. We call
these initial conditions improper, because (i) they do not
guarantee a unique solution since the conditions of the
Picard-Lindelof theorem are not matched, and (ii) they do
not cover the full space of possible initial conditions and
thus of the solution space.

In order to make this more precise, we define the partial
sum w,(F;N) =YY u;,#' as a truncation at order
N € N,. We can solve the resulting tower of equations (30),
expressing all couplings as functions of u,,, i.e., u;, =
u; (us,) for all i €Ny <y. The improper initial condition
Uyi1.+(Ua,) =0 yields a polynomial equation of degree
2N —11in u,, for N > 1. Therefore, it can at most admit
2N —1 zeroes. For each odd N, we find N(<2N —1)
distinct real solutions, whereas for each even N we instead
obtain N + 1(< 2N — 1) such solutions. The case N =0
corresponds to 7,(u,,) =0 and immediately implies
u, , = 0 which describes the trivial solution. The solutions
up to order N = 26 are shown in Fig. 1 (except for one
solution existing only for even N which we consider as an
artifact).

In addition to the noninteracting Gaussian fixed point
(GFP) characterized by vanishing fixed-point couplings, we
observe non-Gaussian fixed points (NGFP) which can be
classified according to their number of RG relevant direc-

tions. The latter are characterized by the critical exponents
G);N) derived from the spectrum of the truncated stability
matrix BiN) , being the Jacobian of the (column) vector of beta

functions, ™) = (By.fa. B ... By)T where f; := d,u;(k)
[note that #; = d,u, (k) = 0], with respect to the (column)

vector of couplings u™) = (ug, Uy, us, ..., uN)T evaluated at

the fixed-point candidate uka),

GP.“P’ * . .0 @ : : g8 : ::: f::
(1) ° . P P
K . . P o® ° o
. .

. ° ' . o . . e :.: :
L I VTS -~ .. S e .

R (2 « o .
g oy . P °

H : . . o ..
T . * T . - o Y . s . :

=z NGFP2 L . . K2 .’ o
% ® * . e . .m" ) s". .
fi ~100 NGEP3 A g o <o e
B L. I P e
. s LI RN .
6 B o, B o e o o e
M S e o A
LA E E S o o
L. o & . . c .;".
-150 Tt
0 5 10 15 20 25

N

FIG. 1. Fixed-point candidates within the small-field expansion
using improper initial conditions, uy (1, ) = 0, as a function
of truncation order N = 1, ..., 26. The dotted lines connect fixed-
point candidates with the same number of relevant directions as
labeled in parentheses below the fixed-point designations: GFP,
NGFP1, etc. In addition to the Gaussian fixed point (black), we
observe a fixed-point candidate with one relevant direction (red)
and subsequent higher-order candidates (blue and gray), each of
which moves toward weaker fixed-point couplings for increasing
truncation order.

BY = (Dp") (™), -0 eeig(B). (31)

Positive @;N) mark RG relevant directions, corresponding to

perturbations of a fixed point that grow large towards the IR
and dominate the long-range physics. The number of relevant
directions near a fixed point corresponds to the number of
physical parameters to be fixed for predicting all low-energy
observables. The increasing number of fixed-point candi-
dates for increasing truncation order N also exhibit an
increasing number of relevant directions. In Fig. 1, we have
connected all fixed-point candidates with the same number of
relevant directions by dotted lines to guide the eye, and
labeled the non-Gaussian fixed points with the number of
relevant directions in parentheses.

For the GFP, the only relevant direction is associated
with the vacuum energy u. For the interacting fixed points,

further nontrivial relevant directions appear in addition to

that of the vacuum energy which remains exactly at @f)N) =

By = 4 for all N € N, reflecting its canonical dimension.
Classifying the non-Gaussian fixed-point candidates
according to the same number of relevant directions for
increasing truncation order in terms of fixed-point classes
labeled by NGFPn as in Fig. 1, we observe that each class
is characterized by n + 1 relevant directions, i.e. n non-
trivial directions apart from the one of the vacuum energy.

If real, each of the NGFPn could represent a new
universality class of nonlinear electrodynamics giving rise
to UV complete quantum field theories of interacting light.
However, following the standard reasoning in the literature
for small-field expansions, we expect only those NGFP
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NGFP5

NGFP3

S -2 —u3.(N) =a-exp(~b-N)
! J NGFP2
- NGFP1  a~132,376 b~ 12085
-4 NGFP2  a~ 141,844 b= 0.6990
_6 NGFP3 a=~187,945 b= 05073
NGFP5  a=~310,706 b= 03458
=8 [ | NGFP10 a~091,088 b= 02154
©NGFP1
0 5 10 15 20 25

FIG. 2. Logarithmic plot of the (negative) fixed-point coupling
—u, ,(N) for selected interacting fixed point classes NGFPn for
increasing truncation order N. The results from the truncated
fixed-point equations can be fitted to an exponential with fit
parameters a, b such that —u, ,(N) = ae™® (solid lines). The fit
parameters are listed in the legend.

candidates to approximate a true interacting fixed point for
which the couplings u;, and the critical exponents con-
verge with increasing truncation order N.

From Fig. 1, all fixed-point candidates NGFPn appear to
converge towards the GFP. In order to substantiate this
quantitatively, we plot the fixed-point value In(—u,,) as a
function of truncation order N for a sample of the NGFPs in
Fig. 2. We observe that the data follows linear fits, implying
an exponential convergence with N: u, ,(N) =—aexp(—bN)
with fit constants a, b for each non-Gaussian fixed-point
class NGFPn, respectively. Assuming that this exponential
drop-off can be extrapolated to any N, we observe that u, ,
and presumably also the higher-order couplings deplete to
zero. Our data suggests that this also holds for higher-order
NGFPn albeit with smaller damping rate. While this seems to
suggest that all NGFPn converge to the GFP, we emphasize
that we are dealing with different universality classes here,
since the NGFPn exhibit a different number of relevant
directions.

In order to check for the convergence of the critical
exponents, we concentrate on NGFP1 (marked in red in
Fig. 1) which exhibits one nontrivial relevant direction in

addition to the trivial vacuum-energy direction. For this

purpose, we track the evolution of Bf\ING)FPI and its spectrum,

eig(BI(\ING)FPI), for growing N. The result is depicted in Fig. 3.
In addition to the critical exponent corresponding to u, which

stays fixed at G)(()N) =4 for all N €Ny, the second relevant
(N)

exponent lies also close to the same value ©,

our highest truncation, we find @gN:%) — 4 < 1075. The real
parts of subsequent critical exponents remain negative (RG
irrelevant) for all values of N studied here, and exhibit a clear
tendency to approach the canonical mass dimensions of the
higher-order operators, cf. black ticks in Fig. 3, right side.

~4;e.g., for

”E ~\~. ® O © 0 & 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0o—
:\E 0 \\\o e 0o 06 06 06 06 0 06 0 0 06 0 0 0 0 0 0 0 0 0 0 0 .-
z Ny e o o o—
éz v.\é e o 0o 0 0o o : : : : : : : : : : : . . ; a:
2 -20 Roge-*"* apmmEE =
v RS- L =
z. \B\ﬂ e’ eo o’ .:
T 40 R = e "’ PP
! RN o o ° -
< Thg Doec0oogaes o=

2y 3 L4 -
) fog.” =
Zz = -
v =g Dogaz
= Ho —
~ =80 5.0 -
2 DE\S Og o=
o o &=
3 ~R.0=

0 5 10 15 20 25
N

FIG. 3. Real parts (N) of critical exponents of the first non-
Gaussian fixed point (NGFP1) derived from the small-field
expansion as a function of truncation order N. Filled circles of
equal color correspond to evolutions of individual critical
exponents for increasing N. Open squares mark the real part
of critical exponents which show up in complex conjugate pairs.
The black dashed line follows the canonical mass dimension of
the highest operator .#" included at each N. Short solid ticks at
the right edge mark the (negative of the) canonical mass
dimensions of all operators occurring in the polynomial expan-
sion, 4,0, -4, -8, ..., —100.

In particular, the convergence towards this asymptotic limit is
already apparent for the first few irrelevant exponents. In
addition, we also find complex conjugate pairs of critical
exponents, the real parts of which are indicated by open
squares. In the N range analyzed here, these complex pairs do
not yet exhibit a clear signature of convergence, as is also true
for the highest-order exponents. More definite answers
would require higher truncations.

Our findings so far show a close similarity to those
of [63] for nonlinear ED using a different truncation
scheme as well as to those of [63,64] studying shift-
symmetric scalar field theories both motivated by explora-
tions of the weak-gravity bound [36,108—115]. In fact, the
resulting FFEs in these systems show a great deal of
similarity such that qualitative and even quantitative
resemblance does not come as a surprise.

In the light of this similarity, we expect that also the
further results of [64] for the shift-symmetric scalar field
are also of relevance for nonlinear ED: for the eigenper-
turbations around the Gaussian fixed point of the scalar
theory, the corresponding differential equation can be
brought into Sturm-Liouville form which comes with an
integration measure. However, the eigenperturbations
around fixed points analogous to our NGFPn turn out
not to be square-integrable with respect to the Sturm-
Liouville measure. Reference [64] concludes for the shift-
symmetric scalar theory that these fixed points do not
represent legitimate physical fixed-point solutions and
should be discarded, cf. [116-121].

Based on the strong similarity, we conjecture that an
analogous Sturm-Liouville analysis leads to the same
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verdict for the fixed points NGFPn derived here from the
small-field expansion using improper initial conditions.
Therefore, the only trustworthy fixed point so far is the
trivial Gaussian one with the field-strength potential
worp(F) = 35+ F.

This seems to suggest that no nontrivial fixed points exist
in nonlinear ED; however, the argument is incomplete: as
we argue in the following, the small-field expansion using
improper initial conditions can be blind to further solutions.
In order to illustrate this already within the small-field
expansion, let us take a look at the behavior of the
anomalous dimension 7, as a function of u, .. As discussed
above, this relation is fully determined by the .%-linear part
of the reduced FFE and can be found as the second equation
from above in (30). In fact, this relation also holds for more
general Taylor expansions of w, (.%) around .# = 0, where
Uy, has to be replaced by 1w’/ (0). A plot of 7, as a function
of u,, is shown in Fig. 4. For values u,, € (—oo, —487?),
the anomalous dimension is positive but large and reaches
its limit point 5, = 8 for u, , — —oo. It moreover develops
apole at u, , = —48x°, where beyond that pole in the range
Uy, € (—48z%,0] the anomalous dimension assumes neg-
ative values and crosses the zero point for vanishing u, .. In
the opposite half space of positive u,,, 1, is smooth
throughout, slowly monotonically growing and bounded
from above by the limit value 5, = 8 for u,, — oo.

All non-Gaussian fixed points within the NGFPn dis-
played in Fig. 1 are located in the slim blue shaded region
between the Gaussian solution and the pole. They cover
thus a limited range of negative values for #,. The shifted

i
o

-20F

—40 }

-25 -20 -15 -1.0 -05 0.0 0.5 1.0
uz,*/103

FIG. 4. Anomalous dimension 7, plotted as a function of the
coefficient u,, of the .#? contribution to the small-field ex-
pansion (blue line), exhibiting a pole at u, , = —48z> (red line).
The blue shaded areas indicate the regions where all fixed points
from the classes NGFPn based on the small-field expansion with
improper initial conditions for N € N.,s have been found; the
blue shaded segment at the left margin contains all fixed-point
candidates classified as an artifact of the truncation, whereas the
region right to the pole comprises the fixed-point candidates
displayed in Fig. 1.

branch of extra solutions existing only for even N and
essentially ignored in the discussion above corresponds to
the separated blue shaded region at large |u, .| beyond the
pole. In fact, classifying this shifted branch as an artifact is
also justified by the fact that the anomalous dimension is
large, 1, > 8. Since our ansatz for the action is based on a
derivative expansion, we expect the anomalous dimension
not to exceed values of O(1) as a self-consistency criterion
of the expansion.

Most importantly, we observe that the small-field
expansion together with the improper initial condition does
not give access to solutions with small positive values of 7,.
From the viewpoint of proper initial conditions, this
appears to be unnatural: a proper initial condition for the
FFE given, e.g., in terms of w//(0) = u,, does naturally
include small positive values of u,, implying likewise
small positive values of #,. Whether or not such initial
conditions lead to a legitimate fixed point and a global
solution of the FFE needs to be and is studied separately in
the following sections.

Let us conclude this section with a few comments on the
limitations of the small-field expansion: In general, we
expect the small-field expansion (27) to have a finite radius
of convergence (ROC). This radius typically does not cover
the maximal domain on which a full solution w, can be
defined, but rather a bounded interval .% € [0, Zoc). In
the literature, numerical shooting methods have frequently
been used [46,47,52,118,122] to identify the initial con-
dition for u,, by that value that maximizes .#Roc; this is
based on the argument that a true fixed-point solution
should be globally defined. Since our current form of the
FFE is not suitable for shooting, we refrain from using this
method, but complement our approach by a large-field
expansion below.

Finally, if we dropped assumption (A2) and reincluded
42 dependencies into w,, new features could appear in the
. part of theory space as the new couplings act nontrivially
on the RG flow. Since there is no concept of (Hodge)
duality for a scalar field, theories of nonlinear ED with
fixed functions (F,%?) — w,(%,%?) may no longer be
comparable to shift-symmetric scalar systems. This may in
principle affect the implications that we have conjectured
from the FFE based on the analogy to the shift-symmetric
case. We will come back to this point in Sec. VL.

V. FIXED FUNCTIONS FOR PROPER
INITIAL CONDITIONS

In this section, we continue to use the approximations
(A1) and (A2), but now aim at solving the FFE using
proper initial conditions: as the reduced FFE (25) is a
second order ordinary differential equation, two initial
conditions are required to single out a unique solution.
As an example, consider initial conditions at zero field
amplitude, w,(0) =w; and w/(0) = w, with constants
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wi, wy, €R. As discussed above, wy = 1 is already fixed by
our choice for the wave function renormalization. This
leaves us with a solution space, being a one-parameter
family {Z > w,(Z;w,)|lw, €R}.

In the present case where w/(0) = u,,, we could use
Wy = u,, for parametrizing this family. For reasons that
become clear later, we use the inversion of the exact
relation between u,, and the anomalous dimension 7, in
the second equation of (30),

T
uz,* (}7*) - 487[2 8_—

*

form, 8, (32)

in order to navigate through the space of solutions by using
1, €R excluding the value , = 8 where (32) diverges.

In order to single out the physical fixed-point solutions,
another criterion is needed. In many models, this criterion is
given by global existence. For instance, in Ising-type
systems, a generic choice for w, yields a solution with a
singularity at a finite field amplitude [43,44], and only a
single value of w, (or a discrete set) corresponds to a
solution which exists for any value of the amplitude.

The following subsections are devoted to a construction
of such global solutions using the analytical tools of small-
and large-field expansions.

A. Small-field expansion

Let us start again with the small-field expansion, now
implementing proper initial conditions. For this, we use
again the Taylor expansion (27), leading to the tower of
Egs. (30). The essential difference for a given value
of n, now is that we can use the ith equation u;, =
fi(uas, ..., u; 11 ,) and solve it exactly for u;, ,. Here we
note two aspects: firstly, the solution is unique, since f;
depends linearly on u; . , and secondly, it is stable against
increments of N for every admissible value of #,. The latter
means that the functional dependence of u;,;, on the
anomalous dimension is unaffected from the order of
truncation and, once determined explicitly, applies to
arbitrary N (provided that i < N, otherwise u;,;, does
not yet exist). The explicit expressions for the first few
coefficients u; , including the vacuum energy u,, read:

u o 6— N
0% 7 19242°
”1,* = 1,
1.
* — 48 2—7
“, " 8 — Ny
6144r* g
= e (160 + 1501, — 1972),
us, 25 (8 _ ”*)3 ( + n n )
491527°  n,
. = 102400 + 2368007,
. 25 Bony * 7
+ 6752012 — 2452013 + 15637%). (33)

From investigating also higher order couplings we can find
a general pattern, according to which the ith coupling for
i > 2 can be written as a function of 7, as

o .
Uj 4 (’I*) - Aiﬂz( D )2,'_3 P2(i—2) (7]*)7 (34)

(8_7]*

where A; is a number and P, denotes a full polynomial of
degree D in 7,.

For illustration, let us study some explicit results for
various choices of 7,. Since the improper initial conditions
gave us access to negative values of 5, only which we
argued to correspond to artifacts of the approximation, we
now concentrate on the branch 7, > 0. Indeed, the fact that
we are now capable of inspecting fixed points at positive
anomalous dimensions is a notable difference between
improper and proper initial conditions. As our truncation
corresponds to a derivative expansion, we expect our
approximation to be justified for small values of , < O(1).

Let w,(%#;n,,N) denote the Nth partial sum of
Eq. (27). Several resulting field-strength potentials %
w,(F;n,,N) in the range % €0,0.02], for the choices
n,€{1074,107%,1072,107',1,5} and N €{10,20, 30,40}
are shown in Fig. 5. We observe that w, describes a
monotonically increasing function with a linear domain
close to the origin, where approximately w,(.%;#n,,N) —
g (1.) = % . The range of this domain depends sensitively
on the two parameters #, and N. For example, for
increasing N at fixed 7,, the point of departure from the
linear behavior is shifted to smaller .%7. However, the speed
of this shift slows down rapidly for increasing N. Also for
increasing 7, at fixed N, we observe a similar, if not more
pronounced, effect.

Analogously to many other FRG studies of fixed-point
potentials, we indeed expect the small field expansion to
exhibit a finite radius of convergence; the preceding
observed behavior is indicative for this. More quantita-
tively, let r(5,) denote the radius of convergence of the full
power series (27), our observations suggest that r(1,)
shrinks with increasing #,. From the polynomial relation
Ui (1) « Py_s(n,), it is clear that lim, . r(n.) =0,
whereas r(0) = oo, since 5, =0 corresponds to the
Gaussian fixed point, where all u;-, . vanish identically.

In order to compute the radius of convergence in full
generality we would need to use Cauchy-Hadamard’s
theorem. Here, we confine ourselves to use a special case
of the theorem where r can be extracted from the ratio test if
all couplings are known, i.e., r(n,) =lim; . |u;.(n.)/
Ui 1.(n,)| whenever the limit exists, provided that all
coefficients u;, do not vanish above a certain index. The
latter requirement is certainly fulfilled in the case at hand
and we find the general result of the form

ui,*(’?*) _1 Ai

_ 1 5 Paica) (n.)
Mi+1,*(’1*) s Ay

Py (n.)

(8 —n.) . (35)
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(Partial) Fixed function w, plotted as a function of positive .% for different finite-dimensional truncations (N) and a selection

of 5, values. The panes display results for increasing truncation order from N = 10 (upper left) to N = 40 (lower right) in steps of
AN = 10. In each panel, w, is shown for values of #, ranging logarithmically from 10~ to I in colors from blue (right-most) to orange,
respectively, also including the extreme example 5, = 5 (red/left-most) for illustrative purposes.

in which AA—I < 1 holds for all i studied in this work. The

sequence (35) is depicted in Fig. 6 for the values of 7, also
considered in Fig. 5. Since each of these sequences exhibits
rapid convergence, we obtain estimates for r(n,), e.g.,
r(107*) ~ 0.009 or r(1)~0.001 [and, as anticipated,

|.,,*:1o*“ e =107 on,=10"2 on,=10"" ep =1 .,,*=5|
0.012
Lo,
. °, 0.010
::000. Ceceeec®® %% 0e,,,
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e gee®e.,
g1 e P [
S
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.
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000000000000 0000000000000000000000000 0
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N

FIG. 6. Ratio sequence for the highest-order series coefficient
uy .. of an Nth partial sum truncation of the small-field expansion
Eq. (27). Here, the set of 5, values agrees with those of Fig. 5
following the same color code.

r(5) =~ 0 for the extreme example of a large anomalous
dimension 7, = 5].

B. Large-field expansion

On our way to construct global solutions to the FFE, let
us next study a large-field expansion. In order to identify a
starting point, we use the following line of argument: On
the one hand, we expect the field-strength potential to be an
increasing function of the field amplitude. More specifi-
cally, we expect w, (%) to diverge for .7 — oo, reflecting
the fact that an infinitely large amplitude should cost an
infinite amount of Euclidean action. On the other hand, the
Sturm-Liouville analysis mentioned above suggests that the
field-strength potential should be polynomially bounded. It
is thus natural to assume that the field-strength potential
diverges like a power for large amplitude, w, (%) ~ .Z2 for
¥ — oo, with a positive exponent A > 0. If so, both terms
on the left-hand side of Eq. (25) scale like ~.%* to infinity
at large fields. On the right-hand side, we observe that all
terms are bounded: for A > 1, all field-dependent terms are
suppressed ~1/.#471; for 0 < A < 1, the right-hand side
approaches a constant.
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Ignoring subleading constants, the reduced FFE (25)
therefore takes the asymptotic form

w*—<1+%>w;9~o (F > ).  (36)

Equation (36) corresponds to a first-order ordinary differ-
ential equation which can easily be solved analytically,
yielding a two-parameter family of solutions with one
integration parameter u in addition to the anomalous
dimension #, parametrizing the proper initial condition
of the full equation:

w (Fiun,) ~ pFA0) (F - ),
4
A(n,) = . 37
(n.) i (37)

This demonstrates that our assumption of a power-law
ansatz for the large-field asymptotics is self-consistent as
long as 7, > —4. Moreover, we observe that this asymp-
totics is governed by the anomalous dimension. This is in
complete analogy to many other examples in the literature
where the large-amplitude asymptotics is balanced by the
classical rescaling terms [i.e., the second term in Eq. (36)].
For the construction of the global solution below, the
parameter u will be fixed by the requirement of merging
the small- and large-field solutions.

Using Eq. (37) as a leading order, we now need an ansatz
for a systematic large-field expansion. For better read-
ability, let us define 2" :=1/.% and rewrite the field-
strength potential in terms of 2, w,(2u, A(n,)) =
w, (s u,n,.)| #_9-1. Then, we may parametrize w, for
small 2" as

W2 D) = c(u, A) +p 2 +C(234). (38)

where c is a constant for a fixed pair (1, A), and C. provides
the subleading terms of higher orders in 2. It is straight-
forward to check, that a naive power-series ansatz for é* in
general leads to artificial divergencies upon Taylor-expand-
ing the threshold functions. Therefore a more refined
strategy is needed.

The field-dependent part of the integrands of the
involved threshold functions given in (29) can be written
as either

1 1 1
1-Ay 1-Ay 1-By’

(39)

where A and B are .2 -dependent quantities and y € [0, 1] is
the variable of integration. The expressions in (39) can be
expanded into a geometric series as long as |A|, |B| < 1.
Given the ansatz (38) for w,, these last-mentioned con-
ditions can be viewed as restrictive boundary conditions on
the applicability domain of 2", the range of which will be

u and A dependent. Using the explicit forms of A, B in
Eq. (29), these conditions read

0 < Au2' =5 - 22C (X5 A) <2,
0 < A2u2'2 + 22(1+ 2CU25A) <2, (40)

Here, a prime denotes the derivative with respect to the

argument, e.g., a(% JA) = dé*ég;A). Since C, decreases

fast enough for 2~ — 0 by assumption, these conditions
can be fulfilled if 1 —A > 0, such that contributions
proportional to 2! do not become arbitrarily large. It
is interesting to note that this implies, in particular, , > 0,
which is in fact the regime of interest to us.

The geometric series expansions of (39) on the one hand
produce simple integrals over positive powers of y that can
be performed analytically at any order. On the other hand,
the resulting field dependencies arise from the correspond-
ing powers A" or B" (n €N) which also contain powers of
W, and its derivatives. This produces monomials .24
(m €N) which cannot be covered by an ordinary power-

series ansatz for C,. It rather needs to be expressed in terms
of a formal Hahn series with I'(A) C N? being a suitable
A-dependent ordered group from which the running index
of the corresponding sum is taken. Our final large-field
ansatz results from an iterative process that covers all
powers of 2 arising from the geometric-series expansion:

P2 A) = 3 v u.A) 27

eel(A)

=c(u,A)+pu22
=S 1
+ D T wg(u A) 2T (41)
I=1 a=1

Here, v¢ ((I,a) =e€l'(A)CN?) are the u- and
A-dependent coefficients to be determined and p(e) :=
I —aA.

Unlike in the small-field regime, a truncation for the
large-field sector will thus be specified by two parameters
N, N, €Ny. The former truncates the first series (41) to its
first Ny terms I € N_y , including a total of %Nl (Ny+1)
terms because of the double sum. Besides the lowest order
contribution, which is always .2"1~4, this also defines the
highest power of this expansion which is given by 2V1=4,
Higher order contributions are neglected whenever they are
generated by the expansion of the reduced FFE. However,
this procedure is not fully self-consistent insofar as also
contributions proportional to 27() with 1 — A < p(e) <
Ny —A will emerge, but which are not part of our
truncation itself. Since those p’s can still be expressed
as p(e) =1 —aA for some pair (I,a) = e€I'(A), these
terms eventually get successively and consistently resolved
at higher truncations N;. In order to estimate the
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quantitative impact of these terms, we will compare two
different truncations and try to evaluate the weight of these
additional contributions. The second parameter N, limits
the geometric series emerging through (39) to contain
only their first N, terms. The effect of choosing different N,
values can be understood as follows: if we think of all
possible contributions « 27794 being classified by an
ordered sequence of sets which contain all exponents
according to their numerical value in the interval
I,=[n,n+1) for neN,, the parameter N, causes the
number of terms which actually appear on the RHS of the
reduced FFE from each of these classes to increase. For
instance, if A is less than, but close to, one (which
corresponds to small 7,), terms with exponents I — aA
fora =1 give I(1 — A) €[1,2) = I, for many values of /.
Given a fixed parameter value of N, we may generate more
and more terms that belong to the class /; which are yet not
part of the truncation at hand if N, gets large enough. In this
sense, N, controls the resolution at which the spectrum of
all potential contributions taken from the classes /,, and
emerging on the RHS of the reduced FFE is sampled.
However, only if we also raise N; we would be able to
balance this effect with the LHS and reveal the information
available at this level of the resolution. Thus, it is advisable
to narrow the pertinent truncations on similar values,
e.g., N =N, + 1.

C. Global fixed functions

Let us now proceed with the construction of global fixed
functions based on the analytic expansions for small and
large fields employing proper initial conditions. Since both
expansions generically have a finite radius of convergence,
it is a priori unclear whether both expansions have a finite
overlap region where they can be matched using the
parameter p. For instance, for scalar O(N) models, such
an overlap region does exist. If so, it is typically not
possible to perform the matching for any set of proper
initial condition parameters. In fact for scalar models this is
possible only for a discrete set of initial conditions that
correspond to a discrete set of fixed points [123], such as
the Gaussian or the Wilson-Fisher fixed point. If this
standard scenario applies to the present case, we should
expect that it singles out specific values of #, for which
global fixed functions can be constructed. Incidentally,
there is a priori no guarantee that a finite overlap region for
the two expansions exists; see [59] for a counter example.
In this case, the present approach would not find a viable
global solution and more powerful methods such as those
of [48,59,124,125] are needed.

Let us now construct estimates for global fixed functions
obeying proper initial conditions using the following steps:

(1) First, we construct a solution w! from the large-field

expansion of the reduced FFE defined in terms of
the two truncation parameters N; €N, N, €Nj. The
ansatz (41) together with the reduced FFE yields an

2

3

“
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algebraic system from which we can determine the
constant ¢ as well as the 1N;(N, + 1) unknown
coefficients v§ € {v}. v}, v3, v}, ....v}'}. The latter
are derived as functions of u and A.

Second, we construct the small-field expansion w§
for proper initial conditions specified in terms of a
value for 7, based on the highest-order truncation,
i.e., the largest value of N used in Sec. VA. The
proper initial condition, of course also fixes the A =
A(n,) dependence of the coefficients v¢, and thus
that of the large-field solution w! from step (1) which
retains only a x dependence.

In order to specify the remaining free parameter g,
let us first quantify the overlap region of the two
approximate solutions w$ and wk: from our con-
struction of w$, we also obtain an approximation of
the radius of convergence r, cf. Eq. (35) and Fig. 6.
Unfortunately, a formal Hahn series like (41) does
generally not allow for a proper notion of conver-
gence, let alone a radius of convergence; still, we
observe that wk develops a pronounced barrier by
below which the derivative (wl)’ rapidly increases.
This happens for sufficiently small .# numerically
comparable to some power of the coefficients vf.
A numerical value for b can be estimated by
by, ~ max{(v%)Fa|l Ney,.a <T}. We use by as
a provisional substitute for a radius of convergence

for wk.
Then, we define the overlap region of w? and wt
in terms of the interval intersection [0,r] N

[by, ) = [by,r] if by <r. (If by > r, there is no
overlap region and a construction of a global
solution cannot be based on the small- and large-
field expansions alone.) Even though b, carries a u
dependence in principle, we observe this depend-
ence to be rather weak; in practice, the approxima-
tion by ~ const. can hence be used for a wide range
of u values.

Now, we fix the free parameter 4 by demanding
that the square-deviation integral in the overlap
region,

5 () s= / (WS(F) —wh(Fop) T, (42)
[hL,’]

becomes minimal,

p= o (8%) (o) = 0 A (8)" (o) > 0. (43)

In case of several local minima, we pick the y value
for the global minimum of &°. Inserting y into wt
finally completes the large-field solution.

As a last step, both w$ and wl are suitably glued

within the interval [by, r]. A simple procedure is to
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use an intersection point of the two expansions. If
more than one intersections appear, say .% |, %,, ...,
we choose the one for which the absolute difference
(W) (F ) — (WE) (F 43 1p)| is minimal to achieve
the smoothest transition possible with this direct
method. Suppose we have chosen such a point of
intersection in this way, .% , for some index #, then
replace ., — %, and let %€ [by, r]. With this
choice, we obtain an approximate global solution
from
wo(F) = (W 1z + Wk -1z, ) (F).  (44)
The results for two different truncations (N, N,) €
{(2,1),(4,3)} are presented in Fig. 7.

Based on the quantitative results, we can first and
foremost conclude that satisfactory approximations to
continuous global fixed functions can be constructed for
a variety of different 7, values and truncations. With our
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= 10" :
< :
= :
5 :
= 102,
8
S
s
5 (N1, Na) mo
+ 107
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NG
107 1078 107 108 107 10 1078 1072 10~
F
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g 4
&
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¢ .
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v (N1, N) ko Fy
+ 1073
q -=-] (2,1) 0.889 0.003
- — | (4,3) 0.691 0.002
s -4
~ 10
107 107 10°° 10 1078 1072 107"
F

matching condition (43) we even obtain comparatively
smooth fixed functions at the fusion point %, for suffi-
ciently small #, > 0. For the case , = 1, it is evident from
Fig. 7 that this gluing procedure leads to a visible kink at
the matching point. This may already be taken as an
indication that 7, = 1 lies beyond the range of 7, values
for which the present procedure yields a valid approxima-
tion of a global fixed function. This is discussed in more
detail in the next section, where also another gluing
procedure will be presented that yields differentiable global
approximations.

Let us finally comment on the convergence properties of
our truncated expansion for N, N, N, — oo. For this, we use
the dependence of the overlap region [by, r|(N, Ny, N2;n.)
on the truncation parameters and the anomalous dimension
as an indicator. For fixed N and 7, we can infer from
Fig. 7 that the interval obeys the inclusion relation
[bL, |(N,Ny,No;n.) D [by, r](N,Ny +m+1,N, +m;n,),
for m € N. More generally, we expect that increasing the

(N1,N2) wo  Fo

“=2| (1) 1 0.005

| (4,3) 0.984 0.004

(wf 10,7, + wh - 1[9‘,,{,0)) (F; 4, pos N, N1, No)
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107 L
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- ~t——ee
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s
—
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0
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F

FIG. 7. Global continuous fixed functions and residuals of small- and large-field expansions for various values of the anomalous
dimension 7, for different truncation orders. The color code for different values of #, corresponds to that of Fig. 5. The large-field

4

asymptotics is given by a power law with exponent A = T

, cf. upper left legends. The small-field expansion is truncated beyond

N = 40, whereas the large-field truncation parameters (N, N,) are taken to be either (2,1) (dashed) or (4,3) (solid). In each panel, the
colored lines show combined global solutions according to Eq. (44), where the parameters y and .%, are such that (43) is fulfilled and
the intersection has the least slope difference. Numerical values are given in the boxes in the lower right corners. Moreover, gray lines
represent pure large-field solutions in both truncations, whereby the pure small-field solution is distinguished from them by the black
dotted line in each panel. The overlap region, i.e., the interval [y, r] is indicated by the colored regions.
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large-field truncation makes the overlap region smaller for
fixed N and 7,. Increasing both N and #, in addition
amplifies this effect, because it reduces the radius of
convergence r. Quantitatively, the overlap regions depend
sensitively on N, N, and ,. For instance, for , = 1 at
(N{,N,) = (4, 3) the overlap spans much less than one order
of magnitude. For small anomalous dimensions, the overlap
is considerably larger, but also contracts sizably when going
from the (2,1) truncation to the (4,3) truncation. Still, the
overlap remains sufficiently large to obtain a comparatively
smooth global approximation in contrast to the n, = 1 case.

Of course, if the small- and/or large-field expansion
is only an asymptotic series, then the overlap region
will eventually vanish for large truncation parameters.
Nevertheless, finite truncations would then still represent
quantitatively trustworthy approximations that serve to
construct global solutions. We consider the approximations
constructed in the present section to provide satisfactory
evidence for the existence of a continuous family of
solutions for small values of 7,.

D. Absence of a movable singularity

The existence of a continuous family of fixed functions
for small positive 5, evidenced by our preceding con-
struction is rather unusual. While the initial conditions,
in principle, allow for a continuous solution family, the
intrinsic nonlinearity of the FFE reduces this continuous set
typically to a discrete set of solutions.

For instance for the paradigm example of scalar O(N)
models, the matching of small- and large-field expansions
imposes a condition that is only satisfied for a finite set of
solutions (typically only one solution corresponding to the
Wilson-Fisher fixed point). This can also be rephrased as
follows: the proper initial conditions at small field ampli-
tude can also be reformulated as boundary conditions to be
imposed in the small- and large-field limit, e.g., in terms of
the potential derivative at zero field and the large-field
asymptotics. While an initial-value problem can feature
continuous solution sets, a boundary-value problem can
single out discrete solutions.

Another way to see this reduction or “quantization” of
fixed-function solutions goes as follows: bringing the FFE
to normal form, the differential equation, e.g., for the O(N)
model reads

) B e(v,v'; )
o) = S, (45)

where v denotes the potential, ¢ the field amplitude, and e
and s are functions of the potential and its first derivative. In
particular, s typically corresponds to the scaling term, i.e., the
O(N) analog of the left-hand side of the FFE (25). For
generic initial conditions imposed at ¢ = 0, the denominator
s develops a zero at some finite ¢ which is called a movable
singularity of the FFE. If such a movable singularity exists, a

global solution for v(¢) can only be constructed provided
that e also vanishes at this zero of s. This imposes another
condition on the initial values and thus leads to a quantization
of solutions [46,47,52,118,122].

For the present case, this implies that our continuous
family of solutions to the FFE for small 7, persists only if
the FFE (25) does not feature such a movable singularity.
Unfortunately, this is difficult to check directly, since we
cannot bring Eq. (25) analytically into normal form.

In order to collect indirect evidence, we proceed as
follows: we first expand the integrands of the threshold
functions in Egs. (29) in a geometric series and perform the
loop integration term by term. For instance, to lowest
nontrivial order, we obtain the differential equation

ao + ap - (ﬁw’*/) + aj - (ng)z = O, (46)
with coefficients
ao(F,wisn,) = 280 — 45x,
1
+5|:77*—8—967T2(1— f)]w;,
A1)
al(wi;ﬂ*) = (13’7* - 124) - 2(5’7* - 54)W;

+ 2(’7* - 12)W/*27
ar(Wisn,) = (5n, — 54) + 2(n, — 12)w,. (47)

Equation (46) is a quadratic polynomial in .#w/ and can
straightforwardly be brought into normal form analogously
to Eq. (45). To this order, it turns out that the resulting
condition for the absence of a movable singularity is
satisfied if and only if a, # 0. Conversely, if a movable
singularity is present, say at % = %, then we find

154 - 5,

W;(ymsa”*) = _E 12_’7 .

(48)

Since our attention is devoted to small #, > 0, this
expression signifies a negative slope of the field strength
potential at the movable singularity. However, if the
convergence criterion of the geometric series expansion
of the threshold functions is fulfilled, that is if

V.ZERS: W(F) WATF) + Fw!(F)E[0.2), (49

then Eq. (48) cannot be true for any .% and thus there is no
movable singularity.

In order to check this, we have to construct global
solutions which are differentiable at least twice. For this,
we use an interpolation of the small- and large-field
expansions in the overlap region [by,r] by means of an
affine combination:

w, = gsws + guwk = wh 4+ gs(wd —wh),  (50)
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where we have used that the weight functions gg, ¢;, add up
to unity; gs + g = 1.

The interpolation via gg is constructed in such a way that
the contributions of the more reliable approximation
dominates the derivatives near the edges of the overlap
region, e.g., w$ dominates near b; and w dominates near r.
This construction therefore avoids artifacts and contami-
nations from the less trustworthy approximation in the
derivatives. On the level of the field-strength potential, gg
gives full weight to the small-field expansion at .# = by,
but suppresses it completely at .# = r, i.e., gs(by) = 1 and
gs(r) = 0. This guarantees a seamless transition at the
interval endpoints; w,(b;) =w$ and w,(r) = wk. For
concreteness we consider the following one-parameter
family of weights for any fixed overlap interval [by, r]:

anh( a2z -1
o D)

with a continuous parameter « € R\{0}. By varying a we
can control the profile of the weight function between the
endpoints and regulate the transition sharpness from w? to
wk near the midpoint at .% = % (by + r). Small values of a
provide only slight deviations from the linear weight
function, whereas larger values progressively pronounce
the kink of the tanh graph. In order to avoid artifacts
induced by the derivative of the weight function itself,
which could, in particular, jeopardize the convergence
criteria in (49), a should not be chosen excessively large.
On the other hand, for reasonably large values of a, gg
becomes flat near the endpoints. In this way we can neglect
derivatives of gg in the corresponding region if « is not too
small and confer derivatives of the field strength potential
to any order a form similar to Eq. (50). This behavior is
indeed suited for a smooth transit to the more reliable
approximations beyond the overlap interval. Hence, the
discussion suggests to find an adequate compromise
between relatively flat ends and a gentle slope for
sy, .- Reasonable choices for a are usually of order

one but can be varied by an order of magnitude.

Studying the convergence criteria (49), we have veri-
fied explicitly that our global solutions for 7, =
1074,1073,1072, 10! satisfy these criteria for a wide range
of parameter values a and thus are compatible with the
absence of a movable singularity. In addition, we have
verified that this statement also holds for the FFE to next
order in the geometric-series expansion (the resulting FFE
are too extensive to be written down explicitly here).

By contrast, the criterion for the convergence of the
geometric series expansion is violated by the solution for
n. = 1, independently of a. While this may solely indicate
a failure of this expansion, we take this as an indication that
the FFE may possess a movable singularity for sufficiently
large n,. If so, further solutions may still exist for discrete

values of 7,. However together with the fact that the
directly glued solutions exhibit a kink and that the overlap
region of the expansions is rather small, we consider the
present observation as a further piece of evidence that
n. =1 as well as larger values do not support a global
solution to the FFE.

We conjecture that a continuous family of global fixed-
function solutions exists for a finite interval 7, € (0,7.,)
where the critical anomalous dimension 7, lies in between
1/10 and 1.

E. Near critical regime

Having constructed a global fixed function for nonlinear
electrodynamics in the truncated theory space, we now
return to the analysis of the near critical region for our
solutions found with proper initial conditions. Of central
interest are the critical exponents of perturbations and the
classification of (ir)relevant directions.

In principle, we would have to construct eigenperturba-
tions of the global fixed function in order to reliably read off
the eigenvalues of the stability matrix after insertion of the
global solution. In view of the complexity of the FFE, we
resort to a simpler method which we expect to give
reasonable results for the leading-order exponents: we
simply use the stability matrix arising from the small-field
expansion inserting the fixed-point results for the coefficients
u;, that we obtain from the small-field expansion using
proper initial conditions. As the latter can all be expressed as
functions of 7,, the stability matrix B(n,) = (Dp)(n)l,,.
becomes a function of only the anomalous dimension #,.

Truncating the small-field expansion at order N, the
stability matrix reduces to an N x N submatrix BN (n,),
the eigenvalues of which we can determine straightforwardly

in order to obtain the critical exponents @;N) (jeNy), cf.,
Eq. (31). The latter are thus computable as functions of #, for

increasing truncation N. As before, @E)N) = 0y = 4 reflect-
ing the canonical dimension of the vacuum energy holds
independently of the truncation. At low truncation orders,
also the leading-order results for the critical exponents can be
worked out analytically. It is instructive to take a look at the
leading nontrivial exponent ®, associated essentially with
the coupling u, ,. At order N = 2, we have

640 + 1360n, — 15352

) _

(52)

Inthelimitn, — 0, we rediscover @gz)(O) = —4equaling the
canonical mass dimension of the dimensionful coupling i1, as
it should. For small 7, > 0, the exponent receives small
corrections. At higher truncation order, the critical exponent
can pick up an imaginary part, so that we focus on the
real part () in the following. For instance at truncation

order N = 3, the expression it [@f)](m) is more extensive,
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but essentially of the form (52) replacing the quadratic
polynomial in the numerator by a cubic plus the square root
of a septic polynomial in 7, and the denominator by
40(8 —n,)?. A similar modification applies for the transi-

tions from N [@f)] to N [(E)g‘)] and thereafter to N [@gs)].
Consequently, Eq. (52) admits a pole at 7, = 8, as expected:
this pole must always be present for all critical exponents at
each order N since all couplings diverge at that param-
eter value.

As another check, we can make contact with our results
for the critical exponents using improper initial conditions,
as studied in Sec. IV B. Therein, we found a positive critical
exponent ®§N> for all truncations studied (with hindsight

considered as an artifact of the improper initial conditions).

(N)

This suggests that ®, * should feature a zero as a function

of 5,. In fact, for ®” we find a zero at 5, & —0.448 = {*,

using Eq. (52). At N =2, larger anomalous dimensions
Ny € (ﬁf), 8), thus produce an irrelevant coupling u, . (7.,).

It becomes relevant for smaller values 7, < ﬁsﬁz)

ment with our findings of Sec. IV B.
Moving to N = 3, we can essentially observe the same

in agree-

behavior for R [@;3)} with the zero shifting to a larger value,

n, = —0.229 = ﬁf) . In addition, we find several regions

3)

where ©®,  switches from a real- to a complex-valued

number, especially near the pole. Hence, ?Tt[@?} has
discontinuities at these points. Whenever 653)(77*) eC in

these regions, then, by the complex conjugate root theorem,

also its complex conjugate ®<23) (n,) must be an eigenvalue.

Now, because ®(<)N) = 4 is true for all N € Ny, we must have

®<23) = ®§3>, i.e., the critical exponents belonging to u, ,
and u3, must combine to complex conjugate pairs. The
situation only marginally changes when we increase the
truncation to N = 4 and N = 5. The switching behavior of

®<24) and @gs) between R and C is unpredictably chaotic. On

the other hand, the zeroes ﬁy) ~ —0.13 and fyﬁ(ﬁs) ~ —0.079
where u, , becomes relevant move closer to 0. For reasons
of continuity, we do not expect that this sequence of zeroes,

(ﬁiN)) v e N Crosses zero, where ®§N> (0) = —4 must hold to

all orders. The continuity assumption hence implies that
ﬁﬁN) < 0 for all N €N. In this scenario, u,, would be an
irrelevant coupling for all positive #,, at least sufficiently
below the pole at 7, = 8. Whether this continuity scenario
applies to all orders remains an open question.

For even larger N > 6, no elementary closed-form
solutions to the characteristic polynomial of B (n,) for
arbitrary 7, exist according to the Abel-Ruffini theorem.
Therefore, we continue with specific 7, values as done in

Figs. 5 and 6, and discuss some properties of the full spectra
eig(BV) (1)) up to N = 26.

Let us start with the first nontrivial critical exponents

G)gN) and ®gN). Their 7, dependence and evolution for an
increasing dimension of theory space N is presented in
Fig. 8. For small #,, both u,, and u;, describe irrelevant
couplings and are numerically close to the canonical mass
dimension of their respective dimensionful versions with
minimal variation throughout various N. As 7, gets larger,
both of the real parts approach each other, which is
particularly noticeable for small N, before they eventually
combine to a complex conjugate pair. Most importantly, in
either case both real parts seem to converge in the large-N
limit and thus indicate a well-defined critical structure for
the fixed functions constructed from a small-field expan-
sion up to the third-order operator .%>.

Unfortunately, the small-field expansion technique used

here for an estimate of the leading critical exponents fails for
even higher exponents @4(11\/)’ G)gN), .... Of course, for any
finite N, estimates for the exponents are computable, but we

do not observe any sign of convergence even for large values
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FIG. 8. Real parts of the leading nontrivial critical exponents

R[O)"] (filled circles) and R[O"] (filled diamonds) correspond-
ing to u,, and u;,, respectively, as a function of the truncation
order N up to N = 26 for a logarithmic selection of anomalous
dimension values 7, (color code on top of diagram). Complex
pairs of critical exponents are marked by open squares. Note the
shifted scale of the vertical axis in the lowest plot.
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of N. A determination of the spectrum to higher orders
thus appears to require a global study of the perturbations.
E.g., using an ansatz wi (%) = w,(F) + e %6w(F), a
linearization of the flow to leading order in éw(.%) can
give access to the spectrum of the resulting differential
operator and thus to all eigenvalues ®. However, this goes
beyond the analytical methods concentrated on in the
present work.

In summary: the accessible part of the leading critical
exponents covers the trivial exponent [leaving aside the
superscript (N)] ®y = 4 for the vacuum energy, as well as
the two leading nontrivial ones ®, and ®5. The latter are
close to their canonical values —4 and —8, respectively, for
small ,, > 0, and are shifted to even more negative values
for increasing #,. Assuming that this pattern holds also for
the subleading critical exponents ©;4, we find indications
that all nontrivial exponents are negative. This implies that
all nontrivial perturbations of the fixed point are RG
irrelevant, i.e. the fixed function is fully attractive in the
long-range limit. The physical implications are discussed
below.

VI. EXPLORING THE FULL NONLINEAR
SYSTEM AT LEADING-DERIVATIVE ORDER

The flow of the full nonlinear system at leading-deriva-
tive order is described by Eq. (20); the corresponding fixed
points satisfy the FFE (22). In the preceding sections we
have specialized to the reduced system characterized by the
two approximations of self duality (A1) and the exclusion
of 42 dependencies (A2). Let us now check the validity of
these approximations, by exploring the corrections arising
from the inclusion of ¢2 contributions to the flow. For this,
we now drop the approximation (A2), but keep (Al) in
order to exploit the simplicity arising from self-duality for
the operator traces. This suffices to include the contribu-
tions from the additional operators to the flow and monitor
their quantitative relevance.

For a convenient quantitative comparison, we go back to
the improper initial conditions and employ the small-field
expansion. While the resulting fixed-point candidates
presumably are artifacts of the truncation, they allow us
to quantify the influence of the 4>-dependent terms. More
specifically, we study the following series of increasing
truncations:

1 1
T1: wk (57 G)=c+.F +§m1,k352 +§m2.kg2’
1 1
T2:w(F. ) = W (T D) + -6, F + 50, FG,

2 " 2
1 1
T3:w (7, 92) = W (F.9%) + T+ S PG

1
T (53)

In T1 we account for the effects of flow contributions
proportional to w;, where in T2 we also include nontrivial
mixed-derivative inputs proportional to Ww,. Finally, T3
considers nonvanishing derivatives of w; to all occurring
orders in Eq. (20).

We emphasize that the self-duality approximation (A1) is
used only after we have performed all functional derivatives
to obtain the Hessian of the action. For instance on the
operator level at quartic order in the field strength, we have
both terms § m ;. F2 + L m, ;4. The evaluation of the final
traces using (Al) then corresponds to a projection in
coupling space, m , my; > my, since .#> and ¥? are
identified.

Using the abbreviation p, (1) :== (2g — 1) for g€ Q,
the beta functions for truncation T3 read:

p
00 =P = e+ 2%,
1
Oy =P, ==2p_y gy +——=(1 1ps kmi —20p4 ko).
6407
0,01 = Ps = —=3p_4,01
1
~ 9602 (29p6 k1 — 84ps xmyoy +45p4 1 ).
1
0,/1,{ Eﬂj —4p__ kik +— 67207 5 (4] 5p7_km;f

— 1596p¢ M2, + T56ps 162 + 966ps i Ay).  (54)

The corresponding beta functions for truncations T2 and T1
can be inferred from (54) by setting 4, = 0 for T2 and
additionally ¢; = 0 for T1. Furthermore, the scale-depen-
dent anomalous dimension is given by

10(%)
m(my) = ————7—. (55)
487> +3 (%)

At a fixed point, the anomalous dimension is only
marginally modified compared to Eq. (30) upon identifying
%= with u, ,. This identification indeed is consistent: the
approximations (A2) and (Al) (performed in this order)
reduce the quadratic term of each truncation T1, T2, and T3

’"—*92 at a fixed point. In the same way, uz, can be

identified with % and w4, w1th %. Interestingly, 7, (m..) is
obtained exactly from the express10n in (30) by replacing
uy, with 1.2u, ,.

In Table II, we list all fixed-point values appearing in
each truncation. Table III displays the corresponding
anomalous dimension and the critical exponents. From
this data, we deduce the following results:

(1) As azeroth-order check, also the full system shows a

Gaussian fixed point which is characterized by
n, = 0and where all couplings except for the constant
¢, vanish identically. The latter takes the same value as
in the (A2) and (A1) reduced system. Therefore, the
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TABLE II. Fixed-point coordinates for increasing truncations
T1, T2, and T3 of theory space of full self-dual nonlinear
electrodynamics at leading derivative order using conventional
improper initial conditions.

. . 2 A

Truncation C, = % 5

T1 0.0032 0 / /
0.0038 —46.108

T2 0.0032 0 0 /
0.0035 —25.631 —1787.8
0.0041 —66.245 4504.7

T3 0.0032 0 0 0
0.0033 —14.657 -1573.9 —107521
0.0038 —48.181 338.58 249995
0.0042 —76.839 7955.8 —523227

TABLE III. Anomalous dimension and critical exponents at the

fixed points of Table II. The order of the associated fixed points,
read from top to bottom, is the same as given in Table II.

Truncation 1. R 0, 0, 0,

Tl 0 4 -4 / /
—1.108 4 45096

T2 0 4 —4 -8 /
-0.5803 4 42625 —5.2259
-0.6556 4  4.8249 14.919

T3 0 4 —4 -8 —12
-0.3218 4 41465 52411 —11.065
—1.1652 4 45389 —5.4326 19.2
-2.0344 4 5.0627 10.636 33.336

Gaussian fixed function is still and, in fact, exactly,
given by wepp(F,9%) = wepp(F) = 552 + 7.
The critical exponents agree with the canonical mass
dimensions of corresponding dimensionful couplings.
(2) In addition to the Gaussian fixed point, we find
further non-Gaussian fixed points, the number of
which increases from truncation TN to T(N + 1)
exactly in the same way as in our previous analysis
of Sec. IV for the reduced FFE. A direct comparison
between the NGFP1 branch of Fig. 1 and the 5
column of Table II reveals an initial relative numeri-
cal deviation of about 8% while qualitatively show-
ing the same falloff behavior towards the Gaussian
fixed point as we increase the truncation order. The
same can be seen for the NGFP2 branch and is
expected to continue for higher-order non-Gaussian
fixed-point classes. Since it is still possible to
express each coupling o,,4,,... as a function of

m,, small deviations between 75+ and u,, imply

likewise small deviations between % and us ., % and
uy ., etc. The same argument applies to the anoma-
lous dimension.

(3) For the critical exponents, we essentially obtain the
same picture as in Sec. IV B. According to Table III,
the fixed-point class NGFPn exhibits n 4 1 relevant
directions. Moreover, ©,, shows only a minor
numerical discrepancy with our previous findings,
cf. Fig. 3.

In summary, we found that the additional ¥-dependent
terms in the full nonlinear theory to leading-derivative order
contribute only quantitatively marginal effects in compari-
son to the purely .%#-dependent description of the fixed-
point action and the near critical regime. This conclusion
holds at least for the small-field expansion using the
conventional improper initial conditions. Here, we do
not observe any relevant changes in the system’s overall
behavior and conclude that the assumption (A2) serves a
legitimate and efficient approximation in addition to self-
duality. It demonstrates the self-consistency of our geo-
metrical line of argument discussed in Sec. III D.

VIL. INTERPRETATION SCENARIOS

Let us assume that our nonperturbative results observed
for nonlinear electrodynamics also hold beyond the lead-
ing-derivative order. Of course, while corrections from
higher derivative order are guaranteed to feed back into the
lower orders, their contributions to the near critical regime
can be expected to remain power-counting suppressed by
their higher canonical dimension. This statement is exact at
the Gaussian fixed point; and since our solutions for proper
initial conditions feature a small anomalous dimension, we
expect power-counting arguments to be reliable also in this
immediate vicinity of the Gaussian fixed point.

In the following, we discuss several interpretation
scenarios. All scenarios are based on the global fixed-point
solutions which we found for proper initial conditions, but
differ due to additional assumptions or the inclusion of
further degrees of freedom.

A. UV-complete nonlinear electrodynamics

The existence of further non-Gaussian fixed points in
theory space is a prerequisite for the asymptotic-safety
scenario. The global fixed functions which we constructed
with proper initial conditions with a positive 7, can then be
viewed as scaling solutions of a continuous set of UV fixed
points. Each fixed point defines a universality class of
UV-complete theories of nonlinear electrodynamics. The
long-range behavior in each universality class is then
governed by the RG relevant directions of each fixed point.

Interestingly, the only relevant direction is given by the
vacuum energy according to our results of Sec. VE, all
other directions for which we have reliable data are RG
irrelevant. This implies that the nontrivial part of the fixed
functional is also IR attractive. For the theory initiated on
an RG trajectory emanating from the fixed point in the UV,
it remains on the quantum-scale-invariant solution over all
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scales; in other words, it never leaves the fixed point. The
scaling solution, parametrizing the effective action in
the form of a nontrivial fixed function, thus governs also
the nonlinear interactions of the long-range physics. Apart
from the trivial vacuum energy to be fixed by a renorm-
alization condition (and ignored in the following discus-
sion), the full quantum effective action in the low-energy
limit is thus given by Iy [A] = [ps w.(F,9?)d*s, where s
is a dimensionless integration variable and k;, means some
fiducial low-energy scale that serves as a measurement
scale for all dimensionful quantities such as the field
amplitudes, and %, @? are understood to be measured in
units of this scale. Such a theory then has no free parameter
and is maximally predictive. In the present scenario, the
value of 5, does not play the role of a parameter of the
theory, but rather characterizes different theories each
forming a universality class labeled by #..

In this scenario, it remains a question as to whether this
low-energy theory is a genuinely nontrivial theory. For
instance, in the reduced version where we have studied only
the dependence on the invariant .7, the effective Lagrangian
L(ZF) =w,(Z,0) is a positive and monotonic function in
the Euclidean. This suggests that we could perform a
nonlinear field transformation of the classical fields, i.e.,
the expectation values of the quantum fields, A — A, such
that £(.F) = w,(.Z,0) = .Z assumes the form of the non-
interacting Maxwell Lagrangian for the transformed gauge
field A. However, since our results of Sec. VI suggest that the
scaling solution also depends nontrivially on the invariant ¢,
atransformation w, (%, 9%) — .7 does most likely not exist.
In this case, the scaling solution does represent a nontrivial
interacting theory on macroscopic scales.

It is instructive to study the effective action also in
Minkowski space. Using kq as an IR reference scale, the
effective Lagrangian expressed in terms of the dimension-
less Minkowski-valued invariants reads to lowest order:

L(F.G) | S B
k—é__f_imlf +5ng (56)

This form of the Lagrangian is well known from the weak-
field analysis of the Heisenberg-Euler action [5]. The
leading-order nonlinear coefficients m;, can be related
to the properties of light propagation in an external field,
cf. [9,126,127]. Now, causality can be argued to impose
constraints on the values of these coefficients [128,129];
more precisely, requiring that the phase velocities of low-
energy photons do not exceed the vacuum speed of light,
implies [9,128,129]

While the more relevant quantity for causality actually is
the front velocity which is given by the high-frequency

limit of the phase velocity, it has been argued that the front
velocity is always bound from below by the low-fre-
quency phase velocity for a nonamplifying ground
state [129-131]. Therefore, our resulting effective action
needs to satisfy the causality constraint Eq. (57). For the
present truncation, we find m, — m; = 0 as a result of the
self-dual approximation rather than of a full calculation.
Whether or not the fixed-point action does satisfy all
necessary causality constraints hence requires further
investigation going beyond the self-dual techniques used
in the present work.

In summary, we conclude that our fixed functions
constitute a UV-complete version of nonlinear electrody-
namics which is essentially parameter free, as the long-
range physics is also governed by the scaling solution. We
emphasize that this scenario does not solve the triviality/
Landau-pole problem of QED, since the latter arises from
interactions with matter which are not included in the
present scenario.

B. Low-energy QED effective action

Within the context of QED, the inclusion of electron
matter degrees of freedom modifies the picture for pure
nonlinear electrodynamics in several ways. First, electron
fluctuations induce an anomalous dimension for the gauge
field. In QED, we have at one-loop order n = %a. For
a=1/137, this yields 5~ 0.00155. This value is well
within the regime where we have been able to construct
global fixed functions.

A second modification arises from the fact that the
electronic fluctuations, of course, also contribute to the
flow of the effective action. On the level of the flow
equation, this contribution serves as an inhomogeneous
source term, depending on the gauge field, but not on the
field-strength potential wy. For instance, integrating only
this source contribution leads to the one-loop Heisenberg-
Euler effective action [5]. From a perturbative viewpoint,
the contributions arising from integrating the flow induced
by the terms depending nonlinearly on w; and its deriv-
atives correspond to resumming higher-loop contributions.
In the perturbative domain, these terms are subleading
compared to the one-loop terms at least in the small-field
domain.

The situation is less clear at large field amplitudes where
the size of the amplitude can make up for a small-coupling
value. If # =~ const for a sizable number of scales, the IR
attractive nature of our fixed-point solution can win out
over the matter induced direct terms. In this case, we expect
the Minkowskian-valued effective Lagrangian at some low-
energy scale k to assume the asymptotic strong-field form,
cf. Eq. (37),

%N_fw (F - ), Alp) =——.  (58)
0
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Using n = %a and expanding Eq. (58) in powers of « for
the example of a magnetic background B, we obtain to
order « at large fields:

L(B) a
kg 61

a

B? In(B). (59)

Identifying k, with the electron mass scale, ky = m,, this
result corresponds precisely to the strong magnetic field
limit of the one-loop Heisenberg-Euler Lagrangian.
Incidentally, if we had used the correct two-loop anomalous
dimension, we would have found the correct two-loop
strong-field limit in line with an argument relating the
strong-field limit with the trace anomaly of the energy-
momentum tensor [132,133].

While we consider this observation as reassuring for our
result for the strong-field limit, note that the argument based
on the trace anomaly relies on identifying the RG scale with
the strong-field scale. This identification is also used for
leading-log resummations of the perturbative strong-field
series [37,38]. In complete analogy to the leading-log
resummation for the running coupling, such resummations
lead to a Landau-pole singularity in the effective action at
exponentially large field strength B ~ m2e37/2,

By contrast, the resummation implicitly performed by the
functional RG flow equation does not rely on scale identi-
fication. Thus, there is no reason for the Landau pole of the
running coupling at high momenta to be translated into a
similar singularity for large field strength. In fact, the
asymptotic form suggested by Eq. (58) as well as our full
global solutions are free of any singularity. Therefore, we
conjecture that Eq. (58) describes the strong magnetic field
limit of the 1PI effective action of QED. We emphasize that
this is not in contradiction with strong-field results for the
Heisenberg-Euler action based on the Schwinger functional
dominated by one-particle reducible (1PR) diagrams [40,41].

More precisely, we consider Eq. (58) to hold as long as
the magnetic field is the dominating scale with all other
energy scales (test particles, photons, etc.) being much
smaller and in the perturbative domain. Also, Eq. (58) does
not hold for the equivalent electric case which is dominated
by Schwinger pair production and an energy transfer to
particle degrees of freedom. We emphasize that the singu-
larity-free strong-field limit Eq. (58) does also not solve the
Landau pole problem nor render QED UV complete, since
the high-energy behavior remains dominated by # growing
large (with a Landau-pole singularity as a perturbative
artifact) and thus a UV limit being precluded by a causally
disconnected chirally broken phase [19,22].

As alast comment, it is tempting to speculate if our fixed
functional may have any relevance for the deep IR limit of
QED far below the electron mass threshold, since the
matter induced photon self-interactions render the effective
theory an interacting one. However, at the same time, the
leading matter dominated contributions to the anomalous

dimension decouple below the electron mass threshold,
Nli<m, = 0, such that the mechanisms leading to our
nontrivial solutions disappear towards the deep IR. Of
course, a more precise answer requires a full (numerical)
solution of the RG flow for w; including the matter source
terms and the electron decoupling.

C. High-energy hypercharge sector
of the standard model

In the full standard model, our results may find appli-
cation for the hypercharge sector above the electroweak
scale. Here, the anomalous dimension at one-loop order is

given by ny = % 0 f;y)Q, cf. [134]. At the electroweak scale,

we have gy = 0.36 for a NNLO fixing at the top mass
scale [135] increasing mildly to gy = 0.48 at about the
Planck scale. This corresponds to values of the anomalous
dimension of about 7y =~ 0.01...0.02 and thus well in the
range of values for which we find global solutions with a
strong-field asymptotic limit given by Eq. (58) in the
magnetic field direction.

Our conclusion for this application is therefore similar to
that for QED discussed in the preceding subsection:
provided the global fixed function is sufficiently attractive
under the RG flow, the 1PI effective action exists globally
for any value of the hypercharge magnetic field.

VIII. CONCLUSIONS

We have investigated the renormalization flow in the
theory space of Abelian quantum gauge fields, i.e., non-
linear electrodynamics, using the nonperturbative func-
tional RG. For this, we have concentrated on the RG flow
of the 1PI effective action to leading order in a derivative
expansion. The resulting flow equation (20) for the
effective Euclidean Lagrangian or field-strength potential
represents a main result of our work and generalizes a
previous result for the magnetic theory space [63] to the full
space of nonderivative invariants .% and %2.

In order to explore the phase diagram in this theory space
on nonlinear electrodynamics, we focus on the possible
existence of fixed points and construction of corresponding
fixed functionals. Most of our explicit results refer to an
approximation scheme relying on simplifications for a self-
dual choice of the electromagnetic field; in addition, we
provide evidence that our results are only mildly modified if
these approximations are dropped. For the construction of
fixed-point actions, we have used two approaches: The first
one corresponds to a conventionally used small-field expan-
sion. This procedure corresponds to an implicit use of
improper initial conditions for the fixed-point equation
yielding a large number of artifact fixed points. We observe
a pattern different from Wilson-Fisher-like systems but
similar to that discovered for shift-symmetric theories [63,64].
Following [64], we arrive at the conclusion that none of the
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nontrivial fixed points using improper initial conditions
approximates a valid fixed point in full theory space.

In the second approach, we have used proper initial
conditions and studied small- and large-field expansions.
Emphasizing the importance of the criterion of global
existence, i.e., the absence of singularities of the effective
action in amplitude space, we have been able to construct
full fixed functionals. In fact, our construction provides
evidence for the existence of a continuous family of fixed
points as a function of the anomalous dimension 7, > 0 of
the field amplitude. This quantity parametrizes naturally the
initial condition of the fixed-function equation at small field
amplitude as well as governs the large-field asymptotics.
We have also checked whether a quantization of the fixed-
function solutions is induced by the presence of a movable
singularity in the fixed-function equation. Our results are
compatible with the absence of a movable singularity thus
facilitating the presence of a continuous solution family.
Still our results suggest the existence of a critical value of 7,
above which no valid solution exists.

Finally, we have explored the critical region of the fixed-
point solutions. Our results are compatible with this
continuum of fixed points being fully IR-attractive apart
from the trivial vacuum energy. However, a more definite
conclusion requires also a global analysis of the perturba-
tions around the fixed point beyond our analysis so far.

We have discussed several scenarios for which our
results could be relevant. Imminently, these non-
Gaussian fixed points can serve to define an interacting
theory of nonlinear electrodynamics without matter with
the fixed-point action being equivalent to the long-range
action as the fixed point is fully IR attractive. We also offer
several applications to scenarios that include matter as the
source of a nontrivial anomalous dimension. In this cases,

our fixed-point action has the potential to dominate the
magnetic strong-field limit of the effective action. We
consider this an attractive feature as it removes the puzzle
of a Landau-pole type singularity in the leading-log
resummed strong-field limit based on scale identification.
As our flow equation approach does not need scale-
identification arguments and goes beyond the leading-log
resummation, we consider the existence of a global
Lagrangian as being in line with the fact that magnetic
fields do not transfer energy to charged fluctuations;
therefore the strong magnetic field limit can behave differ-
ently from the high-momentum limit of the theory.

We emphasize that our observation of fixed points in
pure nonlinear electrodynamics does not resolve the trivi-
ality problem of QED. The latter is tightly linked to charged
particle fluctuations not being part of our pure Abelian
gauge theory setting. Also, we do not observe an immediate
mechanism that could balance the charged fluctuations
within nonlinear electrodynamics. Still, the family of non-
Gaussian fixed points observed in this work could play a
useful role in models with gauge-kinetic or nonminimal
interactions to other particle sectors, potentially contribut-
ing to mechanisms of UV completion.
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