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The identification of prospective scenarios for observing quantum vacuum signals in high-intensity laser
experiments requires both accurate theoretical predictions and the exploration of high-dimensional
parameter spaces. Numerical simulations address the first requirement, while optimization provides an
efficient solution for the second one. In the present work, we put forward Bayesian optimization as a new
and powerful means to optimize photonic quantum vacuum signals. We demonstrate its great potential on
the example of the well-studied case of two-beam collisions. Apart from providing an ideal benchmark
case, this immediately gives new physics results. Namely, Bayesian optimization allows us to find the
optimal waist sizes for beams with elliptic cross sections, and to identify the specific physical process
leading to a discernible signal in a coherent harmonic focusing configuration scenario.
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I. INTRODUCTION

Quantum vacuum fluctuations mediate effective non-
linear interactions between macroscopic electromagnetic
fields and impact the dynamics of the latter. Within the
Standard Model of particle physics, the leading quantum
vacuum nonlinearities are governed by QED and arise from
the coupling of electromagnetic fields by a virtual electron-
positron loop [1–4]. The microscopic origin of these effects
is a fundamental quantum process known as “photon-
photon scattering” or “light-by-light scattering” [5–7]
that naturally affects the polarization, wave vector and
frequency of the incident photons.
Modern laser and detector technologies allow to pro-

pose [8–13] and perform [14–16] first photon-photon
scattering experiments with real on-shell photons; see also
the reviews [1–4,17,18]; or the experiments studying light-
by-light scattering phenomena by using strong Coulomb
fields see [19–26]. Theoretical studies mainly based on
analytical considerations improved our understanding of

the dependence of the quantum vacuum signals on the
collision geometry and the parameters of the incident laser
fields. However, the possibility of such insights typically
relies on simplifying assumptions about the laser beam
profile, like e.g. the use of an infinite Rayleigh range

approximation [27,28].
One possibility to go beyond this known territory and to

accurately predict quantum vacuum signals in the field
configurations actually realized in experiment is the use of
numerical Maxwell solvers. In [29] the authors propose a
classical nonlinear Maxwell solver which could scale to
arbitrary accuracy and include higher-order nonlinear
interactions of the field but requires a lot of computational
resources. The authors of [30] present a nonlinear Maxwell
solver based on a generalized Yee scheme. Their approach
is less computationally expensive than [29] but includes
interpolation of fields in the spatiotemporal domain and
uses a lower accuracy order. In the present work, we resort
to the numerical approach put forward by [31], that
combines the vacuum emission picture [32] with a numeri-
cal solver for the linear Maxwell equations governing the
dynamics of the initially applied classical electromagnetic
fields; see also [33] for an alternative implementation.
The analysis of multiple new collision configurations, or

the thorough study of the experimentallymost relevant ones,
usually requires the exploration of large parameter spaces to
identify the optimal parameters that maximize a given
observable. Especially the formidable computational costs
of direct numerical simulations on a grid motivate the use of
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optimization methods that can efficiently guide the search.
Additionally, for currently available technologies, expected
light-by-light scattering signal is typically weak (only a few
photons; this also justifies the neglect of backreaction)
against a huge laser background which makes it even more
crucial to identify optimal configurations.
In this article, we apply amodern optimization framework

to the nonlinear QED signature of photon-photon scattering
in all-optical laser beam collisions (Sec. II). We perform
numerical simulations (Sec. III A) of several collision
scenarioswhereBayesian optimization guides the parameter
search (Sec. III B). Resorting to known results previously
studied in the literature, we benchmark and demonstrate the
reliability of optimization. We in particular show that our
approach allows us tomore accurately determine the optimal
parameters for the all-optical two-beam collision scenario
studied in [34] (Sec. IV). Moreover, we detail how it allows
us to identify and resolve the origin of a promising
discernible signal in a coherent harmonic focusing configu-
ration [35] (Sec. V).
Aside from a few exceptions where we intend to high-

light the explicit dependence on c and ℏ, throughout this
work, we use the Heaviside-Lorentz system with natural
units ℏ ¼ c ¼ ϵ0 ¼ 1.

II. FORMALISM

The Heisenberg-Euler Lagrangian LHE [36] encodes
quantum corrections to Maxwell’s classical theory of
electromagnetic fields in vacuo in effective nonlinear
interactions of the applied electromagnetic fields. Its
leading nontrivial contribution in the small-field and
low-frequency limit reads [37]

L
1-loop
HE ≃

m4
e

360π2

�

e

m2
e

�

4

ð4F 2 þ 7G2Þ; ð1Þ

where e is the elementary charge, me is the electron mass,
and F ¼ 1

4
FμνF

μν ¼ 1

2
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⋆Fμν¼−ðB ·EÞ
are the electromagnetic field invariants. To be precise,
Eq. (1) holds for fields that fulfill fjEj; cjBjg ≪ Ecr,
with critical electric field strength Ecr ¼ m2

ec
3=ðeℏÞ≃

1.3 × 1018 V=m, and vary on typical spatiotemporal scales
λ ≫ ƛC, with electron Compton wavelength ƛC ¼ ℏ=

ðmecÞ ≃ 3.8 × 10−13 m. These constraints are well-
satisfied by the fields available in state-of-the-art and
near-future all-optical high-intensity laser experiments,
which we consider in this paper.
As detailed in [32], the zero-to-single signal photon

transition amplitude to a state characterized by a wave
vector kμ ¼ ðω;kÞ, with ω ¼ jkj, and a polarization vector
ϵ
μ

ðpÞðkÞ can be expressed as
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where

jμðxÞ ¼ 2∂ν
∂LHE

∂Fνμ
ð3Þ

is the signal-photon current induced by the applied macro-
scopic electromagnetic fields Fμν.
The differential number of signal photons is given by

modulus squared of Eq. (2),

d3NðpÞðkÞ ¼
d3k

ð2πÞ3 jSðpÞðkÞj
2: ð4Þ

For a polarization insensitive measurement we sum over the
signal photon polarization states, d3NðkÞ¼P

pd
3NðpÞðkÞ.

In this work we examine only polarization unresolved
signals. Upon integrating over all possible values of the
signal-photon energy, the polarization insensitive angular
resolved signal photon density can be cast in the compact
form

d2N

d2Ω
ðϑ;φÞ ¼

Z

∞

0

dωω2

ð2πÞ3
X

p

jSðpÞðkÞj2; ð5Þ

with solid angle element d2Ω ¼ d cosϑdφ.
We denote the analogous quantities for the photons

constituting the driving laser fields by d3NbgrðkÞ and
d2NbgrðkÞ=d2Ωðϑ;φÞ, respectively. These parametrize
the background (“bgr”) against which the signals have to
be discriminated. Regions in momentum space where

d3NðkÞ
d3k

>
d3NbgrðkÞ

d3k
ð6Þ

are called spectrally discernible and regions where

d2N

d2Ω
ðϑ;φÞ > d2Nbgr

d2Ω
ðϑ;φÞ ð7Þ

are called angularly discernible. Upon integrating over
these discernible regions we obtain the total discernible
signal—Ndisc.
Throughout this work we study the interaction of two

near-infrared intense laser pulses colliding under an angle
of 90° < ϑcol < 180°. Our focus is on two specific scenar-
ios that were put forward recently. These envision the use
of 1) beams with elliptic cross section [34,38] (see Sec. IV),
and 2) coherent harmonic focusing [35] (see Sec. V) to
enhance the quantum vacuum signals accessible in experi-
ment. In the present study, we choose the collision
geometry and laser parameters similar to those employed
in Refs. [34,35].

III. NUMERICAL DETAILS

A. Simulation

To calculate signal photon spectrum, we employ the
numerical code “VacEm” presented in [31] which uses 1) a
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linear Maxwell solver to describe the evolution of the
external electromagnetic fields and 2) the vacuum emission
picture to determine the leading quantum vacuum signal via
Eq. (2). Self-consistent Maxwell propagation of external
fields allows to avoid simplifying assumptions and approx-
imations concerning the space-time structure of the focused
laser fields typically required in analytical studies. This
enables qualitatively accurate results in experimentally
realistic field configurations.
We initialize the self-consistent Maxwell propagation by

defining a model field configuration at focus (t ¼ 0) either
in space or frequency domain (for details see Sec. III D of
[31]). This field is then propagated to other time steps
according to the linear Maxwell equations.
For the elliptic cross section scenario we model the

pulses at focus as leading-order paraxial Gaussian beams.
For coherent harmonic focusing we instead use a spectral
laser pulse model [31,39] for the initial data. In the limit of
weak focusing and long pulse duration the latter converges
to the zero-order paraxial Gaussian beam result. We made
these particular choices to enable a better comparison with
the results of [34,35].

B. Bayesian optimization

The core idea of Bayesian optimization is to efficiently
sample the parameter landscape given a limited resource
budget [40,41]. This approach is especially useful in cases
where the target functions (i.e., those to be optimized) are
very costly to evaluate; it also works for black-box

functions when neither an analytic expression nor gradient
information is available.
In Bayesian optimization, a statistical model represents

the black-box target function fðxÞ. Each new observation
updates the model via Bayes’ theorem, thus, incorporating
all known data about fðxÞ. A utility function complements
the statistical model and judges the prospects of particular
points in parameter space for future observations. It
regulates the tradeoff between exploration (survey of
unknown regions in parameter space) and exploitation
(choice of likely local maxima) and suggests promising
candidates for the next observation.
Several steps of the Bayesian optimization procedure are

shown in Fig. 1. We start our search for the maximum of the
target function by initializing a statistical model with
constant mean and variance that serves as our initial
prediction. Observations update this prediction by chang-
ing its mean and shrinking confidence intervals at their
locations. They also update the utility function, the maxi-
mum of which determines the next observation point. The
update step is repeated after a new observation point is
chosen. This procedure continues until convergence to the
optimum is reached, or the computational budget is
exhausted.
To explore promising light-by-light scattering scenarios,

we use the optimization framework “Optuna” [43] which
includes a high-level implementation of Bayesian optimi-
zation. In particular, it implements a tree-structured Parzen
estimator approach which was designed for high-dimen-
sional problems and modest computational budgets [44].

FIG. 1. Schematic visualization of the Bayesian optimization process. (Left) For given initial observations, a Bayes model is initialized
with certain mean and variance. The maximum of the utility function determines the next observation. (Right) A new observation
updates the model prediction and utility function. (Top) The black solid line illustrates the target function and the green squares mark
available observations. The dashed black line and blue area correspond to the mean and 95% confidence interval of the Bayes model,
respectively. (Bottom) Utility function and estimated next best guess (candidate for future observation). Visualized with Python
library [42].
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We start the optimization with 5–20 randomly sampled
observations serving as a foundation for the Bayesian
model initialization and continue up to several tens to
few hundreds of Bayes steps. We parallelize the optimi-
zation procedure over several computational nodes. This is
less efficient than the sequential approach in terms of
computational resources usage, but allows to obtain more
data in less time.

IV. CIRCULAR AND ELLIPTIC BEAM CROSS

SECTIONS

In this section both laser pulses are linearly polarized
and characterized by a central oscillation frequency of
ω0 ¼ 1.55 eV (wavelength λ0 ¼ 800 nm), a duration (1=e2

wrt. intensity) of τ ¼ 25 fs and an energy of W ¼ 25 J,
unless specified otherwise. We model the fields at focus
(t ¼ 0) in the spatial domain as leading-order paraxial
Gaussian from which we construct field spectral amplitudes
that manifestly solve the linear Maxwell equations (for
details see Sec. III D of [31]). Then the field is propagated
to other time steps according to the exact linear
Maxwell equations. The transverse profile of such pulses
is characterized by two, in general different, waist sizes
wx ¼ μxλ0 and wy ¼ μyλ0 in the x and y direction,
respectively; for circularly symmetric beams this reduces
to w ¼ wx ¼ wy ¼ μλ0. In the diffraction limit where the
minimal waist fulfilling w ≃ λ0 is reached we have μ ¼ 1.
Without loss of generality, we assume the optical axis of

each pulse to lie in the xz plane. The associated wave
vectors are given by kl ¼ ω0k̂l, where k̂l with l∈ f1; 2g
are unit-vectors; k̂1 ¼ ez, k̂2 ¼ sin ϑcolex þ cosϑcolez.
Laser pulse l ¼ 1 is polarized along the x-axis
(E1ðt;xÞkex;B1ðt;xÞkey). The polarization of laser pulse
l ¼ 2 is not fixed a priori and can be changed by tuning the
angle β2 ¼ ∢fE1ð0; 0Þ;E2ð0; 0Þg appropriately. The total
polarization insensitive signal is maximized for β2 ¼ 90°
which corresponds to a polarization along ey for the l ¼ 2

pulse in a counterpropagating geometry, ϑcol ¼ 180°. In
what follows we always assume β2 ¼ 90° unless mentioned
otherwise. Figure 2 shows the collision geometry and the
elliptic focus cross sections of the beams.

The recent works [34,38,45] studied the influence of the
probe waist size on the discernible signal in two-beam
collision scenarios in the all-optical and x-ray optical
regimes. They found that maximal focusing typically
maximizes the total signal. On the other hand, weaker
focusing tends to enhance the discernible signal. The latter
is more relevant for experimental searches because it
generically results in different far-field angular divergences
of the background and signal fields; if the latter is wider, it
provides a means to separate the signal from the back-
ground. Using an infinite Rayleigh range approximation to
simplify the calculations, [34] examines the dependence of
the discernible signal and its directional emission character-
istics on the collision angle and waist sizes of the colliding
laser beams. For beams with circularly symmetric cross
sections (1d parameter space), [34] manages to identify the
optimal waist size of the probe, while for beams with
elliptic cross sections (2d parameter space) a hypothesis for
the optimal waist size is invoked to avoid a full parameter
scan. In this section we aim to compare our numerical
results with the findings of [34] and to refine the values for
the optimal parameters extracted there with automatic
optimization.
For this scenario the pump is focused to its diffraction

limit unless mentioned otherwise. At the same time the
probe waists in x and y directions are varied independently.
In this section we are interested in optimizing angularly

discernible signals. The main advances of our approach
compared to [34] can be summarized as follows: 1) We use
a self-consistent linear Maxwell solver to describe the
propagation of the laser fields instead of resorting to a
leading-order paraxial Gaussian beam model simplified
further by invoking an infinite Rayleigh range approxima-
tion; 2) For pulses with elliptic cross sections we find the
optimum in full parameter space rather than in a specific
subspace constrained by ad hoc assumptions.
One of the main findings of [34,45] was that to

maximize the total discernible signal one needs to find
a compromise between maximizing the intensity of the
pulses in the interaction region and decreasing the back-
ground in the detection region. For beams with circular
cross section this compromise results in an optimal waist
size larger than its diffraction limit. This is illustrated in
Fig. 3 which shows how changing the probe waist size
affects the total discernible signal yield Ndisc. The black
line represents the result of an analytical calculation
resorting to an infinite Rayleigh approximation taken
from [34]. It is surprising how closely it resembles
simulation results obtained with a numerical Maxwell
solver. Both the initial rise and later “linear” decay of Ndisc

with μ are captured by the analytical calculation and the
agreement with the outcome of the numerical simulation
becomes better for weaker focusing. However, the results
slightly differ by an overall scaling factor and in the
location of the “true” optimal waist size.

FIG. 2. Illustration of the collision of two beams with elliptic
cross sections. Each beam is characterized by a unit wave vector
k̂l, two independent waist sizes at focus ðwx;l; wy;lÞ and a
polarization direction El for l∈ f1; 2g. The collision (xz) plane
is marked in green.
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The considered optimization problem has a one-dimen-
sional parameter space, namely the waist size of the
circularly symmetric probe. Since the search space is
straightforward, the optimum could be found directly from
a grid scan, which serves us as a benchmark. Note that for
higher-dimensional parameter spaces grid scans might be
unfeasible because individual simulations are computation-
ally expensive. The data points marked by green squares in
Fig. 3 are obtained with the optimization procedure
introduced above. The clustering of simulation data around
the optimum originates in the fact that after an initial
exploration of the full parameter space, the optimization
process focuses on promising regions having a higher
expected value of the discernible signal. Because the
optimization procedure is “gridless” for parameters of
interest (it samples points from a continuous distribution)
it allows to find the optimum with better accuracy for
limited computational budget.
The second half of [34] examines probe beams with

elliptic cross section. Tightly focusing the beam in one
direction provides the required high intensity in the
interaction volume with the pump, while the weaker
focusing in perpendicular direction assures that the signal
remains discernible. In this case the parameter space is two-
dimensional (μx, μy). However, for convenience and to
minimize the computational cost [34] replaced the 2d
parameter scan with two consecutive 1d parameter scans.
Of course, this usually does not lead to the location of
global optimum.

Figure 4 shows the dependence of the total discernible
signal on the two independent probe waist sizes. It unveils
two local maxima that are situated in the corners of the
explored parameter space; one located at ðμx ¼ 1; μy ¼ 9Þ
yielding Ndisc ≈ 15.6 and one at ðμx ¼ 9; μy ¼ 1Þ yielding
Ndisc ≈ 14.8. The relative difference between these num-
bers is about 6%. Here, we constrained the explored
parameter space for computational reasons. In turn, the
“true” maxima might even lie beyond the chosen bounda-
ries. This indeed turns out to be the case; see also the
discussion in the context of Fig. 5 below. The dashed white
lines mark the one-dimensional regions explored in [34].
These clearly do not reach the real optimum. They
suggested the optimal value (μx ¼ 5.5, μy ¼ 1) which
gives Ndisc ≈ 8.4 while the maximal total discernible signal
in the parameter space explored here is Ndisc ≈ 15.6. Note
that this value is almost twice larger.
As a reference, in Fig. 4 we also provide simulation data

(colormap) for the (appropriately discretized) whole con-
sidered parameter space, even though the computational
cost of such calculation is already very high with just two
parameters. This serves as an additional benchmark and
indeed confirms that the optimization procedure correctly
converges to one of the maxima requiring much less
simulations than the grid scan (for this example we
performed a 9 × 9 parameter grid scan using 81 simulations
while optimization required only 24 simulations).

FIG. 3. Number of discernible signal photons as a function of
the probe waist size. The results presented here are for two beams
(energy W ¼ 25 J, duration τ ¼ 25 fs each) of frequency ω0

colliding at an angle of ϑcol ¼ 160°. The pump (probe) has a
circular cross section with fixed (variable) value. The solid black
line corresponds to analytical model calculations from [34], the
dashed blue line to simulation results on a grid, and the green
squares to simulation results from the optimization procedure.
The red star highlights the optimal waist size found from
optimization.

FIG. 4. Number of discernible signal photons as a function of
the two independent waist sizes for a probe with elliptic cross
section. The results presented here are for two beams (energy
W ¼ 25 J, duration τ ¼ 25 fs each) of frequency ω0 colliding at
an angle of ϑcol ¼ 160°. Pump (probe) has circular (elliptic) waist
with constant (variable) value. The dashed white lines mark the
one-dimensional parameter regions studied in [34] (the simu-
lation results depicted in Fig. 3 are extracted from a diagonal slice
of the colormap), green squares correspond to optimization trials,
and the red star highlights the optimal waist size found from
optimization.
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As already noted above, the investigation of the depend-
ence of the discernible signal on the two independent probe
waist sizes identified two particularly promising configu-
rations. These are not equivalent because the studied
collision scenario has two asymmetries: 1) Collision angles
different from 180° affect the overlap volume of the pump
and probe with an elliptic waist, and hence the signal
photon amplitude (this effect becomes increasingly pro-
nounced for collision angles closer to ϑcol → 90°). Recall

that the results discussed here are for ϑcol ¼ 160°. 2) The
orientation of the elliptic cross section of the probe relative
to its polarization sets up a preferred direction.
We separate the effects 1) and 2) by choosing

ϑcol ¼ 180° and comparing the results with those for
ϑcol ¼ 160°. Figure 5 demonstrates this polarization
dependence. In all considered cases the pump is polarized
perpendicular to the probe. When orienting the long axis of
the probe waist cross section along the probe polarization,
we obtain a ≈2.3% improvement in the total discernible
signal compared to the situation where the probe polari-
zation is oriented along the short ellipse axis. The differ-
ence becomes less pronounced when widening the short
ellipse axis, i.e. for weaker focusing in this direction. For
ϑcol ¼ 160° the polarization dependence is mixed with the
collision angle asymmetry which dominates up to a certain
waist size; for ϑcol ¼ 180° the μx ¼ 1 case always yields a
smaller discernible signal than the one with μy ¼ 1, but for
ϑcol ¼ 160° this behavior is reversed up to μx;y ≈ 12.
Finally, to demonstrate that optimization can deal with

large parameter spaces, we consider the following scenario;
two laser beams with variable elliptic cross sections collide
under an angle of ϑcol ¼ 180°. Their total energy is fixed to
W0 ¼ 50 J but the energy distribution between the pulses is
variable. This defines a five-dimensional optimization
problem where the free parameters are the two independent
waist sizes of both beams parametrized by μx;l, μy;l with
l∈ f1; 2g and the energy distribution between the beams.
Here we artificially constrain the whole parameter space to
0 ≤ fμx;l; μy;lg ≤ 9 for convenience because the example is
for demonstration purposes only; in general this is not a
requirement.
Figure 6 shows the results of optimization as projections

of the constrained d ¼ 5 dimensional space to 2d (the
μx;l; μx;l planes) or 1d (energy fraction of the l ¼ 1 beam)
parameter spaces. Optimization suggests that one beam

FIG. 5. Number of discernible signal photons as a function of
one elliptic waist size. The results presented here are for two
beams of frequency ω0 colliding at an angle of ϑcol ¼ 180°
(green, blue) and ϑcol ¼ 160° (orange, purple). Each beam has
energyW ¼ 25 J and duration τ ¼ 25 fs. The probe beam has an
elliptic cross section with either fixed μx ¼ 1, and variable μy, or
variable μx and fixed μy ¼ 1. In all considered cases the probe is
polarized perpendicular to the pump and oriented along the x
axis, which thus implies either an orientation along the short or
long ellipse axis, respectively. The insets visualize the polariza-
tion direction relative to the ellipsis orientation for different
datasets.

FIG. 6. Optimization results in five-dimensional parameter space; elliptic waist sizes of two beams (μx;l; μy;l) with l∈ f1; 2g and
energy distribution between the beams. Two beams (duration τ ¼ 25 fs each, their total energy is fixed to 50 J) of frequency ω0 collide at
an angle of ϑcol ¼ 180°.
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should have an elliptic cross section which is strongly
focused along one axis and weakly focused along the
perpendicular one (left plot). At the same time, the other
beam should be focused to its diffraction limit (middle plot)
and should contain 2=3 of initial energy budget (right plot).
This results in the following optimal values for the five
free parameters; μx;1 ≈ 8.31, μy;1 ≈ 1.23, μx;2 ≈ 1.27,
μy;2 ≈ 1.01 and W1 ≈ 0.35W0.
It is typically unfeasible to investigate such large

parameter landscape with regular grid scans but physical
intuition can give us guidance about the expectations for
some of the free parameters. Namely, the scaling of the
quantum vacuum signals in Eq. (2) with powers of the field
strength suggests that to maximize the signal one needs
strong fields in the interaction volume. This requires at least
one of the beams to be focused to its diffraction limit (this
beam is then usually referred to as “pump” because it
maximizes the signal photon amplitude that scales quad-
ratically with the field of this beam and linearly with that of
the other one). In the pump-probe collision scenario with
the probe being the less focused pulse, the signal photon
number in the probe channel emitted over all possible
emission directions scales proportionally to WprobeW

2
pump.

For fixed total energy W0 this expression is maximized
whenWprobe ¼ 1

3
W0,Wpump ¼ 2

3
W0. We expect the optimal

energy distribution to remain close to these values even for
the discernible signal; cf. also [11]. At the same time, the
elliptic waist sizes should agree with the results already
discussed above. Overall, we might have expected the
optimum to be at (μx;1 ¼ 9; μy;1 ¼ 1; μx;2 ¼ 1; μy;2 ¼ 1;

W1 ¼ 1

3
W0). The optimization procedure did not converge

to (but closely approached) this guess.
In summary, in this section we showed that self-con-

sistent numerical simulations coupled to optimization
provide more accurate and reliable estimates for the
parameters maximizing the total discernible signal.

V. COHERENT HARMONIC FOCUSING

In the coherent harmonic focusing (CHF) scenario
considered here one of the two colliding laser pulses
consists of n harmonics (ω0; 2ω0;…; nω0) which are
focused to their respective diffraction limits w0;n ¼ λn ¼
2π=ðnω0Þ; cf. also [46,47]. Each pulse has a duration of
τ ¼ 20 fs while the energy distribution between the pulses
is variable. Moreover, here we exclusively stick to a
counterpropagating geometry with ϑcol ¼ 180°.
In the previous section we studied a scenario which

allowed for a quantitatively accurate semianalytic study of
the discernible signal for collision angles sufficiently
different from 180° by using an infinite Rayleigh range
approximation. Due to the various frequency components
involved, for the coherent harmonic focusing studied below
such treatment is more complicated. Following [35] we
envision to collide two optical pulses one of which

undergoes coherent harmonic focusing before the collision.
This partitions the pulse energy into different frequency
modes and thereby generically enhances the peak field
amplitude in the interaction volume and opens up addi-
tional inelastic signal channels giving rise to potential
discernible signals. Since all pulses are focused to their
diffraction limits and λn < λ0 for n > 0, particularly the
elastic signal photon scattering channels associated with
n > 1 are expected to be not visible against the laser
background because of their similar far-field divergences;
cf. Eq. (4) in the supplementary material of [35]. However,
a discernible signal at an energy ≈2ω0 emitted at a polar
angle ϑ ≈ 90° was identified. The microscopic origin of this
channel was not analyzed in [35].
To study the origin of this particular signal, we consider a

simplified version of the coherent harmonic focusing
scenario of [35]; a pulse consisting of two harmonics
(ω0; 2ω0) is propagating along the z-axis and collides
with a counterpropagating fundamental frequency ω0

pulse. Figure 7 shows the differential distribution of signal
and background photons in this scenario. Because the

FIG. 7. Differential distribution of signal (top) and background
(bottom) photons integrated over the azimuthal angle
�

kjj ¼ kz; k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − k2jj

q

> 0

�

; the area where the signal is

not discernible against the laser background is shaded. The CHF
pulse consisting of two harmonics (ω0; 2ω0) propagates along
the z-axis; each harmonic has an energy W ¼ 25 J, a duration
τ ¼ 20 fs and is focused to its respective diffraction limit
w0;n ¼ λn. The counterpropagating fundamental frequency ω0

pulse has the same parameters (W ¼ 25 J, τ ¼ 20 fs, w0 ¼ λ0).
The spectral laser pulse model [31,39] was used to initialize the
laser fields, which leads to the sharp cutoffs near ϑ ¼ 90° on the
background plot.
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discernible 2ω0 signal appears at ϑ >
ffiffiffi

3
p

θ, with radial
divergence θ ≃ 1=π of the coherent harmonic beam, it
should originate from a manifestly inelastic scattering
process characterized by frequency transfers from both
colliding laser fields. A promising candidate to arrive at
such a signal is the channel ω ¼ ω0 þ 2ω0 − ω0 which
describes the merging of a laser photon of the fundamental
frequency pulse with one from the second harmonic of the
CHF pulse accompanied by an emission into the funda-
mental frequency mode of the CHF pulse. In [35] the
authors studied this scenario with a CHF pulse comprising
up to 12 harmonics. In this case, each new harmonic
provides additional ways to contribute to the discernible
ω ≈ 2ω0, ϑ ≈ 90° signal via the above channel, because
nω0 þ ω0 − ðn − 1Þω0 ¼ 2ω0, etc.
Optimization methods can help us to test our hypothesis

and understand where this signal comes from. Fixing the
total laser pulse energy to W0 ¼ 50 J, we describe the
energy distribution between the two modes of the CHF
pulse and the fundamental frequency pulse with two free
parameters; the energy put into the fundamental mode of
the CHF pulseWþω0

and the energy of its second harmonic
Wþ2ω0

(the energy of the fundamental frequency pulse is
then given by W−ω0

¼ W0 −Wþω0
−Wþ2ω0

). Information
about the particular channel giving rise to the discernible

signal can be encoded in its dependency on the energy of
the driving laser pulses. If the three laser photons forming
this signal come from different modes then the total
signal in this channel should depend linearly on the energy
of each mode and its maximum should be found at
Wþω0

¼ Wþ2ω0
¼ W−ω0

¼ W0=3. This is illustrated by
our optimization results in Fig. 8 where the signal in the
specified channel is indeed maximized for an equal energy
distribution between the three different frequency modes.
Whenever a signal originates from several channels, their

contributions interfere. In turn, changing the phase between
different contributions would affect the signal. As an
additional check, the inset in Fig. 8 shows the dependence
of the discernible signal at ω ≈ 2ω0, ϑ ≈ 90° as a function

of the phase delay of the þ2ω0 contribution (ϕþ2ω0

0
). This

confirms that the signal is not affected by the phase delay
and thus supports our above hypothesis.
In this section optimization clearly helped us to identify

the microscopic origin of the discernible signal.

VI. CONCLUSION

The development and consistent analysis of modern
theoretical and experimental setups in the research area
of light-by-light scattering generically requires more accu-
rate simulations of collision scenarios and optimization
over large parametric spaces. In particular, the discernible

quantum vacuum signal which constitutes the quantity that
is most relevant for experiment depends nontrivially on the
collision geometry and parameters of the driving laser
fields. To quantitatively explore these large parameter
spaces, human physical intuition is not enough and
standard grid scans require too much computational
resources. Therefore, ultimately some efficient automation
is required both for exploratory searches and finding the
best experimental parameters in a fixed collision setting.
To exemplify this, in the present article we used modern

optimization methods (Bayesian optimization) for different
light-by-light scattering scenarios. Resorting to known
results for a specific scenario previously studied in the
literature [34], we verified that the outcome of optimization
agrees with previous findings obtained by naive grid scan
simulations. In this context, we identified the true optimal
choice for the elliptic focus cross section of the probe in a
two-beam collision scenario. This choice yields a total
discernible signal that is essentially twice as large as the
previously predicted maximum. We explicitly demon-
strated that the use of optimization to constrain relevant
parameter spaces is much more efficient than conventional
grid scans. Optimization allows to study higher dimen-
sional problems and find optimums with greater accuracy.
Aside from that, we also studied the coherent harmonic

focusing scheme suggested by [35] to boost quantum
vacuum signals. Here, our main goal was to unveil the
unknown nature of the microscopic channel giving rise to

FIG. 8. Optimization of energy distribution in three frequency
modes; a CHF pulse consisting of two harmonics (energiesWþω0

and Wþ2ω0
) and a counterpropagating pulse (energy W−ω0

). The
total energy is fixed toW0 ¼ 50 J, both pulses have a duration of
τ ¼ 20 fs and each harmonic is focused to its diffraction limit.
The discernible signal was calculated only for energies 1.5ω0 ≤

ω ≤ 2.5ω0 to capture the channel of interest. Optimization
suggests that to maximize the signal in the ω ≈ ω0, ϑ ≈ 90°
channel one needs to distribute the energy equally between all
three pulses; ðWþω0

; Wþ2ω0
;W−ω0

Þ ≈ ð1=3; 1=3; 1=3ÞW0. The
inset shows the total discernible signal in this channel as a
function of phase delay of the þ2ω0 frequency component.
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the discernible quantum vacuum signal in this setup; its
origin was found with the help of optimization. In explor-
atory searches many different hypotheses should be tested
and optimization can alleviate the computational burden by
doing this very efficiently.
Overall, we firmly believe that optimization methods

will prove to be really useful in particular for future
numerical studies and towards the design of dedicated
light-by-light scattering experiments at high-field facilities.
At the same time, its huge potential is certainly not limited
to that and will also assist the study of many other strong
fields QED phenomena.
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