
Modular toolsets for integrating HPC clusters in experiment

control systems

Anar Manafov1,∗, Alexey Rybalchenko1,∗∗, Dennis Klein1,∗∗∗, and Mohammad Al-

Turany1,∗∗∗∗

1GSI Helmholtz Centre for Heavy Ion Research

Abstract. New particle/nuclear physics experiments require a massive amount

of computing power that is only achieved by using high performance clusters

directly connected to the data acquisition systems and integrated into the online

systems of the experiments. However, integrating an HPC cluster into the on-

line system of an experiment means: Managing and synchronizing thousands

of processes that handle the huge throughput.

In this work, modular components that can be used to build and integrate such

a HPC cluster in the experiment control systems (ECS) will be introduced.

The Online Device Control library (ODC) [1] in combination with the Dynamic

Deployment System (DDS) [2, 3] and FairMQ [4] message queuing library of-

fers a sustainable solution for integrating HPC cluster controls into an ECS.

DDS as part of the ALFA framework [5] is a toolset that automates and sig-

nificantly simplifies a dynamic deployment of user-defined processes and their

dependencies on any resource management system (RMS) using a given pro-

cess graph (topology).

ODC, in this architecture, is the tool to control and communicate with a topol-

ogy of FairMQ processes using DDS. ODC is designed to act as a broker be-

tween a high level experiment control system and a low level task management

system e.g.: DDS.

In this work the architecture of both DDS and ODC will be discussed, as well as

the design decisions taken based on the experience gained of using these tools

in production by the ALICE experiment at CERN to deploy and control thou-

sands of processes (tasks) on the Event Processing Nodes cluster (EPN) during

Run3 as a part of the ALICE O2 software ecosystem [6].

1 Introduction

Modern particle and nuclear physics experiments stand at the intersection of unprecedented

advancements and exponential demands. With an increasing need for computational prowess,

research now leans heavily on integrating high performance clusters (HPC) directly into the

data acquisition systems, necessitating their integration with the online systems of these ex-

periments. These integrations, while crucial, come with their own set of challenges - foremost
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• Asynchronous Control.

ODC tools offer asynchronous access & control to parallel sessions. This asynchronous

model ensures that operations in one session do not block or impede operations in another,

facilitating fluid task execution.

• Command Restrictions.

In a bid to maintain control and streamline operations, ODC restricts the execution to only

one command per session at any given time. The only exceptions to this rule are the status

and state commands, which can be invoked asynchronously for swift feedback.

• Real-Time Feedback with Asynchronous Status & State Commands.

Understanding the real-time status of a session is crucial. ODC’s asynchronous status &

state commands are designed to provide fast feedback, especially beneficial during ongoing

commands or in instances where other commands might be slow or hang.

• Session Reattachment.

ODC is capable of reattaching to sessions that are already running prior to ODC launch.

This allows more flexible command use and even combination of gRPC and CLI con-

trollers. Additionally it enables session recovery in case of server crash or restart. This

ensures continuity and reduces downtimes.

• Flexible Front-End Access.

ODC’s flexibility is further manifested in its provision of two front-end interfaces. First is

the gRPC Interface. It is suitable for programmatic access, such as the integration with an

Experiment Control System. Second is the Command-Line Interface For testing, debug-

ging or running in environments where gRPC is not available. Both interfaces offer equal

functionality with respect to the sessions they control.

• Task Failure Management.

ODC introduces resilience in execution by supporting continuation even in the wake of fail-

ing tasks. Users can label certain tasks as expendable, ensuring their failure doesn’t hinder

the overall topology. Alternatively, by specifying a minimum number of functioning group

members, the session remains unaffected unless failures exceed the defined threshold.

• Resource Management.

ODC relies on DDS to handle resource management. The integration with Slurm [5] is

seamlessly achieved by translating user-specified requirements into configurations com-

prehensible by DDS and its Slurm plugin. This facilitates efficient resource allocation

in environments where Slurm is the resource manager. Furthermore, when running with

Slurm, a more granular core-scheduling is available, allowing better use of the available

hardware resources. Besides the Slurm integration, simple localhost and SSH resource

managers can be used for development and test deployments.

• Dynamic Resource Allocation.

To alleviate manual intervention and reduce human error, ODC provides dynamic calcu-

lation of resource requirements derived directly from the DDS topology. This ensures

optimal resource utilization based on the real demands of the tasks.

ODC, with its array of features, plays an important role in the orchestration and manage-

ment of device topologies. Its resilient nature provides a robust process control for complex

particle physics experiment setups.

3 Core Concepts of DDS

DDS (the Dynamic Deployment System, Figure 2) helps to deploy and watchdog user tasks

defined by topologies in the scale of hundreds of thousands of processes.
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dynamically at runtime. For example, startup synchronization of the multiprocessing re-

construction requires tasks to exchange theirs connection strings so that they are able to

connect to each other.

4 ALICE Experiment Use Case

The upgraded ALICE experiment at CERN uses FairMQ in several parts of their system.

The deployment of FairMQ devices on Event Processing Nodes of ALICE involves around

130,000 devices per session spread across several hundreds of nodes. Each node handles

around 400 devices, which communicate through shared memory.

DDS is used to deploy and manage runtime topologies on a Slurm cluster. ODC manages the

states of the underlying FairMQ devices.

As the final output data rates of the upgraded experiment are anticipated to be higher, the

number of nodes is expected to increase to 1500, with the same or higher number of devices

per node.

5 Conclusion

The evolving landscape of particle and nuclear physics demands sophisticated tools that can

manage vast computational loads. The scale of these tasks — often involving synchronization

and management of thousands of processes — requires robust solutions, which the combined

capabilities of the ODC, DDS and FairMQ deliver.

ODC offers a bridge between high-level experiment control systems and the more gran-

ular process controls inherent in FairMQ, positioning itself as the mediator in this complex

orchestration.

DDS allows for scalable and efficient deployment of device topologies, abstracting from

the underlying Resource Management System. The modular nature of DDS, coupled with its

plug-in architecture, provides flexibility across various deployment environments. Its capac-

ity to manage user tasks as black boxes ensures that DDS remains versatile and applicable

across different setups and needs.

Further validation of these tools’ robustness and applicability is evident in their success-

ful deployment in the ALICE experiment at CERN. Navigating the intricacies of deploying

around 130,000 devices per session across hundreds of nodes is a testament to the tools’

capabilities and underscores their significance in contemporary physics experiments.
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