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As a first step towards a realistic phenomenological description of vector and axial-vector mesons in

nuclear matter, we calculate the spectral functions of the ρ and the a1 meson in a chiral baryon-meson

model as a low-energy effective realization of QCD, taking into account the effects of fluctuations from

scalar mesons, nucleons, and vector mesons within the functional renormalization group (FRG) approach.

The phase diagram of the effective hadronic theory exhibits a nuclear liquid-gas phase transition as well as

a chiral phase transition at a higher baryon-chemical potential. The in-medium ρ and a1 spectral functions

are calculated by using the previously introduced analytically-continued FRG (aFRG) method. Our results

show strong modifications of the spectral functions—in particular near the critical endpoints of both phase

transitions—which may well be of relevance for electromagnetic rates in heavy-ion collisions or neutrino

emissivities in neutron-star merger events.
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I. INTRODUCTION

The properties of matter under extreme conditions in

temperature and/or density (as encountered for instance in

the early Universe), the core of neutron stars, and binary

neutron star mergers are in the focus of ongoing theoretical

as well as experimental and observational efforts. Hot and

dense strong-interaction matter is created and studied in

relativistic heavy-ion collisions at the world’s most power-

ful accelerator facilities while the properties of neutron

stars and their dynamics are inferred from observations of

electroweak signals and more recently from gravitational

radiation in merger events. In both cases, key challenges

include the investigation of the in-medium modifications of

hadrons and their connection to changes in the underlying

symmetries, the equation of state, transport properties, and

the phase structure of strong-interaction matter. Here, the

basic features of quantum chromodynamics (QCD)—

dynamical chiral symmetry breaking and confinement—

play a decisive role, as it is expected that at high

temperatures and baryon densities chiral symmetry gets

restored, and that quarks and gluons are liberated as

confinement disappears. For overviews on heavy-ion mea-

surements, astrophysical observations, and theoretical stud-

ies, see e.g., the reviews [1–12] and references therein.

To determine the electroweak response of compressed

and hot nuclear matter, a realistic theoretical description of

the in-medium ρ and a1 spectral functions is required. Both
are parity, as well as chiral partners, of the global chiral

SUð2ÞL × SUð2ÞR symmetry of QCD for Nf ¼ 2 light

quark flavors. Its realization therefore plays an important

role for their in-medium properties. However, a consistent

description that incorporates this (approximate) chiral

symmetry and its spontaneous breaking as well as the

effects from critical fluctuations, most notably from a

critical endpoint of a possible phase transition inside a

dense nuclear environment, is still missing.

In this work we therefore present a new setup for the

calculation of vector and axial-vector meson spectral

functions in dense nuclear matter. Our approach is based

on the functional renormalization group (FRG) which

represents a nonperturbative framework that is capable of

including both quantum and thermal fluctuations [13–20].

Most notably this includes order-parameter fluctuations due

to the dynamics of collective excitations which are not

accessible in mean-field approximations. This makes the
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FRG particularly well suited to study the critical behavior of

the corresponding correlations. Moreover, as with other

functional methods, the FRG is not hampered by the

fermion sign problem encountered in lattice QCD [21] at

finite baryon density. While the region of finite temperature

at low net-baryon density, for baryon chemical potentials μB
less than about twice the temperature T where lattice QCD

results are available, it is important to benchmark effective

theories and approximations, including the unavoidable

truncations in functional methods. The FRG can therefore

then be applied with some confidence also in the dense

region of the phase diagram of strong-interaction matter,

with μB of the order of the nucleonmass at temperatures that

are at least an order of magnitude lower than that. In

addition, the necessary truncations can be made to preserve

the global symmetry structure and its breaking patterns as

described by the underlying effective theory.

To construct an effective low-energy description for

nuclear matter that is consistent with chiral symmetry and

its breaking pattern, the notion of parity-partners in the

bosonic sector has to be extended to massive fermions. This

is accomplished in the parity-doublet model (PDM), or

mirror-baryonmodel [22–24]. The PDMdescribes nucleons

along with their parity partners and can account for a finite

nucleon mass in a chirally-invariant fashion. It is motivated

by the assumption that a large fraction ofmass of the nucleon

in QCD is generated by the gluonic contribution to the scale

anomaly [25], and not through dynamical chiral symmetry

breaking. The PDM also provides a natural description for

the parity-doubling structure of the low-lying baryons

observed in recent lattice-QCD calculations [26,27]. The

mean-field phase diagram [28–39] is known to consist of

two distinct first-order phase transitions; the usual nuclear

liquid-gas transition together with a second, chiral transition

at higher chemical potentials. In particular, the existence of

this chiral transition inside the dense nuclear-matter phase

was confirmed including fluctuationswithin the FRG in [40]

to be a robust prediction of the PDM. Just like ρ and a1, the
nucleon Nð938Þ and its parity partner, commonly assigned

to the 1=2− N�ð1535Þ resonance become (almost) degen-

erate at this transition, with a common and chirally invariant

finite baryon massm0;N from the scale anomaly. This model

thus serves as a suitable effective theory to describe a chiral

phase transition inside nuclear matter entirely in terms of

hadronic degrees of freedom.

Experimentally testable predictions from this scenario

could range from an enhanced production of η mesons in

heavy-ion collisions at low-beam energies, when a popula-

tion imbalance between N and N� is created in such a

transition, to an enhanced dilepton signal from critical

fluctuations when the trajectory in the phase diagram of

the expanding system comes close to the associated chiral

critical endpoint. We will focus on the latter here, and

calculate as a first step towards obtaining the electromag-

netic spectral function and the thermal dilepton rates [41],

the in-medium spectral function of the ρvectormeson and its

chiral partner, the a1 axial-vector meson in nuclear matter

within this PDM setting.

For the calculation of the spectral functions we use the

analytically-continued FRG (aFRG) framework developed

in [42–44]. The aFRGmethod avoids the need for numerical

reconstruction schemes, see for example [45–53], and it is

thermodynamically consistent in that the thermodynamic

grand potential and the spectral functions are calculated on

the same footing. The aFRG method has been successfully

applied in different situations; for example, to calculate in-

medium spectral functions of pions and the scalar σ meson

[43,44,54], the quark spectral function [55,56] as well as

vector- and axial-vector meson spectral functions at finite

temperature and density in extended linear-sigma models

with quarks [57,58], together with the corresponding

electromagnetic spectral function and thermal dilepton rates

[41] inside quark matter.

In this paper we use the PDM as our effective theory

describing the two isodoublets of N and N� as parity

partners with chiral representations in the mirror assign-

ment and chirally invariant mass term. These interact via

chirally invariant Yukawa couplings with pions and the

scalar σ meson as well as ρ and a1 mesons as the respective

chiral partners in the (pseudo)scalar and the (axial-)vector

meson channels. The formalism to describe the fluctuations

of massive vector and axial-vector mesons in an effective

theory based on (anti)selfdual field strengths is taken from

[58]. Compared to the precursor study in [57], the inclusion

of fluctuating vector and axial-vector mesons in the aFRG

flows allows us to account for important additional con-

tributions to their spectral functions such as, e.g., the three-

body resonance decay a1 → ρπ → 3π.

Our work represents a first step towards a realistic

description of vector and axial-vector mesons in nuclear

matter. While the former are particularly relevant for

the interpretation of dilepton spectra in heavy-ion colli-

sions, both are needed to determine the neutrino emissiv-

ities in proto-neutron stars and binary neutron-star mergers.

The in-medium spectral functions provide access to real-

time quantities such as pole masses and decay widths but

also to other observables such as pertinent transport

coefficients. Moreover, since our FRG treatment is

thermodynamically consistent and symmetry preserving,

the in-medium modifications of the spectral functions

can be stringently connected to the restoration of chiral

symmetry.

The remainder of this paper is organized as follows. In

Sec. II the theoretical setup as well as results for the phase

diagram and the Euclidean (screening) masses are pre-

sented. In Sec. III we discuss results for the real-time two-

point functions and the in-medium spectral functions of

the ρ and the a1 meson. We close with a summary and

outlook in Sec. IV. Further details are deferred to an

Appendix.
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II. THE PARITY-DOUBLET MODEL WITH

VECTOR AND AXIAL-VECTOR MESONS

A. The effective average action

The question of how to describe baryons within effective

models incorporating the principle of chiral symmetry has a

long history. Here, important work was done by Walecka

who introduced a hadronic model consisting of nucleons,

scalarmesons, and vectormesons [59], and byLee andWick

who reformulated the model of Walecka as a chirally

invariant version [60]. The latter model is often called the

chiral Walecka model and basically corresponds to the

quark-meson model with nucleons instead of quark fields.

The problem here is that the baryonic degrees of freedom

become essentially massless in the chirally restored phase

(Lee-Wickmatter) as in thesemodels theirmass, in the chiral

limit, is entirely generated by spontaneous chiral symmetry

breaking. The occurrence of a Lee-Wick phase is circum-

vented by including the parity partners of the nucleons in a

chirally invariant way, leading to parity-doublet models.

For an FRG treatment of the PDM we need an ansatz for

the corresponding effective average action Γk, the central

object in the FRG approach formulated by Wetterich [61],

where k is the renormalization-group scale. In this work we

will use the following ansatz for the effective average action

of the PDM, extended by vector and axial-vector mesons,

thus combining the FRG framework for the PDM presented

in [40] and the strategy to include massive spin-1 (axial-)

vector mesons presented in [58],

Γk ¼

Z

d4x

�

N̄1ð∂ − μBγ0 þ hs;1ðσ þ iτ⃗ · π⃗γ5Þ þ hv;1ðγμτ⃗ · ρ⃗μ þ γμγ
5τ⃗ · a⃗1;μÞÞN1

þ N̄2ð∂ − μBγ0 þ hs;2ðσ − iτ⃗ · π⃗γ5Þ þ hv;2ðγμτ⃗ · ρ⃗μ − γμγ
5τ⃗ · a⃗1;μÞN2 þm0;NðN̄1γ

5N2 − N̄2γ
5N1Þ

þ Ukðϕ
2Þ − cσ þ

1

2
ðDμϕÞ

†Dμϕ −
1

4
tr∂μρμν∂σρσν þ

m2
v

8
trρμνρμν

�

: ð1Þ

The nucleon fieldsN1 andN2 are defined to have opposite

parity and respectively represent the isodoublet of nucleons,

ðp; nÞ, and their parity partners, to which we assign the

N�ð1535Þ. The chirally-invariant bare nucleonmass is given

by m0;N ; μB denotes the baryon chemical potential, and the

h’s label the various Yukawa couplings betweenmesons and

baryons. In this work we choose the scalar and vector-

couplings to be the same, i.e., hs;1 ¼ hv;1 and hs;2 ¼ hv;2, as

also done in [57,58]. The scalar and pseudoscalar meson

fields are combined in ϕ2 ¼ σ2 þ π⃗2 with ϕ ¼ ðσ; π⃗ÞT .
Ukðϕ

2Þ is the Oð4Þ symmetric effective potential, and the

term cσ provides the explicit chiral-symmetry breaking that

arises from the small but finite current masses of the light

quarks in perturbative QCD. In principle, the effective

potential and hence the thermodynamic grand potential

can depend on all field combinations allowed by symmetry.

The guiding principle here is to include fluctuations due to

collective excitations such as those of order-parameter fields

as in Landau-Ginzburg-Wilson effective theories. Because

neither the ρ nor the a1 meson are expected to develop

nonvanishing expectation values in symmetric nuclear

matter, their fluctuations are not included in the effective

potential, at this level. This ansatz represents the leading

order in a derivative expansion, also called local potential

approximation (LPA) [62,63].

To describe the dynamics of massive vector and axial-

vector fields and their couplings in an effective theory [58],

right- and left-handed vector mesons are first introduced as

(anti)selfdual field strengths ρ̃�μν ¼ �ρ�μν which transform

according to the (1,0) and (0,1) representations of the

Euclidean Oð4Þ replacing the proper orthochronous

Lorentz group for massive spin-1 particles, with ð1; 0Þ↔
ð0; 1Þ under parity,

ρμν ¼ ρþμν þ ρ−μν ¼ ρ⃗þμν · T⃗R þ ρ⃗−μν · T⃗L: ð2Þ

Here, T⃗R and T⃗L denote the soð4Þ Lie algebra matrices, see

Appendix for explicit expressions and conventions of the

generators of the chiral SUð2ÞL × SUð2ÞR in the adjoint

representation.
1

The isotriplet vector ρ⃗μ and axial-vector a⃗1μ fields with

common mass mv are then obtained from these field

strengths as

ρ⃗μ ¼
1

2mv

trð∂σρσμT⃗VÞ; ð3Þ

a⃗1μ ¼
1

2mv

trð∂σρσμT⃗AÞ; ð4Þ

where T⃗V ¼ T⃗R þ T⃗L and T⃗A ¼ T⃗R − T⃗L. These represent

conserved four-vector fields by construction,

∂μρ⃗μ ¼ ∂μa⃗1μ ¼ 0; ð5Þ

1
WithSUð2ÞL×SUð2ÞR∼SOð4Þ for allmesonic representations.
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and, in particular, no π − a1 mixing arises because the

direct derivative coupling of the pion ∝ ∂μπ with the

conserved a⃗1μ field vanishes [64].

The interactions of the (axial-)vector fields, combined in

the soð4Þ matrix Vμ ¼ ρ⃗μT⃗V þ a⃗1μT⃗A, with the SOð4Þ
vector of scalar and pseudoscalar σ and π⃗ mesons are

determined from minimal coupling with Dμ ¼ ∂μ þ igVμ,

(see Appendix).

B. Flow of the effective potential and numerical

implementation

The ansatz for the effective average action Γk formulated

in Eq. (1) is now used in the Wetterich equation [61] which

defines the ‘flow’ of Γk and is given by

∂kΓk ¼
1

2
STr½∂kRkðΓ

ð2Þ
k þ RkÞ

−1
�; ð6Þ

where Rk is a regulator function that suppresses momentum

modes with momenta smaller than k, Γ
ð2Þ
k is the second

functional derivative with respect to the fields, and the

supertrace runs over all internal indices, over bosonic and

fermionic field space, in momentum space including an

integration over internal momenta or thermal Matsubara

sums as well as the fermionic minus signs and factors of

two. At the ultraviolet (UV) scale k ¼ Λ, Γk is essentially

given by the bare action. By solving the Wetterich equation

and lowering the scale k the effects of quantum and thermal

fluctuations are gradually included until the full effective

action Γ ¼ Γk¼0 is obtained in the limit k → 0.

The regulator function Rk has to be chosen appropriately

for different types of fields [65]. In this work we use three-

dimensional regulator functions that only regulate spatial

momenta but not the energy components, at the expense of

slightly breaking the EuclideanOð4Þ symmetry [42]. While

in principle four-dimensional regulator functions can also

be used [66,67], the three-dimensional regulators allow us

to analytically perform the integration over the internal

energy component, or the corresponding Matsubara sum at

finite temperature, as included in the supertrace of Eq. (6).

This in turn allows us to apply the aFRG analytic

continuation procedure as necessary for the calculation

of the real-time two-point functions and spectral functions

in the following. Explicit expressions for the different

regulator functions are given in Appendix.

When inserting the ansatz (1) into the Wetterich equa-

tion (6), one obtains the flow equation for the effective

potential,

∂kUk ¼
k4

12π2

�

1þ 2nBðEσ;kÞ

Eσ;k

þ
3ð1þ 2nBðEπ;kÞÞ

Eπ;k

þ
4Nf

EN1;k
EN2;k

½−ðEN1;k
þ EN2;k

Þ þ EN2;k
nFðEN1;k

− μBÞ

þ EN1;k
nFðEN2;k

− μBÞ þ EN2;k
nFðEN1;k

þ μBÞ þ EN1;k
nFðEN2;k

þ μBÞ�

�

: ð7Þ

Therein, we introduced the number of flavors Nf ¼ 2, the

bosonic and fermionic occupation numbers, nB and nF, as
given explicitly in Appendix, and the scale-dependent

particle energies for the sigma meson, the pion, as well

as for the nucleon and its party partner. The effective

quasiparticle energies are defined as

Eα;k ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2

α;k

q

; α ∈ fπ; σ; N1; N2g; ð8Þ

with the effective masses of the pion and the sigma meson

given by

m2

π;k ¼ 2U0
k; ð9Þ

m2

σ;k ¼ 2U0
k þ 4U00

kϕ
2

0
; ð10Þ

where primes denote derivatives with respect to the chirally

invariant ϕ2 ≡ σ2 þ π⃗2, and ϕ2

0
¼ σ2

0
is the global mini-

mum of the effective potential in the IR. The masses of the

nucleon and its party partner are defined by the eigenvalues

of the mass matrix

M ¼

�

hs;1σ01 m0;Nγ5

−m0;Nγ5 hs;2σ01

�

; ð11Þ

and are given explicitly by

m2
N1

¼
1

2

�

þðhs;1 − hs;2Þσ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2

0;N þ σ2
0
ðhs;1 þ hs;2Þ

2

q
�

;

ð12Þ

m2
N2

¼
1

2

�

−ðhs;1 − hs;2Þσ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2

0;N þ σ2
0
ðhs;1 þ hs;2Þ

2

q
�

:

ð13Þ

As expected, for σ0 → 0 the two masses become degenerate

and reduce to the bare mass m0;N , while for m0;N ¼ 0 the

model reduces to a sum of two independent fermion-meson

models with masses for the nucleon and its parity partner

given by hs;1σ and hs;2σ. In this case the fermion masses are

generated by spontaneous chiral symmetry breaking as in

the Lee-Wick model [60].
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Note that the flow equation for the effective potential,

Eq. (7), does not depend on quantities related to vector

mesons. This is because, for isospin-symmetric matter with

an equal number of protons and neutrons, the isovector ρ

and a1 mesons are not expected to develop nonvanishing

expectation values and are therefore not included in the

ansatz for the effective potential. The isoscalar ω vector

meson, in principle, contributes to the effective potential

(see e.g., [40,68]) but has not been included here. The

inclusion of the ω meson as a dynamical field with finite

expectation value inside nuclear matter, and fluctuations

contributing to effective potential and thermodynamics will

be deferred to future work.

It remains to specify the UV initial conditions and the

parameters used to solve the flow equation for the effective

potential. At the UV scale Λ we choose the effective

potential to be of the form

UΛðϕ
2Þ ¼ b1ϕ

2 þ b2ðϕ
2Þ2 þ b3ðϕ

2Þ3; ð14Þ

and then solve the flow equation numerically using the so-

called “grid method” (see for example [69]). This method is

based on a discretization of the field ϕ in σ-direction while

the pion field is set to its expectation value hπ⃗i ¼ 0.

Derivatives of the potential in the field direction, as needed

in the flow equation, are then obtained by a finite-difference

scheme. We have checked explicitly that this numerical

setup gives the same results as other approaches like finite-

element or finite-volume methods (see also [70,71]).

The numerical values for the parameters used for the

effective potential, the bare nucleon mass, and the Yukawa

couplings are summarized in Table I. These are chosen such

as to reproduce phenomenologically reasonable values for

the pion decay constant and the particle masses in the

vacuum at k → 0, where the pion decay constant fπ is

identified with the value of the sigma field at the global

minimum of the effective potential. The resulting values for

fπ , the pion massmπ, the sigma massmσ, the nucleon mass

mN1
, and the mass of its parity partnermN2

are also given in

Table I. For the UV cutoff we use Λ ¼ 1000 MeV and for

the IR scale kIR ¼ 40 MeV.

As usual in OðNÞ-Yukawa models, the symmetry break-

ing is generated from the fermionic fluctuations, where the

fermionic minus sign acts like a negative index of refraction

to drive the expectation value of the scalar order-parameter

field away from its symmetric minimum. Although the

fermionic fluctuations arise here from baryons with a

sizable bare mass ofm0;N ¼ 800 MeV, a UV cutoff of Λ ¼
1 GeV turns out to be just large enough to generate the right

amount of symmetry breaking starting from an effective

potential with only the symmetric minimum for our choice

of UV parameters. This mechanism of dynamical chiral

symmetry breaking by the baryonic fluctuations is dem-

onstrated in Fig. 1. Starting from the UV cutoff Λ the mass

of the nucleons first decreases while that of the 1=2−

baryons increases. Incidentally, the chiral symmetry break-

ing scale at kχ ∼ 850 MeV here coincides with the scale

mN2
∼ k at which the heavier 1=2− baryons decouple.

The nucleon mass starts increasing at this point so that

the fermionic fluctuations eventually cease to dominate the

flow. A second scale around k ∼ 600 MeV then emerges

below which the mesonic fluctuations eventually dominate.

They tend to be symmetry restoring and this explains why

the breaking pattern is not monotonically increasing with

the flow towards the infrared, where it levels at the desired

physical values as it would in a purely mesonic model.

The fact that this can be achieved in this way, with no

clear separation of scales between the initial fermion mass

of m0;N ¼ 0.8 GeV and the UV cutoff scale Λ ¼ 1 GeV

might be surprising at first. It is reassuring for our effective

TABLE I. Parameters used for the effective potential at the UV cutoff Λ ¼ 1 GeV, the bare nucleon mass and the Yukawa couplings,

as well as the resulting values for pion decay constant and Euclidean particle mass parameters in the IR.

b1 [Λ2] b2 b3 [Λ−2] c [Λ3]

m0;N

[MeV] hs;1¼hv;1 hs;2¼hv;2

fπ ≡ σ0
[MeV]

mπ

[MeV]

mσ

[MeV]

mN1

[MeV]

mN2

[MeV]

0.395189 −4.66855 52.3117 1.74303 × 10−3 800 6.94073 13.3493 92.8 137 474 938 1533

0 200 400 600 800 1000
0

500

1000

1500

T=0 MeV, µB=0 MeV

m
a
s
s
e
s

[M
e
V

]

k [MeV]

a1

N1

N2

FIG. 1. RG-scale dependence of the Euclidean particle masses

in the vacuum. We observe strong effects from spontaneous chiral

symmetry breaking between RG scales of k ≈ 900 MeV and

k ≈ 600 MeV. The scale-dependent masses shown here serve as

input for the calculation of the ρ and a1 spectral functions and

determine the locations of the thresholds corresponding to the

various decay channels.
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hadronic theory which would otherwise start to lose

credibility, if either considerably higher UV cutoff scales

were needed or the fermionic fluctuations were irrelevant in

the first place.

C. Phase diagram

In order to obtain the phase diagram of the PDM for the

specified parameters we solve the flow equation for the

effective potential at different combinations of temperature

and baryon chemical potential, and plot the chiral order

parameter, i.e., the value of σ0ðμB; TÞ at the global mini-

mum of the effective potential in the IR. The resulting

phase diagram in the regime of high chemical potentials

and comparatively low temperatures, as is relevant for

nuclear matter, is shown in Fig. 2.

As is also found in [40], we observe two distinct phase

transitions. The phase transition at lower chemical poten-

tials represents the liquid-gas transition of nuclear matter

while the second phase transition at higher chemical

potentials inside dense nuclear matter can, in the chiral

limit, be identified as the chiral phase transition. Both

phase transitions consist of a first-order line at low

temperatures connected to a critical endpoint (CEP).

With our current parameters these CEPs are located

at (μB ≈ 896 MeV, T ≈ 10 MeV) and (μB ≈ 925 MeV,

T ≈ 33 MeV), respectively.

The position and the strength of the liquid-gas transition

strongly depends on the bare nucleon massm0;N . The larger

the value of m0;N the more the location of the discontinuity

moves towards a larger μB while at the same time the

strength of the transition gets weaker resulting in a larger

in-medium condensate and hence a smaller nucleon sigma

term. Obtaining phenomenologically acceptable values for

the binding energy per nucleon, the nuclear saturation

density, and the correct in-medium condensate all at the

same time is known not to be possible within the present

FRG setup [40]. This will require the proper inclusion of

fluctuating ω mesons which we defer to a future study. For

our first qualitative study here, we chose m0;N ¼ 800 MeV

as a reasonable compromise (as concluded in [40]).

At the mean-field level, the inclusion of the ω meson in

the effective action is known to result in a simple shift of the

chemical potential, and is hence effective in adjusting the

binding energy per nucleon essentially without influencing

the strength of the nuclear liquid-gas transition. That the

same mechanism, from a mean-field gap equation for the ω

meson, does not work within the FRG framework for the

order parameter fluctuations used here, was shown in [40].

The present effective theory framework for fluctuating

vector mesons from [58] can in principle be extended to

also include the repulsive contributions from fluctuating ω

mesons in the flow for the effective potential and hence the

thermodynamic grand potential to improve this situation.

This requires further technical developments, however, and

is therefore left for future work. Another issue is the slope

of the first-order lines at low temperatures. As pointed out

in [72], from a Clausius-Clapeyron relation, a positive

slope dTc=dμc of the first-order line implies a negative

jump in the entropy density when going from the gaseous to

the liquid phase. While this by itself is not necessarily

unphysical at finite temperature, when the magnitude of the

jump gets too large it leads to negative entropy densities on

the liquid side of the transition line which is then certainly

unphysical. The inclusion of a scale-dependent gap equa-

tion for a mean-field description of the ω meson was

recently shown to be able to remedy the analogous

unphysical effect in the quark-meson model [68]. It might

therefore be reasonable to expect that it will also be affected

when the ω-meson fluctuations are properly included

within our FRG framework for a more realistic description

of the thermodynamics of nuclear matter from the PDM in

the future, as discussed above.

D. Vector and axial-vector meson

propagators and masses

We now turn to the calculation of the Euclidean vector-

meson masses, which will use the scale-dependent effective

potential as input. In Ref. [58] it was shown that the vector-

meson part of the effective action in Eq. (1),

L
ρ
0
¼ −

1

4
trð∂μρμνÞ∂σρσν þ

m2
v

8
trρμνρμν; ð15Þ

with Eqs. (3) and (4) corresponds to tree-level two-point

functions for free (axial-)vector mesons with mass mv of

the form,

FIG. 2. Phase diagram of the parity doublet model represented

as a contour plot of σ0ðμB; TÞ with darker colors indicating

smaller values, as shown in the legend bar. We observe two

distinct first-order phase transitions at low temperatures which

end in a critical point at (μB ≈ 896 MeV, T ≈ 10 MeV) and at

(μB ≈ 925 MeV, T ≈ 33 MeV), respectively.
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Γ
ð2Þ
μν ðpÞ ¼ −

m2
v

p4
ðp2 þm2

vÞðp
2δμν − pμpνÞ: ð16Þ

It was furthermore explicitly verified that this form, upon

analytic continuation in the interacting theory, correctly

describes that of the corresponding single-particle contri-

butions to the spectral representations of the propagators of

massive (axial-)vector fields which are related to the

analogous current-current correlation functions by cur-

rent-field identities [58].

For the inclusion of (axial-)vector fluctuations of this

form within the FRG we also follow the strategy of

Ref. [58] and temporarily add artificial longitudinal terms

in order to be able to invert the correlation functions. This

then leads to an ansatz for the scale-dependent (axial-)

vector propagators which reads as follows:

Dμν;kðpÞ≡ ðΓ
ð2Þ
k ðpÞ þ RkðpÞÞ

−1

μν

¼
−p2

m2

0;k

1

ðp2ð1þ rðyÞÞ þm2

v;kÞ
Π

T
μνðpÞ ð17Þ

þ
−p2

m2

0;k

1

ðp2ð1þ rðyÞÞþξΛ
2

k2
m2

v;kÞ
Π

L
μνðpÞ; ð18Þ

with a regulator shape function rðyÞ and y ¼ p2=k2 as

defined in Appendix, the transverse and longitudinal

projection operators,

Π
T
μνðpÞ ¼ δμν − pμpν=p

2; ð19Þ

Π
L
μνðpÞ ¼ δμν − Π

T
μνðpÞ ¼ pμpν=p

2; ð20Þ

and a scale-dependent mass parameter m2

0;k ≡ Z−1

k m2

v;k

which differs from the running vector-meson pole mass

mv;k in that it includes an equally scale-dependent wave-

function renormalization factor Zk. At the UV cutoff, we

start with ZΛ ¼ 1 and typically m0;Λ ¼ mv;Λ ≈ Λ, i.e., the

common pole mass of the transverse vector and axial-vector

fluctuations starts out at an initial value of the same order as

Λ in the UV. The UV mass of the corresponding longi-

tudinal fluctuations, ξm2

v;Λ, is of the same order. The

dimensionless parameter ξ can be introduced to further

suppress these initial longitudinal fluctuations; here we

choose ξ ¼ 10. Because of the additional factor of Λ2=k2

this longitudinal mass then quickly increases with lowering

k and the unphysical longitudinal fluctuations decouple.

Varying the parameter ξ, one furthermore verifies that the

results are in fact completely independent of these minute

longitudinal fluctuations, which strictly speaking violate

the current conservation laws and require modified Ward

identities at finite k. In the limit k → 0 the propagators

become purely transverse again, and thus fulfill the usual

Ward identity

pμD
μν
k→0

¼ 0: ð21Þ

For further details, see Ref. [58]. Explicit expressions for

the transverse and longitudinal regulators are given in

Appendix.

In order to calculate the masses of the (axial-)vector

mesons we first need to solve the flow equation for the

scale-dependent vector mass mv;k, from which we obtain

the ρ and a1 masses as

m2

ρ;k ¼ m2

k;v; ð22Þ

m2

a1;k
¼ m2

k;v þ g2ϕ2

0
: ð23Þ

The flow of the vector mass mv;k can be obtained from the

flow equation for m0;k by observing that the flow of the

product of m2

v;k and m2

0;k vanishes,

∂kðm
2

v;k ·m
2

0;kÞ ¼ lim
p→0

Tr½p2
Π

T
μνðpÞ∂kðΓ

ð2Þ
ρ;kðpÞÞ� ¼ 0: ð24Þ

We thus get

∂km
2

v;k ¼ −
m2

v;k

m2

0;k

∂km
2

0;k; ð25Þ

with the flow of m0;k given by

∂km
2

0;k ¼ −lim
p→0

∂

∂jp⃗j2
Tr½p2

Π
T
μνðpÞ∂kðΓ

ð2Þ
ρ;kðpÞÞ� ¼ 0: ð26Þ

The required flow equations for the two-point functions

can be obtained by taking two functional derivatives of the

Wetterich equation with respect to the appropriate fields

which leads to the general structure

∂kΓ
ð2Þ
k ðpÞ ¼ STrfð∂kRkÞDkðqÞΓ

ð3Þ
k Dkðqþ pÞΓ

ð3Þ
k DkðqÞg

−
1

2
STrfð∂kRkÞDkðqÞΓ

ð4Þ
k DkðqÞg; ð27Þ

where explicit expressions for the three- and four-point

vertices are given in Appendix. The resulting flow equation

for the ρ and the a1 two-point function is represented

diagrammatically in Fig. 3. Here, we take all loops into

account that have up to one internal vector meson, as also

done in [58]. This in particular gives rise to the process

a1 → ρþ π which is important to describe the a1 spectral
function. We also note that in the following we will only be

dealing with the transverse two-point function which can be

obtained from the corresponding flow equation,

∂kΓ
ð2Þ;T
k ðpÞ ¼

1

3
Π

T
μνðpÞTrf∂kΓ

ð2Þ
μν;kðpÞg: ð28Þ

The flow equations for m0;k and mv;k are then solved

using the scale-dependent effective potential and its
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derivatives at the IR minimum, σ0;IR, as input. As initial

conditions we usemv;Λ ¼ m0;Λ ¼ 1081 MeV and g ¼ 8.78

for the dimensionless coupling of (axial-)vector to (pseudo)

scalar mesons (in their covariant derivative). These param-

eters are chosen such as to obtain phenomenological values

for the ρ and the a1 pole mass, as discussed in the

following.

Our results for the flow of the Euclidean masses of the

pion, the sigma meson, the ρ, and the a1, as well as for the
nucleon and its parity partner in the vacuum are shown in

Fig. 1. Here we evaluate the masses at the scale-dependent

minimum of the potential and not at the fixed IR minimum

in order to show the effects of chiral symmetry breaking

more clearly. Starting at the UV scale where chiral

symmetry is restored, the masses of the chiral partners

π − σ, ρ − a1, and N1 − N2 are degenerate. Taking fluctu-

ations into account by lowering the scale k, we observe the

effects of chiral symmetry breaking with the masses

splitting up. At the IR scale these Euclidean mass param-

eters then arrive at the values for (pseudo)scalar mesons and

nucleons listed in Table I, together with mρ ≈ 840 MeV

and ma1
≈ 1170 MeV for the vector and axial-vector

mesons. Note that these mass parameters do not represent

the physical masses of the ρ and the a1 which are in turn

given by the pole masses obtained from their aFRG flows

and result with these parameters to be m
p
ρ ≈ 775 MeV and

m
p
a1 ≈ 1230 MeV, see below.

We now turn to the dependence of the Euclidean particle

masses on temperature and chemical potential. In Fig. 4 we

show these masses at temperatures of T ¼ 10 MeV and

T ¼ 33 MeV, i.e., at the temperatures of the two CEPs, as a

function of baryon chemical potential μB. We find that the

masses are almost constant for a wide range of chemical

potentials at these low temperatures, as expected from the
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FIG. 4. Euclidean particle masses as a function of baryon-chemical potential, μB, at fixed temperatures of T ¼ 10 MeV (left) and

T ¼ 33 MeV (right). Left: We observe the effects of the liquid-gas CEP at μB ≈ 896 MeV, where the sigma mass decreases rapidly,

followed by the discontinuities generated by the first-order phase transition at higher chemical potentials. Right: The liquid-gas CEP still

affects the behavior of the masses in a crossover from low to high density at μB ≈ 890 MeV while the chiral CEP gives rise to strong

modifications at μB ≈ 925 MeV. At both temperatures chiral symmetry is restored to a large extent for chemical potentials beyond the

second phase transition, giving rise to degenerate masses of chiral partners.

FIG. 3. Flow equations of the ρ and the a1 two-point function in diagrammatic form. Dashed (solid) lines represent bosonic

(fermionic) propagators while crossed circles indicate regulator insertions, cf. Eq. (27).

TRIPOLT, JUNG, VON SMEKAL, and WAMBACH PHYS. REV. D 104, 054005 (2021)

054005-8



Silver Blaze property [73]. Very close to the CEP at μB ≈

896 MeV and T ≈ 10 MeV, however, we observe drastic

changes in the masses. In particular the sigma mass

strongly decreases at this second-order phase transition.

In principle, the sigma meson should become exactly

massless here, since it is connected to the critical long-

range correlations in the density fluctuations.

At T ¼ 10 MeV and chemical potentials larger than the

critical value of the liquid-gas CEP, one then encounters the

discontinuous behavior generated by a first-order transi-

tion. At even lower temperatures this second, chiral, phase

transition is stronger than the nuclear liquid-gas transition,

in that the chiral condensate and the masses change by a

larger amount, cf. also Fig. 2. We also note that chiral

symmetry becomes almost completely restored here, as

evident from the fact that the masses of the chiral partners

become almost degenerate. At T ≈ 33 MeV we only see

smooth changes of the masses at chemical potentials near

μB ≈ 896 MeV while near the second CEP at μB ≈

925 MeV we again observe strong but continuous changes,

as expected. These masses and their scale-dependence will

serve as input for the calculation of the vector-meson

spectral functions discussed in the following.

III. VECTOR AND AXIAL-VECTOR MESON

SPECTRAL FUNCTIONS IN NUCLEAR MATTER

A. Analytic continuation and real-time

two-point functions

So far, we have been working in Euclidean space-time.

In order to calculate real-time quantities like retarded two-

point functions and spectral functions we will now perform

an analytical continuation of the flow equations for the two-

point functions from imaginary to real energies using the

previously introduced analytically-continued FRG (aFRG)

technique [42–44]. This technique utilizes the fact that the

FRG flow equations always have a one-loop structure and

that therefore the well-known analytic continuation pro-

cedure for one-loop calculations can be applied, (see

e.g., [74,75]).

To be more specific, the flow equations for the two-point

functions, cf. Eq. (27) are analytically continued from

imaginary to real energies by first using the periodicity of

the bosonic and fermionic occupation numbers, which

result from the Matsubara summation over the loop

energy, with respect to the discrete external Euclidean

energy p0, i.e.,

nB;FðEþ ip0Þ → nB;FðEÞ: ð29Þ

In a second step, the Euclidean energy p0 is replaced by a

continuous real frequency ω in the usual way,

Γ
ð2Þ;Rðω; p⃗Þ ¼ −lim

ϵ→0

Γ
ð2Þ;Eðp0 ¼ −iðωþ iϵÞ; p⃗Þ; ð30Þ

where we use a small but finite value of ϵ ¼ 0.1 MeV in our

numerical implementation.

The resulting flow equations for the retarded two-point

functions are then solved using the scale-dependent effec-

tive potential as well as the flow of the massesmv;k andm0;k

evaluated at the IR minimum σ0;IR as input. The initial

values of the retarded two-point functions are given by

Γ
ð2Þ;R
ρ;Λ ðωÞ ¼ m2

0;Λ

�

1þ
m2

ρ;Λ

ðϵ − iωÞ2

�

; ð31Þ

Γ
ð2Þ;R
a1;Λ

ðωÞ ¼ m2

0;Λ

�

1þ
m2

a1;Λ

ðϵ − iωÞ2

�

: ð32Þ

This initial shape will change as fluctuations are included

by solving the flow equations. In particular, the two-point

functions will show sudden changes and thresholds induced

by the different processes possible in our setup. The ones

representing a decay of an off-shell meson into two on-shell

particles can occur even in the vacuum while the processes

involving an additional particle in the initial state are only

possible at finite temperature and/or density when a thermal

medium of such particles is available. We note that the

usual kinematic constraint for a decay process like ρ� →

π þ π is given by ω ≥ 2mπ while for a thermal capture

process like a�
1
þ π → σ we must have ω ≤ mσ −mπ .

For an off-shell rho-meson ρ� with energies ω up to

2 GeV the relevant processes here are

ρ� → π þ π;

ρ� → a1 þ π; ρ� þ π → a1;

ρ� → N þ N̄; ρ� þ N1 → N2: ð33Þ

Note that ρ� þ a1 → π is in principle also possible, at very

large values of the baryon chemical potential, when

eventually mπ > ma1
, cf. Fig. 4. Other processes either

require higher energies or involve antibaryons in the heat

bath which are exponentially suppressed. For the a1 meson

we have, analogously,

a�
1
→ π þ σ; a�

1
þ π → σ;

a�
1
→ ρþ π; a�

1
þ π → ρ;

a�
1
→ a1 þ σ; a�

1
þ σ → a1;

a�
1
→ N þ N̄; a�

1
þ N1 → N2: ð34Þ

where again also the more exotic processes a�
1
þ ρ → π and

a�
1
þ a1 → σ are possible in those regions of the phase

diagram at very large μB where the (pseudo)scalar masses

increase beyond those of the (axial-)vectors. More impor-

tantly, however, when the sigma mass drops below the pion

mass, we can also have
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a�
1
þ σ → π: ð35Þ

This occurs only in the critical regions close to both CEPs,

and it might hence serve as a potential signature of the

existence of the chiral CEP, in particular.

In Fig. 5 we show the IR result for the real parts of the ρ

and the a1 two-point functions in the vacuum. We use the

zero crossings of these functions as an approximation for

the pole masses of the respective resonances, which we fix

to the phenomenological values of m
p
ρ ≈ 775 MeV and

m
p
a1 ≈ 1230 MeV, cf. [76], by adjusting the parameters to

the values listed in Table I and in Sec. II D. We also observe

the effects from different vacuum decay processes which

give rise to sudden changes in the two-point functions.

In Fig. 6 we show the imaginary parts of the ρ and the a1
two-point functions in the vacuum, as well as at T ¼
33 MeV and μB ¼ 890 MeV as a representative example

for medium effects in a region where both endpoints might

have an influence at the same time, that of the nuclear

liquid-gas transition, here as a crossover from low to high

density, as well as the chiral CEP approached at this

temperature for higher μB.

The imaginary part of the ρ-meson two-point function in

the vacuum is practically zero below the lowest decay

threshold which is determined by the process ρ� → π þ π

and is located at ω ≈ 280 MeV.

In particular for the nucleon-(anti)nucleon threshold, but

also in ρ� → a1 þ π, we observe the effects of the finite

value for ϵwhich produces small imaginary parts and hence

results in nonzero values of the spectral function even

below the thresholds. We note that the flow equations for

the imaginary parts of the retarded two-point functions can

in principle also be solved for ϵ ¼ 0 exactly, see e.g., [57].

Here, however, we have used a finite value of ϵ in order to

keep the numerical results consistent with the ones for the

real parts, where the limit ϵ → 0 is not so straightforward to

take numerically with the principal value prescriptions that

are involved there. Moreover, a small value for ϵ has the

additional benefit of mimicking a phenomenological two

particle into two particle scattering continuum at arbitrarily

low energies. At T ¼ 33 MeV and μB ¼ 890 MeV, the

imaginary part shows additional changes due to capture

processes involving particles from the thermal medium, in

particular from ρ� þ π → a1 and ρ� þ N1 → N2.

For the a1 two-point function we observe in principle the
same behavior as for the ρ two-point function, especially

in the vacuum where the lowest threshold starts at

a�
1
→ π þ σ ≈ 610 MeV. This here represents the σ-reso-

nance contribution to the three-particle decay a1 → 3π

which should of course start somewhat lower, at about

420 MeV, reflecting the smoother onset of the 3π con-

tinuum. To achieve this, one needs to feed the result for σ

two-point function as the broad 2π resonance back into the

aFRG flow equations in a fully selfconsistent calculation in

the future.

At finite T and μB an increased number of processes and

hence more complicated structures arise. In particular, we

also observe a van Hove-like peak at ω ≈ 35 MeV in the

contribution from a�
1
þ π → σ which originates from an

approximate saddle point in the difference of the correspond-

ing scale-dependent quasiparticle energies Eσ;k − Eπ;k, see

also [57]. Another interesting effect is visible in the con-

tribution from thea�
1
→ a1 þ σ processwhere a peaknear the

threshold is forming atω ≈ 1370 MeV. This enhancement is

due to the dropping sigma-meson mass in the crossover

region above the nuclear liquid-gas transition. These struc-

tures, as all the effects visible in the imaginary parts of the

two-point functions, directly translate into the shape of the

spectral functions discussed in the following.

B. Spectral functions

In this section we present our results for the in-medium ρ

and a1 spectral functions in nuclear matter. The spectral

function is generally defined as the discontinuity at the cut

in the propagator along the timelike invariant-momentum

axis and hence given by the imaginary part of the retarded

Greens function GR,

ρðω; p⃗Þ ¼ −
1

π
ImGRðω; p⃗Þ; ð36Þ

which can be expressed in terms of the retarded two-point

function as

0 500 1000 1500 2000
–10

–5

0

5

10
T=0 MeV, µB=0 MeV

R
e

(2
)
[G

e
V

2
]

[MeV]

a1

FIG. 5. Real part of the ρ and the a1 two-point functions vs

energy ω, evaluated at σ0;IR in the vacuum, at T ¼ 0 MeV and

μB ¼ 0 MeV. The zero crossings determine the respective pole

masses which we find to bem
p
ρ ≈ 775 MeV andm

p
a1 ≈ 1230 MeV

in thevacuum. The presence of decay channelsmodify the shape of

the two-point functions, with the strongest effect stemming from

the decay into two nucleons, ρ�; a�
1
→ N1 þ N̄1.
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ρðω; p⃗Þ ¼
1

π

ImΓ
ð2Þ;Rðω; p⃗Þ

ðReΓð2Þ;Rðω; p⃗ÞÞ2 þ ðImΓ
ð2Þ;Rðω; p⃗ÞÞ2

: ð37Þ

In this work, we set the external spatial momentum p⃗ ¼ 0

to zero which makes an additional splitting of the spectral

functions into a part transverse and longitudinal to the

medium unnecessary.

In Fig. 7 we show the ρ and the a1 spectral functions in
the vacuum. The ρ spectral function shows a prominent

peak at its pole mass of m
p
ρ ≈ 775 MeV and a full width of

Γ ≈ 100 MeV. The only process contributing in this energy

regime is the decay into two pions, ρ� → π þ π. Comparing

to the experimental width of 147.5 MeV for the charged ρ

into two pions [76] our decay width is somewhat small but

of the right order. At higher energies the decay channels

ρ� → a1 þ π and ρ� → N1 þ N̄1 give rise to additional

thresholds at around 1300 MeV and 1880 MeV, cf. Fig. 6.

The a1 spectral function shows a broad maximum between

ω ≈ 1000–1500 MeV where the width is due to the

processes a�
1
→ σ þ π and a�

1
→ ρþ π. At higher energies

we observe the a�
1
→ a1 þ σ threshold while the

FIG. 6. Imaginary part of the ρ (top) and the a1 (bottom) two-point function, evaluated at σ0;IR in the vacuum (left) and at T ¼ 33 MeV

and μB ¼ 890 MeV (right). The contributions from different loops are shown separately, cf. Fig. 3. The decay thresholds are determined

by the corresponding particle masses, cf. Figs. 1 and 4. See text for details.
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FIG. 7. Spectral functions of the ρ and the a1 meson in the

vacuum. The ρ spectral function shows a prominent peak at its

pole mass of m
p
ρ ≈ 775 MeV while the a1 spectral function

exhibits a rather broad maximum which is strongly influenced by

the decay a1 → ρþ π, cf. Fig. 6.
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a�
1
→N1þN̄1 contribution is very small below ω ≈ 2 GeV,

cf. Fig. 6. We note in particular that this is the first time that

the ρ and a1 spectral functions have been obtained within

an aFRG setting without suffering from unphysical decay

thresholds into quark-antiquark pairs. This is one of the

reasons why we are using the hadronic effective theory

which contains nucleons and their parity partners in the

place of the quarks in chiral quark models such as the

Nambu-Jona-Lasinio or quark-meson models, no matter

whether these are enhanced by Polyakov-loop variables to

model confinement or not.

In Fig. 8 we show the ρ and a1 spectral functions at

different temperatures and baryon chemical potentials.

Also, as observed for the two-point functions, the spectral

functions are essentially independent of μB at low temper-

atures until very close to the phase transition. The size of

this ‘critical regime’ is indeed very small, as evident from

the large changes between μB ¼ 895 MeV and the CEP at

μB ¼ 896 MeV at T ¼ 10 MeV. Here, we observe some

effects from the capture processes a�
1
þ π → ρ and

a�
1
þ N1 → N2 at lower energies as well as an additional

peak structure forming in the a1 spectral function at

ω ≈ 1380 MeV. This effect is due to the process a�
1
→

a1 þ σ which is strongly affected by the dropping of the

sigma mass at this second-order phase transition.

At T ¼ 33 MeV the effects from the capture processes

can be observed more clearly, both at μB ¼ 890 MeV and

μB ¼ 915 MeV, e.g., near ω ≈ 500 MeV, mainly due to the

baryonic capture processes ρ�=a�
1
þ N1 → N2. Closer to

the chiral CEP, at μB ¼ 915 MeV, we again observe the

formation of an additional peak structure in the a1 spectral
function due to the critical effects entering via the process

a�
1
→ a1 þ σ. A similar peak structure is also visible in the

ρ spectral function which originates from an additional zero
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FIG. 8. Spectral functions of the ρ and the a1 meson at different temperatures and chemical potentials. The spectral functions show

complicated in-medium modifications due to the various decay and capture processes in the thermal medium. In particular near the CEP

of the nuclear liquid-gas transition (top right) and in a regime approaching the chiral CEP (bottom right) we observe strong

modifications. At T ¼ 10 MeV and μB ¼ 896 MeV one sees the appearance of an additional peak structure in the a1 spectral function at
ω ≈ 1380 MeV which stems from the a�

1
→ a1 þ σ process, with the σ meson encoding the critical behavior. At higher temperatures of

T ¼ 33 MeV the effects from capture processes become more pronounced, e.g., from the a�
1
þ N1 → N2 process at ω ≈ 500 MeV

(bottom left). At higher chemical potential (bottom right) we observe additional peak structures arising, this time also in the ρ spectral

function, as well as a progressing degeneration of the spectral functions due to the restoration of chiral symmetry. See text for details.
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crossing forming in the real part of the two-point function

which is connected to the process ρ� → π þ π. We also

observe that the ρ and the a1 spectral functions become

increasingly degenerate due to the progressing restoration

of chiral symmetry. In fact, one can show analytically that

the flow equations of the ρ and the a1 two-point functions
become degenerate in the limit σ0 → 0.

The most relevant low-energy processes at T ¼ 33 MeV

and μB ¼ 924 MeV, near the chiral CEP, are shown in

Fig. 9 where the different contributions to the imaginary

parts of the ρ and a1 two-point functions are plotted up to

1 GeV (higher energies become increasingly difficult to

compute as manifest in unphysical sign changes that can

occur for higher energies in this critical region). Although

we can clearly identify the potential signature of criticality

in the process a�
1
þ σ → π as mentioned above, the strength

of this signal in the a1 two-point function below 100 MeV

turns out to be very weak. The by far dominant low energy

features in both two-point functions here are the contribu-

tions from the nucleon capture processes ρ� þ N1 → N2

and a�
1
þ N1 → N2. These baryon-resonance formation

processes give rise to rather strong peaks in the energy

range around ω ≈ 240 MeV where there are no competing

processes otherwise.

Finally, the critical low-energy behavior of the corre-

sponding ρ and a1 spectral functions at μB ¼ 924 MeV and

T ¼ 33 MeV, very close to the chiral CEP, is shown in

Fig. 10.
2

Of all contributions to the imaginary parts discussed

above, the most prominent medium modifications of the

critical spectral functions are the baryon-resonance for-

mation processes ρ� þ N1 → N2 and a
�
1
þ N1 → N2 which

give rise to pronounced low-energy peaks around

ω ≈ 240 MeV, below all other thresholds. The occurrence

of these peaks is a unique prediction of the baryonic mirror

assignment and its observation through enhanced dilepton

pair production in the vicinity the chiral CEP would be an

important confirmation of this picture of mass generation in

QCD. The critical capture process a�
1
þ σ → π at even

lower energies turns out by far too weak to be potentially
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FIG. 9. Imaginary part of the ρ (left) and the a1 (right) two-point functions at T ¼ 33 MeV and μB ¼ 924 MeV, close to the chiral CEP.

Here, a particularly small value of ϵ ¼ 0.01 MeV was needed in order to be able to resolve weak low-energy contributions from capture

processes such as the critical a�
1
þ σ → π. As before, the separate components are extracted from the different loops shown in Fig. 3.
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FIG. 10. Critical spectral functions of the ρ and the a1 meson at

T ¼ 33 MeV and μB ¼ 924 MeV, close to the chiral CEP. The

most prominent low-energy contributions to both spectral func-

tions arise from baryon-resonance formation ρ=a1 þ N1 → N2

which gives rise to prominent peaks around ω ≈ 240 MeV where

the critical spectral functions have basically no support otherwise.

2
The spurious sign changes in the imaginary parts of the two-

point functions near criticality, as mentioned above, lead to
positivity violations in the spectral functions at higher energies,
above 1 GeV. Whether these are related to thermodynamic
instabilities observed in dense regions of the phase diagram with
fluctuations [72] remains to be investigated.
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significant. It is about six orders of magnitude lower than

the baryonic capture process in the a1 spectral function in

Fig. 10. Other than that we observe only a small mass shift

and broadening in the ρ spectral function with considerably

stronger medium modifications near the quasiparticle peak

in the a1, indicating the emerging restoration of chiral

symmetry on the level of the eventually complete degen-

eration of the spectral functions of the chiral partners ρ and

a1 at high density.

IV. SUMMARY AND OUTLOOK

In the work presented here we discuss results on vector

and axial-vector meson spectral functions at finite temper-

ature and baryon-chemical potential, in order to assess the

impact of chiral symmetry restoration in dense, low-

temperature nuclear matter on the redistribution of spectral

strength in both channels. As low-energy effective theory

we use a chiral baryon-meson model, namely a parity-

doublet model, which contains pions, sigma mesons, ρ and

a1 mesons as well as nucleons and their parity partners

chosen to be the N�ð1535Þ. Choosing hadronic degrees of

freedom avoids unphysical quark-antiquark thresholds in

the spectral functions in the confined phase. The vector and

axial-vector mesons are introduced using a novel FRG

formulation for massive vector fields based on (anti-)

selfdual field strengths [58]. In our opinion, this extended

parity-doublet model captures the essential features of mass

generation in QCD, in that hadron masses only partially

result from the spontaneous breaking of chiral symmetry.

On the other hand, the degeneracy in the spectral functions

of parity partners in the restored phase is entirely driven by

the evolution of the chiral condensate. The effects of

thermal and quantum fluctuations are taken into account

by using the FRG approach, which is known to describe

phase transitions and critical phenomena in a way that is

superior to a thermodynamic mean-field description mainly

by including the dynamics of order-parameter fluctuations

due to collective excitations.

Within this theoretical setup we have calculated the

phase diagram for isospin-symmetric nuclear matter as a

function of T and μB as well as the screening masses of the

various hadrons involved. The distinctive feature of the

model is that it exhibits a nuclear liquid-gas phase transition

as well as a chiral phase transition at a higher chemical

potential where the nucleons and their parity partners

become approximately degenerate but remain massive.

Similar to the chiral partners ρ and a1 in the vector-meson

channel, the splitting between nucleons N and their parity

partners N� gradually disappears as chiral symmetry gets

restored at finite density by predominantly the resonance

mass dropping down to their common chirally invariant

mass from the scale anomaly. Near the two first-order phase

transitions as well as at their respective CEPs the Euclidean

mass parameters of mesons and baryons all show the

expected behavior and serve as input for the evaluation

of the spectral functions.

For the calculation of the real-time two-point functions

and the spectral functions we used the so-called aFRG

method, of solving analytically continued FRG flow

equations. Within this method one performs the analytic

continuation from imaginary to real frequencies directly on

the level of the FRG flow equations for the two-point

functions and thus avoids the need for any numerical

reconstruction. Moreover, it is thermodynamically consis-

tent in that the effective potential and the spectral functions

are calculated on the same footing. Using this approach, we

have calculated the ρ and the a1 spectral functions at

different temperatures and baryon-chemical potentials.

In the vacuum, the ρ spectral function shows a prominent

peak whose width is solely determined by the decay into

two pions, as expected. The a1 spectral function, in

contrast, exhibits a very broad peak at higher energies

which is determined by the decay into a pion and a sigma

meson as well as into a rho meson and a pion, representing

the σ and ρ-meson resonance contributions to its three-pion

decay width. For small temperatures and chemical poten-

tials, below the liquid-gas phase transition, the spectral

functions essentially coincide with those in the vacuum, as

expected from the Silver-Blaze property. In the vicinity of

the two critical endpoints, however, we observe significant

changes with additional peaks emerging. Most strikingly

are the modifications near the chiral CEP, were a prominent

low-energy peak around 240 MeV shows up. Its origin can

be traced back to the resonance excitation of the in-medium

N�ð1535Þ in both the vector and axial-vector channel. In

fact, the excitation strength is nearly identical, reflecting the

signature of parity doubling. Preliminary estimates indicate

that this effect, which is strongest in the vicinity of the

chiral CEP and possibly near the first-order boundary of the

chiral phase transition might be observed experimentally in

the vector channel through an increased dilepton yield at

correspondingly low invariant masses measured in heavy-

ion collisions at a few GeV/nucleon with high statistics. Its

detection would yield strong evidence in support of the

parity-doubling scenario as providing the mechanism for

chiral symmetry restoration inside dense nuclear matter.

To arrive at a satisfactory description of dense and warm

nuclear matter and its spectral properties further improve-

ments are called for. One relates to a quantitative descrip-

tion of the nuclear matter. For a phenomenologically

acceptable description of the binding-energy per nucleon,

the nuclear saturation density and the equation of state

(EoS) of symmetric nuclear matter we will have to include

the ω vector meson as a dynamical field in the calculation

of the thermodynamic grand potential. From Walecka-type

mean-field studies it is known that the repulsive nature of

the ω meson is essential for a realistic nuclear matter EoS.

Possible further improvements include taking into account

higher truncation orders in the effective average action or
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using a self-consistent setup where the spectral functions

are back-coupled into flows of effective potential and two-

point functions. In addition, a calculation of the expected

dilepton yields in heavy-ion collisions at a few GeV/

nucleon is left for future work. Other phenomenologically

important extensions will include the EoS of highly

isospin-asymmetric nuclear matter and determination of

neutrino emissivities relevant for binary neutron-star

merger events from the corresponding weak (axial-)vector

spectral functions in warm and dense neutron matter.
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APPENDIX: EXPLICIT EXPRESSIONS

In this appendix we summarize explicit expressions for

various quantities used in this work. We begin with the

regulator functions, for which we use three-dimensional

Litim-type regulators [77], which allow for an analytic

evaluation of Matsubara sums. More explicitly, we employ

the following regulator functions for (pseudo)scalar mes-

ons, (axial-)vector mesons, and nucleons,

Rσ=π;kðpÞ ¼ ðk2 − p⃗2ÞΘðk2 − p⃗2Þ; ðA1Þ

RT;L
ρ=a1;k

ðpÞ ¼ −
m2

0;k

p2
ðk2 − p⃗2ÞΠT;L

μν ðpÞΘðk2 − p⃗2Þ; ðA2Þ

RNðpÞ ¼ −i=⃗pð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2=p⃗2 − 1

q

ÞΘðk2 − p⃗2Þ: ðA3Þ

The corresponding regulator shape function is given by

rðyÞ ¼

�

1

y
− 1

�

θð1 − yÞ; ðA4Þ

with y ¼ p2=k2.
Upon evaluating the (unregulated) Matsubara sums over

internal energies in the various flow equations, we encoun-

ter the bosonic and fermionic occupation number factors

which are given by

nBðEÞ ¼
1

eE=T − 1
; ðA5Þ

nFðEÞ ¼
1

eE=T þ 1
: ðA6Þ

For the four-dimensional adjoint representation of the two-

flavor SUð2ÞL × SUð2ÞR chiral symmetry we use Oð4Þ-

vectors ϕ ¼ ðσ; π⃗ÞT and hermitian generators T⃗L;R,

iTa
L ¼

1

2

�

0 −e⃗Ta

e⃗a εaij

�

; iTa
R ¼

1

2

�

0 e⃗Ta

−e⃗a εaij

�

; ðA7Þ

with a; i; j ∈ f1; 2; 3g and ðe⃗aÞi ¼ δai. The corresponding

(axial-)vector martices T⃗V;A ¼ T⃗R � T⃗L are then given by

iTa
V ¼

�

0 0

0 εaij

�

; iTa
A ¼

�

0 e⃗Ta

−e⃗a 0

�

: ðA8Þ

The minimal coupling between (pseudo)scalar and (axial-)

vector mesons is then defined by the covariant derivative

Dμ ¼ ∂μ þ igVμ with the matrix valued vector field

Vμ ¼ ρ⃗μT⃗V þ a⃗1μT⃗A. Explicitly, this leads to

1

2
ðDμϕÞ

†Dμϕ ¼
1

2
ð∂μϕÞ

T∂μϕþ igð∂μϕÞ
TVμϕ

þ
g2

2
ϕTðVμÞ

2ϕ: ðA9Þ

The three-point interactions of order g then yield,

ið∂μϕÞ
TVμϕ

¼ ðπ⃗ × ρ⃗μÞ · ∂μπ⃗ − σa⃗1μ · ∂μπ⃗ þ a⃗1μ · π⃗∂μσ; ðA10Þ

and the quartic interactions of order g2 become

1

2
ϕTðVμÞ

2ϕ ¼
1

2
ðρ⃗μ × π⃗ − σa⃗1μÞ

2 þ
1

2
ða⃗1μ · π⃗Þ

2: ðA11Þ

Finally, we list the explicit expressions for the three-and

four-point vertices which can be obtained by taking three

and four functional derivatives of the ansatz for the

effective average action with respect to the various fields,

cf. Eq. (1). From the relevant contributions to the effective

average action listed explicitly above, we obtain the three-

point vertex functions involving vector mesons used in this

work as

Γ
ð3Þ

ρiμπ
jπk
ðqj; qkÞ ¼ igεijkðq

k
μ − q

j
μÞ; ðA12Þ

Γ
ð3Þ

σai
1μ
πj
ðq; qjÞ ¼ igδijðqμ − q

j
μÞ; ðA13Þ

Γ
ð3Þ

σai
1μ
a
j

1ν

¼ 2g2σ2
0
δμνδij; ðA14Þ

Γ
ð3Þ

ai
1μ
ρ
j
νπ

k ¼ −g2σ2
0
δμνεijk; ðA15Þ

where all momentum arguments denote the incoming

momenta of the (pseudo)scalar mesons, qμ for the sigma
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meson and qiμ for the isovector pions πi. The four-point

vertices are analogously obtained as

Γ
ð4Þ

ρiμρ
j
νπ

kπl
¼ g2δμνð2δijδkl − δikδjl − δilδjkÞ; ðA16Þ

Γ
ð4Þ

ai
1μ
a
j

1ν
πkπl

¼ g2δμνðδikδjl þ δilδjkÞ; ðA17Þ

Γ
ð4Þ

σσai
1μ
a
j

1ν

¼ 2g2δμνδij: ðA18Þ

The three-point couplings of the (axial-)vectors to the two

baryons doublets Nd, d ¼ 1; 2, are readily obtained from

the ansatz for the effective average action and are given by

Γ
ð3Þ

ρiμN̄dNd
¼ ihv;dγμτ

i; ðA19Þ

Γ
ð3Þ

ai
1μ
N̄dNd

¼ ihv;dγμγ
5τi: ðA20Þ
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