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We aim at insights about how localization of the background field impacts nonlinear quantum vacuum

signatures probed by photons in purely magnetic, electric and crossed fields. The starting point of our study

are the one-loop results for the Heisenberg-Euler effective Lagrangian and the photon polarization tensor in

quantum electrodynamics (QED) evaluated in a uniform constant electromagnetic field. As is well known

and often employed, especially in the weak-field limit, within certain restrictions these results also allow for

the reliable analysis of vacuum polarization effects in slowly varying background fields. Here, our main

interest is in manifestly nonperturbative effects. To this end, we make use of the fact that for the particular

case of background field inhomogeneities of Lorentzian shape with 0 ≤ d ≤ 3 inhomogeneous directions

analytical insights are possible. We study the scaling of conventional nonlinear QED signatures, such as

probe-photon polarization flip and probe-photon induced electron-positron pair production, with relevant

parameters. Special attention is put on the d dependence of the considered effects.
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I. INTRODUCTION

Charged particle-antiparticle fluctuations give rise to

effective interactions between electromagnetic fields.

Within the Standard Model of particle physics these are

mainly governed by quantum electrodynamics (QED),

i.e., are driven by virtual electrons and positrons. The

fluctuations in particular affect the propagation of probe

photons (four-potential aμ) sent through strong macro-

scopic electromagnetic fields (field strength tensor

F≡ Fμν) via the photon polarization tensor Π
μν. The

latter encodes vacuum fluctuation mediated corrections to

photon propagation at linear order in the fine-structure

constant α ¼ e2=ð4πÞ and beyond; e > 0 denotes the

elementary charge, and we use Heaviside-Lorentz units

with c ¼ ℏ ¼ ϵ0 ¼ 1. In position space, the effective

action at quadratic order in aμ relevant for the study

of probe photon propagation effects can be expressed

as [1,2]

Γ½a�j∼a2 ¼ −
1

4

Z

d4xfμνðxÞfμνðxÞ

−
1

2

Z

d4x0
Z

d4xaμðx0ÞΠμνðx0; xjFÞaνðxÞ; ð1Þ

with probe field strength tensor fμνðxÞ ¼ ∂
μaν − ∂

νaμ.
Here, the polarization tensor specifically mediates an—

in general nonlocal—interaction between in- and outgoing

probe photons. Its last argument indicates its dependence

on the background field F. In the low-energy regime we

have α ≃ 1=137 ≪ 1, suggesting that the one-loop con-

tribution linear in α constitutes the dominant fluctuation-

induced correction; see also the reviews [3–7] and

references therein.

Currently, only one-loop results for the photon polariza-

tion tensor in the presence of an external electromagnetic

field F are known explicitly, namely in uniform constant

[8] and plane wave [9,10] backgrounds. See also Ref. [11]

for a recent study of vacuum polarization effects in impul-

sive fields probed by on-shell photons. In momentum space

the photon polarization tensor is conventionally expressed

as Π
μνðk0; kÞ≡ Π

μνðk0; kjFÞ, where k0 ≡ k0μ and k≡ kμ

denote the four-momenta of the in and out going photon,

respectively; we use all-incoming conventions, i.e., four-

momenta in the argument of Πμνðk0; kÞ coming with the

same sign are formally considered as incoming. We empha-

size that Π
μνðk0; kjFÞ does not feature any explicit x

dependence viaF ¼ FðxÞ in inhomogeneous fields because
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its derivation involves an integration over x. The vacuum-

fluctuation-induced effective couplings to FðxÞ generically
break the translational invariance of the vacuum and thereby

result in a finite overlap between in and out states with

k0μ ≠ kμ. Moreover, these may change the polarization

properties of probe light because for two polarizationvectors

ϵμðkÞ, ϵμ
⊥
ðkÞ fulfilling ϵ

�μ
⊥
ðkÞϵμðkÞ ¼ 0 the forward ampli-

tude ϵ
�μ
⊥
ðkÞΠμνð−k; kÞϵνðkÞ can be nonvanishing.

Aside from the specific background field configurations

mentioned above, analytical insights into the one-loop

polarization tensor are possible (i) for slowly varying back-

ground fields of generic spatiotemporal structure, and photon

momenta that are much smaller than the electron mass

m ≃ 511 keV, i.e. fjk0μj; jkμjg ≪ m for each component

labeled byμ. Similarly, slowlyvarying fields are characterized

by typical frequency scales of variation υ fulfilling jυj ≪ m.

We emphasize that these encompass the subcategory of

weakly localized fields, under which we understand fields

that are slowly varying and—at least in one direction xi—

confined to a finite space-time interval, in the sense that the

field vanishes for xi → �∞. The corresponding result for the

photon polarization tensor [12] can be readily extracted from

the one-loop Heisenberg-Euler effective action in constant

fields [13–15]; for reviews seeRefs. [16,17]. It is correct up to

quadratic order in k0μ ∼ kμ and at zeroth-order in υ. Especially

for magnetic and electric fields this result allows for con-

trolled insights into both perturbative and manifestly non-

perturbative parameter regimes in the coupling to the

background field F. Moreover, (ii) in the special case where

the in an out momentum components equal each other, the

photon polarization tensor can be reliably analyzed for slowly

varying fields and arbitrary large values of the momentum

transfer. The restriction to k0μ ¼ kμ arises from the fact

that it is impossible to recover the full momentum

structure of Πμνðk0; kjFÞ by adopting a slowly varying field

approximation to the uniform constant field result

Π
μνðk0; kjF ¼ const:Þ ∼ ð2πÞ4δð4Þðk0 þ kÞ, with Dirac delta

function δð4Þð·Þ in four space-time dimensions. See

Refs. [18,19] and also the important clarification in

Ref. [20]. This approach (ii) is particularly relevant for the

study of the polarization tensor in slowly varying inhomo-

geneous crossed fields fulfilling jB⃗j ¼ jE⃗j and B⃗ · E⃗ ¼ 0

because in this case strategy (i) only provides access to the

perturbativeweak-field result at quadratic order inF [12]. The

reason for this is that the scalar field invariantsF ¼ FμνF
μν=4

and G ¼ Fμν
⋆Fμν=4, with dual field strength tensor

⋆Fμν ¼ ϵμνρσFρσ=2, vanish identically in crossed fields, such

that higher powers in F necessarily comewith higher powers

of k0μ ∼ kμ.
In this work, we aim at analyzing how the localization of

the background field influences the scaling of the photon

polarization tensor with various parameters relative to the

well-studied constant-field results. See also Ref. [21] for a

study of the impact of a finite pulse duration in stimulated

laser pair production, and Ref. [22] for a study of finite size

effects on light-by-light scattering in the low-energy, weak-

field regime. To this end, we focus on parameter regimes

where reliable approximate results can be obtained via (i) and

(ii). To be specific, we limit our analysis to background field

inhomogeneities of Lorentzian shape with 0 ≤ d ≤ 3 inho-

mogeneous directions, forwhich closed-formcalculations are

possible [18,23]; see Eq. (2) below for the explicit expression.

We are convinced that such a study is very relevant, because it

can provide uswith important new insights in phenomena that

are inaccessible with constant-field and plane-wave studies.

This becomes particularly evident for electromagnetic fields

reaching near or above critical peak field strengths: especially

in infinitely extended, constant electromagnetic fields, the

regimes of perturbative weak and nonperturbative strong

fields are conventionally clearly separated and amount to two

complementary limits. Conversely, probe light sent through

localized inhomogeneous field configurations reaching non-

perturbative peak field strengths inevitably experience both

perturbative and nonperturbative field strengths. Hence, we

expect significant modifications in the strong-field scaling of

quantum vacuum phenomena affecting the propagation of

probe light.

Our article is organized as follows: In Sec. II we detail

our derivation of the photon polarization tensor in the

presence of a Lorentzian field inhomogeneity for the cases

(i) and (ii). In this context, we also extract approximate

results in various limits. Section II A focuses on either a

purely magnetic or electric field background, and Sec. II B

on a crossed-field configuration. Subsequently, in Sec. II C

we discuss the consequences of our findings on physical

signatures of quantum vacuum nonlinearity that are—at

least in principle—accessible in experiment. Finally, we

end with conclusions and a outlook in Sec. III. Our metric

convention is gμν ¼ diagð−1; 1; 1; 1Þ.

II. PHOTON POLARIZATION TENSOR

Our goal is to obtain analytical insights into the photon

polarization tensor Π
μνðk; k0jFðxÞÞ in weakly localized

background fields characterized by a Lorentzian amplitude

profile,

EðxÞ ¼ E0

1þPd
i¼1

�

2xi
wi

�

2
≥ 0; with 0 ≤ d ≤ 3: ð2Þ

Here, d∈N0 counts the number of inhomogeneous direc-

tions, E0 is the peak field amplitude andwi is the full width at

half maximum (FWHM) in i direction. For weakly localized
background fields as considered throughout this work, by

definition we have wi ≫ ƛC, with reduced Compton wave-

length of the electron ƛC ¼ 1=m. Clearly, in four space-time

dimensions as considered here, a background field with d
inhomogeneous directions has 4 − d homogeneous direc-

tions. By construction, the uniform constant field result is
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retained for d ¼ 0. In the latter case the expression in Eq. (2)

reduces to EðxÞ ¼ E0.

To be specific, in this work we only study the cases

of either a purely magnetic B⃗ðxÞ ¼ EðxÞˆκ⃗ or electric E⃗ðxÞ ¼
EðxÞˆκ⃗ field pointing in a fixed direction ˆκ⃗, and a so-called

crossed field characterized by perpendicular electric an

magnetic fields featuring the same amplitude profile EðxÞ
such that ˆκ⃗ ¼ ðE⃗ × B⃗Þ=E2 amounts to a globally fixed

direction, respectively. Here, ˆκ⃗ denotes a unit vector. For

the purely magnetic or electric field case we exclusively

focus on the regime of low momentum transfers and work

out the exact expression for the polarization tensor atOðk2Þ
accessible via (i). On the other hand, for the crossed-field

configuration we resort to (ii). However, for completeness

we note that in the “Tsai and Erber” regime [24–26]

characterized by a purely magnetic/electric field in con-

junctionwith large-momentumprobe photons the respective

polarization tensor effectively reduces to the crossed field

one, which directly implies that our crossed-field study is

also relevant there.

A. Magnetic or electric field

For electromagnetic fields fulfilling G ¼ Fμν
⋆Fμν=4 ¼

−E⃗ · B⃗ ¼ 0, encompassing the cases of purely magnetic or

electric fields, the photon polarization tensor in momentum

space extracted from the constant-field result of the one-

loop Heisenberg-Euler effective action [13–15] can be

compactly represented as [12]

Π
μνð−k0; kÞ ¼

Z

d4xeiðk−k
0Þx
�

ððk0kÞgμν − k0μkνÞπT þ ðk0FÞμðkFÞν
2F

πFF þ ðk0⋆FÞμðk⋆FÞν
2F

π⋆F⋆F

�

; ð3Þ

where 2F ¼ FμνF
μν=2 ¼ ðB⃗2

− E⃗
2Þ and the scalar func-

tions are given by

πT ¼ −
α

2π

Z

∞

0

ds

s
e
− m2

e
ffiffiffiffi

2F
p s

�

1

sinh2s
−
coth s

s
þ 2

3

�

; ð4Þ

πFF ¼ −
α

2π

Z

∞

0

ds

s
e
− m2

e
ffiffiffiffi

2F
p s

�

1 − 2s coth s

sinh2s
þ coth s

s

�

; ð5Þ

π⋆F⋆F¼−
α

2π

Z

∞

0

ds

s
e
− m2

e
ffiffiffiffi

2F
p s

�

1

sinh2s
−
coths

s
þ2

3
scoths

�

:

ð6Þ

The parameter s in Eqs. (4)–(6) is generically referred to as
the propertime. For later referencewe note that in the special

kinematic limit where k0μ ¼ kμ the tensor structure multi-

plying πT in Eq. (3) becomes equal to ðk2gμν − kμkνÞ≡
k2P

μν
T , with transverse projector P

μν
T . This is precisely the

structure of theMaxwell term in Eq. (1) in momentum space

because − 1

4

R

d4xfμνf
μν ¼ − 1

2

R

d4k
ð2πÞ4 aμðkÞk2P

μν
T aνðkÞ and

indicates that πT contains information about renormaliza-

tion group properties of the theory. Some additional

clarifications are in order here: Eq. (3) neglects contributions

scaling as ∼k0k½Oððk
m
Þ2Þ þOðð υ

m
Þ2Þ�, where we count

Oðk0Þ ¼ OðkÞ. The square root in the exponential of

Eqs. (4)–(6) is to be understood as
ffiffiffiffiffiffiffi

2F
p

¼
ffiffiffiffiffiffiffiffiffiffi

2jF j
p

½ΘðF Þ −
iΘð−F Þ� and m2 ¼ m2 − i0þ; Θð·Þ is the Heaviside func-

tion. Moreover, the integration contour in Eqs. (4)–(6) is

implicitly assumed to lie slightly above the real positive s

axis. Especially for the cases of either a purely magnetic or

electric field to be considered in the remainder of

this section, the four-vectors ðkFÞμ ≔ kαF
αμ and ðk⋆FÞμ ≔

kα
⋆Fαμ can be expressed as ðkFÞμ ¼ −ð0; k⃗ × B⃗Þ, ðk⋆FÞμ¼

−ðk⃗ · B⃗;k0B⃗Þ and ðkFÞμ¼−ðk⃗ · E⃗;k0E⃗Þ, ðk⋆FÞμ¼ð0; k⃗× E⃗Þ,
respectively. In turn, for a purely magnetic or electric field

our normalization of the tensor structures in Eq. (3) clearly

ensures that these are independent of the amplitude profile of

the background field andmay depend only on its orientation.

Also note that in the constant field limit (∂αF
μν ¼ 0 for all

values of the indices α, μ and ν) the expression in the square

brackets in Eq. (3) becomes independent of x. In this case the
integration over space-time can be performed right away,

resulting in an overall momentum conserving Dirac delta

function that ensures k0μ ¼ kμ.
Especially due to the rather complicated dependence of

Eqs. (4)–(6) on the background field amplitude, in general the

Fourier integral in Eq. (3) cannot be evaluated analytically for

inhomogeneous fields. On the other hand, the parameter

integrals in Eqs. (4)–(6) can be performed in closed form [12].

However, noting that the structure of Eqs. (3)–(6) is such that

the Fourier integral can be carried out explicitly for magnetic

and electric fields with the Lorentzian amplitude profile in

Eq. (2), in the present work we pursue this direction. The

Fourier integral in a inhomogeneous direction simply

amounts to an elementary Gaussian integral.

Focusing on the case of a purely magnetic field, inserting

the field profile (2) into Eqs. (3)–(6) and carrying out the

Fourier integral, we arrive at

Π
μνð−k0;kÞ¼ð2πÞ4−dδð4−dÞðk0−kÞ

�

Y

d

i¼1

wi

��

π

4

�d
2

�

ððk0kÞgμν−k0μkνÞπdTþ
ðk0FÞμðkFÞν

2F
πdFFþ

ðk0⋆FÞμðk⋆FÞν
2F

πd⋆F⋆F

�

; ð7Þ
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where δð4−dÞðk0 − kÞ denotes the Dirac delta function in 4 − d dimensions which ensures energy/momentum conservation in

the homogeneous directions of the background field. The scalar functions in Eq. (7) are given by

πdT ¼ −
α

2π

Z

∞

0

ds

s

�

eE0

m2

1

s

�d
2

e
−m2

eE0
s−

eE0

m2

fðk0 ;kÞ
s

�

1

sinh2s
−
coth s

s
þ 2

3

�

; ð8Þ

πdFF ¼ −
α

2π

Z

∞

0

ds

s

�

eE0

m2

1

s

�d
2

e
−m2

eE0
s−

eE0

m2

fðk0 ;kÞ
s

�

1 − 2s coth s

sinh2s
þ coth s

s

�

; ð9Þ

πd⋆F⋆F ¼ −
α

2π

Z

∞

0

ds

s

�

eE0

m2

1

s

�d
2

e
−m2

eE0
s−

eE0

m2

fðk0 ;kÞ
s

�

1

sinh2s
−
coth s

s
þ 2

3
s coth s

�

; ð10Þ

with the dimensionless parameter,

fðk0; kÞ ≔ 1

16

X

d

i¼1

w2
i ðk0i − kiÞ2 ≥ 0; ð11Þ

measuring the momentum difference between the in and

outgoing probe photon legs. Nonzero values of Eq. (11)

imply a finite momentum transfer from the inhomogeneous

background to the probe field. From the above discussion it

is clear that the analogous result for a purely electric field

follows from Eqs. (7)–(10) by the substitution E0 → −iE0.

Accounting for the fact that ð2πÞð4−dÞδð4−dÞðk0 − k ¼ 0Þ ¼
R

d4−dx≕Vð4−dÞ amounts to the (4 − d)-dimensional

space-time volume associated with the homogeneous

directions of the field inhomogeneity, from Eq. (7) it is

obvious that, in accordance with expectations, the four-

dimensional space-time region Vð4−dÞð
Q

d
i¼1

wiÞ where the

background field can impact the propagation of probe light

gets reduced with an increasing localization of the inho-

mogeneity.

We emphasize that within the constraints inherent to its

determination via (i), Eqs. (7)–(11) allow for the study of

photon propagation effects at one loop in field Lorentzian

field inhomogeneities (2) of arbitrarily strong peak field

amplitudes. However, we first note that in the perturbative

weak field limit characterized by eE0=m
2 ≪ 1 the expres-

sions in Eqs. (8)–(10) are amenable to closed-form all-order

Taylor expansions. To this end, it is convenient to shift the

integration variable of the parameter integration as s →

ðeE0=m
2Þs and make use of the power series for coth x

about x ¼ 0; note that 1= sinh2 x ¼ −∂x coth x. Upon

exchanging the all-order summation and the parameter

integration over s, the latter can be performed explicitly,

and we obtain

8

>

>

<

>

>

:

πdT

πdFF

πd⋆F⋆F

9

>

>

=

>

>

;

¼ −
α

π

X

∞

n¼1

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

2n−d
2K

2n−d
2

�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

2B2nþ2

ð2nþ 1Þ!

�

2eE0

m2

�

2n

8

>

>

<

>

>

:

1

2n

1 − 2nþ1

6

B2n

B2nþ2

9

>

>

=

>

>

;

; ð12Þ

for a magnetic field and d ≥ 1. Here, Kνð·Þ denotes the

modified Bessel function of the second kind, and Bn are

Bernoulli numbers. Clearly, the analogous expansion

for an electric field differs only by a factor of ð−1Þn in

each summand. The modified Bessel functions ensure

that Eq. (12) is strongly peaked at fðk0; kÞ → 0, i.e.,

receives its main contribution for vanishing momentum

transfer from the background field. As to be expected

[18,19], because of KνðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π=ð2zÞ
p

e−zð1þOð1=zÞÞ,

the components of the polarization tensor receive an

exponential suppression for large momentum transfers

fðk0; fÞ ≫ 1; see formula 10.25.3 of [27]. Though

Eq. (12) was derived for d ≥ 1, it also allows us to recover

the uniform constant field result corresponding to d ¼ 0:

namely, by taking the limit of wi → ∞ for all inhomo-

geneous dimensions 1 ≤ i ≤ d and using the expansion of

themodified Bessel function for small arguments (Ref. [27]:

10.30.2). From this we infer that

ð2πÞ4−dδð4−dÞðk0 − kÞ
�

Y

d

i¼1

wi

��

π

4

�d
2

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

2n−d
2K

2n−d
2

�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

⟶

wi→∞ð2πÞ4δð4Þðk0 − kÞ; ð13Þ
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which recovers the well-known results in a uniform

constant background field. Moreover, we emphasize

that in the special case where k0i ¼ ki in the inhomo-

geneous directions 1 ≤ i ≤ d, and thus fðk0; kÞ ¼ 0,

Eq. (12) can be substantially simplified by noting that

limf→0 2ð
ffiffiffi

f
p Þ2n−d

2K
2n−d

2

ð2 ffiffiffi

f
p Þ ¼ Γð2n − d

2
Þ, where Γð·Þ is

the gamma function; see formula 10.30.2 of Ref. [27]. As a

direct consequence of Furry’s theorem [28] (charge con-

jugation invariance of QED) the expansion in Eq. (12) is in

even powers of eE0. We remark that alternatively one could

arrive at Eq. (12) by first carrying out an all-order weak-

field expansion of the coefficients (4)–(6) of the photon

polarization tensor in a constant magnetic/electric field,

then replacing the amplitude profile by Eq. (2) and finally

performing the Fourier integral in Eq. (3). In line with this,

with respect to the dependence on the peak amplitude E0

the structure of Eq. (12) is not surprising.

On the other hand, in the special case of fðk0; kÞ ¼ 0,

which is for instance determining the amplitude of strict

forward scattering for probe photons with k0μ ¼ kμ, the
parameter integrations in Eqs. (8)–(10) can be performed

explicitly for 0 ≤ d ≤ 3, thereby allowing for analytical

insights for arbitrary values of the peak field amplitude E0

encoded in the dimensionless parameter eE0=m
2
≕

1=ð2hÞ↔ h ¼ m2=ð2eE0Þ [29]. For the case of a magnetic

field inhomogeneity and 0 ≤ d ≤ 3 the explicit results of

these calculations can be expressed in terms of the Hurwitz

zeta function ζðs; hÞ and derivatives thereof; ζ0ðs; hÞ ¼
∂sζðs; hÞ, ζðsÞ ¼ ζðs; 1Þ is the Riemann zeta function and

ψðhÞ ¼ Γ
0ðhÞ=ΓðhÞ is the digamma function. This results

in the following rather compact representations:

πd¼0

T ¼ −
α

π

	

4ζ0ð−1; hÞ − h½2ζ0ð0; hÞ − ln hþ h� − 1

3
ln h −

1

6




;

πd¼0

FF ¼ −
α

π

	

1

3
− h½2ζ0ð0; hÞ þ ln hþ 2hð1 − ψðhÞÞ − 1�




;

πd¼0
⋆F⋆F ¼ −

α

π

	

4ζ0ð−1; hÞ − h½2ζ0ð0; hÞ − ln hþ h� − 1

6
½2ψðhÞ þ h−1 þ 1�




; ð14Þ

πd¼1
T ¼ −

2α

3π
1

2

h−
1

2

	

−10ζ

�

−
3

2
; h

�

þ 6hζ

�

−
1

2
; h

�

− h
1

2ð1 − 2hÞ



;

πd¼1

FF ¼ −
2α

3π
1

2

h−
1

2

	

−5ζ

�

−
3

2
; h

�

þ 12hζ

�

−
1

2
; h

�

− 3h2ζ

�

1

2
; h

�

− 2h
3

2




;

πd¼1
⋆F⋆F ¼ −

2α

3π
1

2

h−
1

2

	

−10ζ

�

−
3

2
; h

�

þ 6hζ

�

−
1

2
; h

�

þ 1

2
ζ

�

1

2
; h

�

− h−
1

2

�

1

4
− 2h2

�


; ð15Þ

πd¼2

T ¼ −
α

π
h−1
	

−3ζ0ð−2; hÞ þ h

�

2ζ0ð−1; hÞ − 1

2
h ln hþ 1

12
ð2h2 þ 4 ln hþ 1Þ

�


;

πd¼2
FF ¼ −

α

π
h−1
	

−3ζ0ð−2; hÞ þ h

�

6ζ0ð−1; hÞ − 1

12
− h

�

2ζ0ð0; hÞ − ln hþ 5

6
h

��


;

πd¼2

⋆F⋆F ¼ −
α

π
h−1
	

−3ζ0ð−2; hÞ þ 1

3
ζ0ð0; hÞ þ h

�

2ζ0ð−1; hÞ þ 5

12
þ 1

6
h2
�

þ 1

6
ð1 − 3h2Þ ln h




; ð16Þ

πd¼3

T ¼ −
4α

15π
1

2

h−
3

2

	

14ζ

�

−
5

2
; h

�

− 10hζ

�

−
3

2
; h

�

þ h
3

2

�

5

3
− 2h

�


;

πd¼3
FF ¼ −

4α

15π
1

2

h−
3

2

	

21ζ

�

−
5

2
; h

�

− 40hζ

�

−
3

2
; h

�

þ 15h2ζ

�

−
1

2
; h

�

þ 2h
5

2




;

πd¼3

⋆F⋆F ¼ −
4α

15π
1

2

h−
3

2

	

14ζ

�

−
5

2
; h

�

− 10hζ

�

−
3

2
; h

�

−
5

2
ζ

�

−
1

2
; h

�

þ h
1

2

�

5

4
− 2h2

�


: ð17Þ

We point out that the uniform constant field (d ¼ 0) result given in Eq. (14) was already derived in Ref. [12]. In line with the

above discussion, the analogous results for an electric field follow via h → ih.
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While an expansion of Eqs. (15)–(17) for large h → ∞ recovers the perturbative weak field expansion in Eq. (12), an

expansion about h ¼ 0 provides access to their strong field behavior. With the help of the series representation of the

Hurwitz zeta function for small h we readily obtain

πd¼0
T ¼ −

α

π

	

−
1

3
ln hþ 4ζ0ð−1Þ − 1

6
− h ln hþ ½2 − lnð2πÞ�hþ 2

X

∞

n¼2

ð−1Þn n − 2

nðn − 1Þ ζðn − 1Þhn



;

πd¼0
FF ¼ −

α

π

	

1

3
þ h ln hþ ½lnð2πÞ − 1�h − 2h2 − 2

X

∞

n¼3

ð−1Þn n − 2

n − 1
ζðn − 1Þhn




;

πd¼0

⋆F⋆F ¼ −
α

π

	

1

6

1

h
þ 4ζ0ð−1Þ þ 1

6
½2γ − 1� − h ln hþ

�

2 − lnð2πÞ − ζð2Þ
6

�

hþ ½1þ ζð3Þ�h2

þ
X

∞

n¼3

ð−1Þn
�

2ðn − 2Þ
nðn − 1Þ ζðn − 1Þ þ ζðnþ 1Þ

6

�

hn



; ð18Þ

πd¼1
T ¼ −

α

π

	

−
2
ffiffiffi

π
p

3
−
4π

3

2

3
hþ

X

∞

n¼0

ð−1Þnð2n − 5Þ
n!

ρ

�

n −
3

2

�

hn−
1

2




;

πd¼1
FF ¼ −

α

π

8

<

:

4
ffiffiffi

π
p

3
h −

X

∞

n¼0

ð−1Þnð2n − 5Þ
�

n − 1

2

�

n!
ρ

�

n −
3

2

�

hn−
1

2

9

=

;

;

πd¼1
⋆F⋆F ¼ −

α

π

8

<

:

ffiffiffi

π
p

6

1

h
−
4π

1

2

3
hþ

X

∞

n¼0

ð−1Þn
ð2n − 5Þρ

�

n − 3

2

�

þ 1

3
ρ
�

nþ 1

2

�

n!
hn−

1

2

9

=

;

; ð19Þ

πd¼2

T ¼ −
α

π

	

3ζð3Þ
4π2

1

h
þ 1

3
ln h − 4ζ0ð−1Þ − 1

6
þ 1

2
h ln hþ 2 lnð2πÞ − 5

4
h −

1

3
h2 − 2

X

∞

n¼3

ð−1Þn n − 2

nþ 1
ζðn − 1Þhn




;

πd¼2
FF ¼ −

α

π

	

3ζð3Þ
4π2

1

h
−
1

3
þ 3

4
½1 − 2 lnð2πÞ�hþ 2

X

∞

n¼2

ð−1Þnðn − 2Þ
ðn − 1Þðnþ 1Þ ζðn − 1Þhn




;

πd¼2
⋆F⋆F ¼ −

α

π

	

−
1

6

1

h
ln hþ

�

3ζð3Þ
4π2

−
lnð2πÞ

6

�

1

h
þ 1 − 2γ − 24ζ0ð−1Þ

6
þ 1

2
h ln hþ

�

lnð2πÞ þ π2

18
−
5

2

�

h

−
X

∞

n¼2

ð−1Þn
nþ 1

�

2ðn − 2Þ
nðn − 1Þ ζðn − 1Þ þ 1

3
ζðnþ 1Þ

�

hn



; ð20Þ

πd¼3

T ¼ −
α

π

	

4

9π
5

2

þ 8

15π
5

2

hþ
X

∞

n¼0

ð−1Þnð2n − 7Þ
n!

ρ

�

n −
5

2

�

hn−
3

2




;

πd¼3

FF ¼ −
α

π

8

<

:

−
8

15π
5

2

h −
X

∞

n¼0

ð−1Þnð2n − 7Þ
�

n − 3

2

�

n!
ρ

�

n −
5

2

�

hn−
3

2

9

=

;

;

πd¼3

⋆F⋆F ¼ −
α

π

8

<

:

−

ffiffiffi

π
p

3

1

h
þ 8

15π
5

2

hþ
X

∞

n¼0

ð−1Þn
�

n − 7

2

�

ρ
�

n − 5

2

�

þ 1

6
ρ
�

n − 1

2

�

n!
hn−

3

2

9

=

;

; ð21Þ

where γ is the Euler–Mascheroni constant, and we used the shorthand notation ρðsÞ ≔ ζðsÞΓðsÞ ¼
R

∞
0
dtts−1=ðet − 1Þ. We

emphasize that the contributions in Eqs. (18)–(21) are not necessarily ordered with respect to their importance in the strong

field limit. Instead, aiming at providing most compact representations, we have accounted for as many terms in the infinite

sums as possible. For completeness, we also note that the leading contribution to πd¼0

T in Eq. (18) is of the form

limh→0 π
d¼0

T ¼ −αβ1 lnðeE0=m
2Þ, where β1 ¼ 1=ð3πÞ denotes the leading coefficient of the QED β function governing the

running of the fine structure constant.
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From Eqs. (18)–(21) we infer that with an increasing

localization of the inhomogeneity the leading strong

field behavior of a given component πdp with p∈

fT; FF; ⋆F⋆Fg becomes more pronounced: counting

ln h ∼Oðh0Þ, an increase of the number of inhomogeneous

directions from d to dþ 1 generically comes with an

enhancement by a factor ∼h−1=2 ¼ ð2eE0=m
2Þ1=2. For

0 ≤ d ≤ 2 the scaling of πdT and πdFF with h ≪ 1 is

subleading in comparison to πd⋆F⋆F. In the case of d ¼ 2

the scaling of the latter is just logarithmically enhanced by a

factor of lnð1=hÞ ∼ lnðeE0=m
2Þ. Interestingly, for d ¼ 3 all

components in Eq. (21) exhibit the same leading scal-

ing ∼h−3=2.
For insights into eE0=m

2 ≫ 1 and k0μ ≠ kμ it is conven-
ient to invoke the same substitution as in the determination

of the perturbative weak field limit (12), but then instead to

perform an expansion of the expressions in the round

brackets in Eqs. (8)–(10) containing the hyperbolic func-

tions for seE0=m
2 ≫ 1. This yields

8

>

>

<

>

>

:

πdT

πdFF

πd⋆F⋆F

9

>

>

=

>

>

;

¼ −
α

π

Z

∞

0

ds

s

�

1

s

�d
2

e−s−
fðk0 ;kÞ

s

2

6

6

4

8

>

>

<

>

>

:

1

3
− h

s

h
s

1

6

s
h
− h

s

9

>

>

=

>

>

;

þOðe−s=hÞ

3

7

7

5

: ð22Þ

which, given that fðk0; kÞ in Eq. (11) is large enough such as to sufficiently dampen the potentially divergent contributions

multiplying the exponential factors in the integrand for s → 0, allows for a reliable approximation. The latter assumption is

increasingly well justified for large values of fðk0; kÞ, while the limit of fðk0; kÞ → 0 has to be handled with care. Upon

performing the integration in Eq. (22) and keeping the leading terms for h ≪ 1 only, we obtain

8

>

>

<

>

>

:

πdT

πdFF

πd⋆F⋆F

9

>

>

=

>

>

;

≃ −
α

3π

1

h

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

−d
2Kd

2

�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

6h2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

−

�

d
2
þ1

�

Kd
2
þ1

�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

−

�

d
2
−1

�

Kd
2
−1

�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

: ð23Þ

Equation (23) in particular implies that for sufficiently largemomentum transfers from the field inhomogeneity (2) the leading

strong-field scaling of the components of the polarization tensor with h ≪ 1 is independent of the number of inhomogeneous

directions 1 ≤ d ≤ 3. Because in uniform constant fields the polarization tensor is nonzero only for k0μ ¼ kμ considering this
limit for d ¼ 0 makes no sense.

In slowly varying magneticlike background fields fulfillingF ≥ 0 and for low-frequency photons the photon polarization

tensor is real valued, signalizing the impossibility of electron-positron pair production under these conditions. On the

other hand, in electriclike fields for which F < 0 the polarization tensor features an imaginary part and pair production

becomes possible. For its determination we specialize Eqs. (8)–(10) to an electric field inhomogeneity via the replacement

E0 → −iE0. Substituting s → −is̃ and deforming the integration contour such as to lie slightly below the real positive

s̃ axis, the associated imaginary parts can then be worked out by noting that Imfπdpg ¼ ½πdp − ðπdpÞ��=2i. The latter

identity maps the determination of the imaginary part of πdp to performing a contour integral in the complex s̃ plane

enclosing the real positive s̃ axis, which can be readily evaluated with the Cauchy’s residue theorem. This yields the exact

expression,

Im

8

>

>

<

>

>

:

πdT

πdFF

πd⋆F⋆F

9

>

>

=

>

>

;

¼ α

2π2

X

∞

n¼1

�

eE0

m2

1

nπ

�d
2 e

−m2

eE0
nπ−

eE0

m2

fðk0 ;kÞ
nπ

n2

×

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

2þ d
2
þ m2

eE0
nπ −

eE0
m2

fðk0;kÞ
nπ

d
2

�

2þ d
2

�

þ ð1þ dÞ
�

m2

eE0
nπ −

eE0
m2

fðk0;kÞ
nπ

�

þ
�

m2

eE0
nπ −

eE0
m2

fðk0;kÞ
nπ

�

2

− 2

nπ
eE0
m2

fðk0;kÞ
nπ

2þ d
2
þ 2

3
ðnπÞ2 þ m2

eE0
nπ −

eE0
m2

fðk0;kÞ
nπ

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

: ð24Þ
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Conversely, for the case of a magnetic field the hyperbolic

functions in Eqs. (8)–(10) do not feature any poles on the

real positive s axis making the analogous contour integral

vanish. In turn no imaginary part appears in that case. We

emphasize that Eq. (24) is a manifestly nonperturbative

result: it is characterized by the same nonperturbative

exponent as the Schwinger effect [15]. Correspondingly,

it cannot be obtained by performing a naive perturbative

expansion, such as adopted in Eq. (12). In the weak electric

field limit eE0=m
2 ≪ 1 the leading contributions to

Eq. (24) arise from the n ¼ 1 term. Focusing on k0μ ¼ kμ,
which is the limit relevant for the determination of the

single photon assisted pair production rate in the electric

background field (cf. Sec. II C below), and keeping only the

leading terms we then find

Im

8

>

>

<

>

>

:

πdT

πdFF

πd⋆F⋆F

9

>

>

=

>

>

;

≃
α

2π2

�

eE0

m2

1

π

�d
2
−1

e
−m2

eE0
π

8

>

>

<

>

>

:

1

m2

eE0

π

1

9

>

>

=

>

>

;

: ð25Þ

Equation (25) implies that in weak electric fields the

imaginary part of the polarization tensor decreases with

increasing localization of the background field: similarly as

for the Schwinger effect in the absence of additional

photons [23], each additional inhomogeneous direction

in Eq. (2) comes with a reduction by a factor of

ðeE0=m
2Þ1=2 ≪ 1.

Together with Eq. (12) specialized to the electric field

case forming its real part, Eq. (25) constitutes the full result

of the photon polarization tensor in the electric field

inhomogeneity (2). On the other hand, the strong field

expansions performed in Eqs. (18)–(21) and (22), (23)

provide direct access to both the real and imaginary

parts of the polarization tensor in strong electric fields

eE0=m
2 ≫ 1. In fact, alternatively the strong field

eE0=m
2 ≫ 1 limits for the imaginary part for both kμ ¼

k0μ and sufficiently large values of fðk; k0Þ (cf. also above)

can be extracted directly from Eq. (24).

For fðk0; kÞ ¼ 0, the sums can be performed explicitly

yielding polylogarithms (Ref. [27]: 25.12.10), the expan-

sions of which for eE0=m
2 ≫ 1 follow from formula

25.12.12 of [27]. This allows us to readily infer that the

leading terms are given by

Im

8

>

>

<

>

>

:

πdT

πdFF

πd⋆F⋆F

9

>

>

=

>

>

;

¼ α

2π2

�eE0

πm2

�d
2

8

>

>

>

>

>

<

>

>

>

>

>

:

�

2þ d
2

�

ζ
�

2þ d
2

�

d
2

�

2þ d
2

�

ζ
�

2þ d
2

�

þ δ0;dπ
m2

eE0
ln

eE0

m2

2

3
π2hd

�

eE0
m2

�

þ
�

2þ d
2

�

ζ
�

2þ d
2

�

9

>

>

>

>

>

=

>

>

>

>

>

;

; ð26Þ

where δi;j denotes the Kronecker, and we introduced the d

dependent quantities h0ðeE0m2 Þ ¼ 1

π

eE0

m2 , h1ðeE0m2 Þ ¼ ðeE0
m2 Þ1=2,

h2ðeE0m2 Þ ¼ ln
eE0
m2 , and h3ðeE0m2 Þ ¼ ζð3

2
Þ. Note that with increas-

ing values of d the strong-field scaling of hdðeE0m2 Þ becomes

less pronounced. While it ensures the component πd⋆F⋆F to

exhibit the leading strong-field behavior for 0 ≤ d ≤ 2, this

component becomes as important as the other ones for

d ¼ 3. As to be expected, Eq. (26) recovers the leading

contributions to the imaginary part of the expressions in

Eqs. (18)–(21) specialized to an electric field inhomoge-

neity.

On the other hand, in the case of sufficiently large

fðk0; kÞ, where the summands are manifestly finite for

n→ 0 by assumption, we can make use of the fact that the

n dependence of Eq. (24) is effectively in terms of the

combined parameter m2

eE0
nπ and approximate the infinite

sum by an integral via
P

∞
n¼1

gðm2

eE0
nπÞ→ eE0

m2

1

π

R

∞
0
dνgðνÞ.

Adopting this strategy to Eq. (24) and limiting ourselves

only to the leading terms, we arrive at

Im

8

>

>

<

>

>

:

πdT

πdFF

πd⋆F⋆F

9

>

>

=

>

>

;

≃
α

3π

eE0

m2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

6

�

m2

eE0

�

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

−

�

d
2
þ1

�

Kd
2
þ1

�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

−3

�

m2

eE0

�

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

−

�

d
2
þ1

�

Kd
2
þ1

�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

−

�

d
2
−1

�

Kd
2
−1

�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðk0; kÞ
p

�

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

; ð27Þ
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which indeed recovers the imaginary part of Eqs. (22) and (23). Note that in order to obtain the result for πdT given here from

Eq. (22) one has to account for the next to leading order contribution; the leading term given in Eq. (23) is purely real

valued.

B. Crossed field

The exact expression for the one-loop photon polarization tensor in a constant crossed field fulfilling F ¼ G ¼ 0 which

accounts for arbitrary momentum transfers kμ through the charged particle loop [30] can be expressed as

Π
μνð−k0; kÞ ¼ ð2πÞ4δð4Þðk0 − kÞ

�

ðk2gμν − kμkνÞπT þ ðkFÞμðkFÞν
ðkFÞ2 π̃FF þ ðk⋆FÞμðk⋆FÞν

ðkFÞ2 π̃⋆F⋆F

�

; ð28Þ

with scalar functions

8

<

:

πT

π̃FF

π̃⋆F⋆F

9

=

;

¼ α

2π

Z

∞

0

ds

s

Z

1

0

dνe
−i




ϕ0þ1

4
ð1−ν2Þ2e

2ðkFÞ2s2
12m6

�

s

8

>

>

>

>

>

<

>

>

>

>

>

:

−isð3 − ν2Þν2
h

2

3

k2

4m2 þ 1

3
ð1 − ν2Þ e2ðkFÞ2s2

12m6

i

m2ð3þ ν2Þð1 − ν2Þ e2ðkFÞ2s2
12m6 □

□2m2ð3 − ν2Þð1 − ν2Þ e2ðkFÞ2s2
12m6

9

>

>

>

>

>

=

>

>

>

>

>

;

; ð29Þ

where s is the propertime, ν governs the momentum

distribution in the charged particle loop, and

ϕ0 ¼ 1 − i0þ þ ð1 − ν2Þ k2

4m2
ð30Þ

is a dimensionless phase. Equations (28)–(30) follow from

the expressions given in Eqs. (2.114) and (2.115) of [2]

with the help of the identity (A.1) of [26]. Note that the

entire four-momentum dependence of Eq. (29) is in terms

of k2 and ðkFÞ2. Upon introducing κ̂μ ¼ ð1; ˆκ⃗Þ with
ˆκ⃗ ¼ ðE⃗ × B⃗Þ=ðjB⃗jjE⃗jÞ, in constant crossed fields of ampli-

tude E ¼ jB⃗j ¼ jE⃗j the latter expression can be compactly

represented as ðkFÞ2 ¼ E2ðκ̂kÞ2 ≥ 0. The overall energy

and momentum conserving delta function in Eq. (28)

reflects the fact that a constant electromagnetic field cannot

transfer energy and momentum to the charged particle loop.

We emphasize that the structure of Eq. (28) is very similar

to Eq. (3) in the constant field limit. However, because of

F ¼ 0 in crossed fields, here we employ a slightly different

normalization to render the tensor structures ∼ðkFÞμðkFÞν
and ∼ðk⋆FÞμðk⋆FÞν independent of the field strength. This
immediately implies that in the present section their

coefficients have a slightly different meaning; to make

this evident we decorate them with a tilde. In particular note

that while πT is dimensionless we have π̃FF ∼ π̃⋆F⋆F ∼m2.

For later reference we also note that making use of the

substitution se
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkFÞ2=m6
p

ð1 − ν2Þ=ð4
ffiffiffi

3
p

Þ → s, Eq. (29)
can alternatively be expressed as

8

<

:

πT

π̃FF

π̃⋆F⋆F

9

=

;

¼ α

π

Z

∞

0

ds

Z

1

0

dνe
−iðϕ0þs2Þ 4

ffiffi

3
p

1−ν2
m3

e

ffiffiffiffiffiffiffi

ðkFÞ2
p s

8

>

>

>

<

>

>

>

:

−i 4
ffiffi

3
p

1−ν2
m3

e
ffiffiffiffiffiffiffiffi

ðkFÞ2
p ð3 − ν2Þν2

�

1

3

k2

4m2 þ 1

3

2

1−ν2
s2
�

2m2 3þν2

1−ν2
s

4m2 3−ν2

1−ν2
s

9

>

>

>

=

>

>

>

;

: ð31Þ

Because of its specific tensor structure which is a direct

consequence of k0μ ¼ kμ in constant fields, unfortunately

Eq. (28) cannot be adopted to the study of most

generic situations where k0μ ≠ kμ. However, it should

allow for reliable insights in the specific limit of

k0μ ¼ kμ also for slowly varying inhomogeneous back-

ground fields. To this end, we first identically rewrite

the delta function in Eq. (28) as ð2πÞ4δð4Þðk0 − kÞ ¼

ð2πÞ4−dδð4−dÞðk0 − kÞ
R

ddxei
P

d

i¼1
ðki−k0iÞxi and subsequently

substitute the uniform constant field profile for a slowly

varying inhomogeneous one with d inhomogeneous direc-

tions. Upon setting k0μ ¼ kμ for the momentum compo-

nents in the d inhomogeneous directions, determining the

explicit expression for the photon polarization tensor in the

inhomogeneous field in this particular limit then only

requires performing an integration over coordinate space.
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Specializing the study to a crossed field with amplitude

profile (2), similar as in Sec. II A this integration can be

readily performed analytically for all scalar functions πT ,

π̃FF and π̃⋆F⋆F determining the polarization tensor. This

becomes particularly obvious from Eq. (31) where the field

dependence in the exponential ∼1=
ffiffiffiffiffiffiffiffiffiffiffiffi

ðkFÞ2
p

∼ 1=EðxÞ and

in the factor multiplying this exponential for πT ensures that

only elementary Gaussian integrals are to be performed for

Lorentzian amplitude profiles (2).

Carrying out the space-time integrations over the d
inhomogeneous directions, we obtain

ð2πÞðdÞδðk0 − kÞΠμνð−k0; kÞ ¼ ð2πÞ4δð4Þðk0 − kÞ
�

Y

d

i¼1

wi

��π

4

�d
2

×

�

ðk2gμν − kμkνÞπdT þ ðkFÞμðkFÞν
ðkFÞ2 π̃dFF þ ðk⋆FÞμðk⋆FÞν

ðkFÞ2 π̃d⋆F⋆F

�

; ð32Þ

where we multiplied both sides with the delta function ð2πÞðdÞδðk0 − kÞ to signalize and ensure that only the contribution for
which k0μ ¼ kμ in the d inhomogeneous directions is to be considered here. The explicit expressions for the scalar functions

in Eq. (32) are

8

<

:

πdT

π̃dFF

π̃d⋆F⋆F

9

=

;

¼ α

π

Z

∞

0

ds

Z

1

0

dν
e−iΦ0s

ðiΦ0sÞ
d
2

8

>

>

>

>

>

<

>

>

>

>

>

:

−i 4
ffiffi

3
p

1−ν2
1

χ0

�

1þ d
2

1

iΦ0s

�

ð3 − ν2Þν2
�

1

3

k2

4m2 þ 1

3

2

1−ν2
s2
�

2m2 3þν2

1−ν2
s

4m2 3−ν2

1−ν2
s

9

>

>

>

>

>

=

>

>

>

>

>

;

; ð33Þ

where we introduced the quantum nonlinear parameter

(cf., e.g., Ref. [7]) of the peak field,
1

χ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2ðkF0Þ2
m6

s

¼ eE0jκ̂kj
m3

; ð34Þ

and made use of the shorthand notation,

Φ0 ¼ ðϕ0 þ s2Þ 4
ffiffiffi

3
p

1 − ν2
1

χ0
: ð35Þ

In the next step, we note that the identity ðiΦ0sÞ−d=2 ¼
1=Γðd=2Þ

R

∞
0
dttd=2−1e−ðiΦ0sÞt can be employed to recast

Eq. (33) in a form where its entire dependence on iΦ0s

appears only in the argument of the exponential function.

Recalling the definition of Scorer’s function [31],

HiðzÞ ¼ 1

π

R

∞
0
dte−

1

3
t3þzt, and rewriting it as

Hi
�

−izð3iaÞ−1

3

�

¼ ð3iaÞ13 1
π

Z

∞

0

dse−iðzþas2Þs for a > 0;

ð36Þ

it is then obvious that the propertime integration in Eq. (33)

can be carried out explicitly and represented in terms of

HiðzÞ and derivatives thereof; we use the notation

Hi0ðzÞ ¼ dHiðzÞ=dz. In turn, for 1 ≤ d ≤ 3 Eq. (33) can

be expressed as

πdT ¼ −
α

6

1

Γ
�

d
2

�

Z

1

0

dνν2ð3 − ν2Þ
�

4

1 − ν2

�

2

3

Z

∞

0

dt

t

t
d
2

ð1þ tÞ23
�

1þ d

2
t
�

�

2ei
π
3

k2

4m2
χ
−2

3

0
HiðρÞ þ 1

3

�

4

1 − ν2

�

1

3Hi00ðρÞ
�

ð37Þ

and

	

π̃dFF

π̃d⋆F⋆F




¼ α

6

e−i
π
3

Γ
�

d
2

�m2χ
2

3

0

Z

1

0

dν
�

4

1 − ν2

�

1

3

Z

∞

0

dt

t

t
d
2

ð1þ tÞ23

	

3þ ν2

2ð3 − ν2Þ




Hi0ðρÞ; ð38Þ

1
Here, F

μν
0

denotes the field strength tensor of a constant crossed field of amplitude E0.
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where the argument of Scorer’s function and its derivatives

depends on both parameters ν and t to be integrated over,

and is given by

ρ ¼ e−i
2π
3

�

1þ t

χ0

4

1 − ν2

�

2

3

ϕ0: ð39Þ

At this point, we also emphasize that the uniform

constant field (d ¼ 0) results can be represented in a

form very similar to those for d > 0 given in Eqs. (37)–

(39). They can be recovered from these expressions by

omitting the integral over t,
R

∞
0
dt → 1, then setting

td=2−1=Γðd=2Þ → 1, and finally identifying t → 0 in all

the other terms. Aside from two multiplicative factors of

k2=ð4m2Þχ−2=3
0

and χ
2=3
0

, respectively, the entire dependence

of Eqs. (37) and (38) on the field amplitude and the

momentum is encoded in the argument ρ of Scorer’s

function. This considerably simplifies the determination

of the weak and strong field behavior discussed below.

Clearly, the weak field limit amounts to χ0 ≪ 1 and thus

follows from an expansion of Eqs. (37) and (38) for ρ→ ∞.

In turn, the corresponding result can be readily obtained

from the power series of Scorer’s function HiðρÞ for

large arguments (Ref. [27]: 9.12.27); the power series for

Hi0ðρÞ and Hi00ðρÞ follow by differentiation. Given that

4j1þ k2=ð4m2Þj=χ2=3
0

≫ 1 holds, the condition jρj ≫ 1 is

fulfilled for all relevant values of the integration parameters

0 ≤ ν ≤ 1 and 0 ≤ t ≤ ∞. Therewith, we immediately

obtain the following all-order perturbative weak field

expansions,

πdT ¼ −
2α

π

X

∞

n¼1

ð3n − 1Þ!
�

Γ

�

2n − d
2

�

þ d
2
Γ

�

2n − 1 − d
2

��

48nΓð2nÞΓðnÞ

×

Z

1

0

dν
ν2ð3 − ν2Þð1 − ν2Þ2n−1

ϕ3n−2
0

�

1

3
þ k2

4m2

1 − ν2

ϕ3

0

1

2ð3n − 2Þð3n − 1Þ

�

χ2n
0

ð40Þ

and

	

π̃dFF

π̃d⋆F⋆F




¼ −
2α

π
m2
X

∞

n¼1

ð3n − 2Þ!Γ
�

2n − d
2

�

48nΓð2nÞΓðnÞ

Z

1

0

dν
ð1 − ν2Þ2n−1

ϕ3n−1
0

	

3þ ν

2ð3 − νÞ




χ2n
0
: ð41Þ

Similarly as in Eq. (12) above, these weak field expansions start with terms ∼ðeE0Þ2 and contain only even powers of eE0.

Correspondingly, and in line with expectations, for the real part of the polarization tensor in the weak field limit in Eqs. (40)

and (41) the only effect of the inhomogeneity is a d dependent modification of the expansion coefficients We emphasize that

the integrations over ν in Eqs. (40) and (41) could in principle be carried out and be expressed in terms of hypergeometric

functions. As this does not come with any new insights we prefer to leave it unperformed for general kinematics. On the

other hand, for on-shell photons with k2 ¼ 0we have ϕ0 → 1 and the integrations over ν simplify significantly. In this limit,

they can be readily evaluated and yield the following compact expressions:

πdT jk2¼0 ¼ −
2α
ffiffiffi

π
p
X

∞

n¼1

1

4

ð3n − 1Þð3n − 1Þ!
h

Γ

�

2n − d
2

�

þ d
2
Γ

�

2n − 1 − d
2

�i

48nΓ

�

2nþ 5

2

�

ΓðnÞ
χ2n
0

ð42Þ

and

	

π̃dFF

π̃d⋆F⋆F


�

�

�

�

k2¼0

¼ −
2α
ffiffiffi

π
p m2

X

∞

n¼1

ð3n − 2Þ!Γ
�

2n − d
2

�

48nΓ

�

2nþ 3

2

�

ΓðnÞ

	

3nþ 1

6nþ 1




χ2n
0
: ð43Þ

The perturbative weak field expansions for k2 ¼ 0 given in Eqs. (42) and (43) clearly do not feature any imaginary parts.

However, even for k2 ¼ 0 the components of the photon polarization tensor in a crossed field are known to generically

feature manifestly nonperturbative imaginary parts. With the help of the asymptotic expansion for HiðzÞ given in formula

9.12.29 of Ref. [27] that also accounts for a contribution that cannot be exclusively represented in terms of a power series in

1=z, the latter can be easily extracted from Eqs. (37) and (38). Using formula 9.12.29 of Ref. [27] for HiðzÞ and determining

the analogous representations for Hi0ðzÞ and Hi00ðzÞ therefrom by differentiation, one finds that precisely the nonpower
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series contributions constitute the imaginary parts of Eqs. (37) and (38); to this end note that ei
π
3ρ−1=4 ∼ e−i

π
3ρ1=4 ∼ ρ3=4 ∼ i

while ðρ=ϕ0Þ3=2 is real-valued. Upon limiting ourselves to the most relevant limit of on shell photons with k2 ¼ 0, we first

substitute ð1þ tÞ=ð1 − ν2Þ → t and make use of the fact that the integration domain of the resulting double integral can be

reexpressed as
R

1

0
dν
R

∞

1=ð1−ν2Þ dt ¼
R

∞
1
dt
R

ffiffiffiffiffiffiffiffiffi

1−1=t
p
0

dν. With the additional substitution tð1 − ν2Þ→ ν we then obtain

ImfπdTgjk2¼0 ¼
α

3
ffiffiffiffiffiffi

6π
p 1

Γ
�

d
2

�

X

∞

n¼0

cnð−1Þn
Z

∞

1

dt

t

Z

t

1

dν
�

1 −
ν

t

�

1

2

�

2þ ν

t

� ðν − 1Þd2
ν
2

3

�

1

ν − 1
þ d

2

��

3

8

χ0

t

�

n−1

2

e
−8

3

t
χ0 ð44Þ

and

Im

	

π̃dFF

π̃d⋆F⋆F


�

�

�

�

k2¼0

¼ −
α

3
ffiffiffi

6
p m2

1

Γ

�

3þd
2

�

X

∞

n¼0

c̃nð−1Þn
Z

∞

1

dt

	 ð4þ 3dÞt − 1

ð4þ 6dÞtþ 2


 ðt − 1Þd−12
t
3

2

�

3

8

χ0

t

�

nþ1

2

e
−8

3

t
χ0 : ð45Þ

Here, the expansion coefficients are given by

c0 ¼ 1; c1 ¼ u1 and cn ¼ un − 2ðn − 1Þun−1 þ
�

5

36
þ ðn − 1Þðn − 2Þ

�

un−2 for n ≥ 2;

c̃0 ¼ 1 and c̃n ¼ un þ
�

5

6
− n

�

un−1 for n ≥ 1; ð46Þ

with (Ref. [27]: 9.7.1)

u0¼1 and un¼
ð2nþ1Þð2nþ3Þð2nþ5Þ���ð6n−1Þ

216nn!

for n≥1: ð47Þ

We emphasize that in Eq. (45) the integration over ν could

even be carried out explicitly in terms of elementary

functions, leaving us with a single parameter integral to

be performed. The resulting expression (45) is even valid

for the case of d ¼ 0 and thus holds for field amplitude

profiles (2) with 0 ≤ d ≤ 3 inhomogeneous directions. In

fact, also the integration over t in Eq. (45) can be taken and
expressed in terms of the Whittaker hypergeometric func-

tion via formula 3.383.4 of Ref. [32], which then can be

expanded for χ0 ≪ 1 with the help of Ref. [32]: 9.383.4.

This yields the compact expression,

Im

	

π̃dFF

π̃d⋆F⋆F


�

�

�

�

k2¼0

¼ −

ffiffiffi

2

3

r

αm2

	

1

2




�

3

8
χ0

�

1þd
2

× e
−8

3

1

χ0 ½1þOðχ0Þ�; ð48Þ

that clearly recovers the well-known d ¼ 0 result. Alter-

natively the result in Eq. (48) can be readily obtained by

performing a Taylor expansion of the prefactor of the

exponential function in the integrand of Eq. (45) about

t ¼ 1 prior to carrying out the integration; this is justified

because the strong exponential damping with t for χ0 ≪ 1

ensures that the main contribution of the integral over t

arises from the vicinity of its lower bound. A similar

strategy can be adopted to extract the leading contribution

to Eq. (44) for χ0 ≪ 1: To this end, we first expand the

integrand of the double integral in Eq. (44) about ν ¼ t to

leading order, i.e., Oððt − νÞ1=2Þ and perform the integra-

tion over ν. It is immediately obvious that higher order

contributions comewith additional powers of t − 1 and thus

only give rise to subleading terms in the subsequent

integration over t. The latter one is carried out along the

lines just discussed as an alternative route to Eq. (48). This

results in

ImfπdTgjk2¼0¼
ffiffiffi

2

3

r

α

3
ffiffiffi

π
p

Γ

�

3þd
2

�

Γ

�

d
2

�

�

3

8
χ0

�

1þd
2e

−8

3

1

χ0 ½1þOðχ0Þ�:

ð49Þ

Note that Γð3þd
2
Þ=Γðd

2
Þjd¼0 ¼ 0, such that for χ0 ≪ 1 and

k2 ¼ 0 there is no contribution scaling as ∼χ0 to the

imaginary part of πT in a uniform constant field. From

Eqs. (48) and (49) we infer that, as opposed to its real part,

the imaginary part of the polarization tensor for weak

crossed fields evaluated at k2 ¼ 0 shows a pronounced

dependence on the number of inhomogeneous directions of

the field inhomogeneity (2). While the overall nonpertur-

bative exponential suppression remains unaffected by the

dimension d of the inhomogeneity, in essence the imagi-

nary part gets additionally suppressed by a factor of

ð3χ0=8Þ1=2 ≪ 1 for each increase of d → dþ 1.

MARMIER, SEEGERT, and KARBSTEIN PHYS. REV. D 111, 016005 (2025)

016005-12



Finally, we turn to the strong field limit χ0 ≫ 1 of the

polarization tensor in the special case of k2 ¼ 0. For this

analysis it is helpful to first rewrite Eqs. (37) and (38)

specialized to k2 ¼ 0, using the substitutions introduced

right above Eq. (44). However, after having implemented

these substitutions, here we additionally rescale the inte-

gration variable t=χ0 → t such as to render ρ0 independent

of χ0. Therewith, we obtain

πdT jk2¼0 ¼ −
α

9
χ

1

3
þd

2

0

1

Γ

�

d
2

�

Z

∞

1

χ0

dt

t
Hi00ðρ0Þ

Z

t

1

χ0

dν

�

1 − ν
t

�

1

2

�

2þ ν
t

��

ν − 1

χ0

�d
2
−1

ν
2

3

	

1

χ0
þ d

2

�

ν −
1

χ0

�


ð50Þ

and

	

π̃dFF

π̃d⋆F⋆F


�

�

�

�

k2¼0

¼ −

ffiffiffi

π
p

α

6
m2χ

d
2

0

1

Γ

�

3þd
2

�

Z

∞

1

χ0

dt

t

�

t − 1

χ0

�d−1
2

t
1

2

Hi0ðρ0Þ
ρ0

( ð4þ 3dÞt − 1

χ0

ð4þ 6dÞtþ 2

χ0

)

; ð51Þ

with

ρ0 ¼ e−i
2π
3 ð4tÞ23: ð52Þ

Similarly as for the imaginary part in Eq. (45) above, the

integration over ν in Eq. (51) could once again be

performed explicitly in terms of elementary functions,

and the resulting expression also holds for d ¼ 0. We

remark that the integral over ν in Eq. (50) can also be

carried out and expressed via hypergeometric functions.

However, as this representation is not particularly instruc-

tive, we refrain from giving it here.

Because their representation is considerably simpler, we

first extract the leading strong field behavior of π̃dFF and

π̃d⋆F⋆F. To this end, in a first step we introduce an auxiliary

parameter c fulfilling 1=χ0 ≪ c ≪ 1 to split the integral in

Eq. (51) into the two domains 1=χ0 ≤ t ≤ c and c < t ≤ ∞.

By using the Maclaurin series of Hi0ðρ0Þ (Ref. [27]:

9.12.18) in the former, it is easy to verify that its leading

contribution for χ0 ≫ 1 scales as χ
2=3
0

. At the same time, the

leading contribution of the latter clearly scales as χ
d=2
0

. In

turn, we have established that the strong field limit of

Eq. (51) scales as χ
2=3
0

for d < 4=3 and as χ
d=2
0

for d > 4=3.

Upon replacing the derivative of Scorer’s function in

Eq. (51) by its leading term Hi0ðρ0Þ → Γð2=3Þ=ð31=3πÞ,
for d < 4=3 the integral over the full interval 1=χ0 ≤ t ≤ ∞

remains finite and can be evaluated in terms of elementary

functions. This yields the following explicit result for the

relevant contribution ∼χ
2=3
0

:

	

π̃dFF

π̃d⋆F⋆F


�

�

�

�

k2¼0

→

χ0≫1

αm2χ
2

3

0

6
2

3Γ

�

2

3

�

Γ

�

2

3
− d

2

�

7
ffiffiffi

π
p

Γ

�

1

6

� 2e−i
π
3

	

2

3




for d < 4=3: ð53Þ

On the other hand, the contribution ∼χ
d=2
0

for d > 4=3 follows from Eq. (51) by taking the limit 1=χ0 → 0 in the integral,

which also yields a manifestly finite expression. Correspondingly, we have

	

π̃dFF

π̃d⋆F⋆F


�

�

�

�

k2¼0

→

χ0≫1

−

ffiffiffi

π
p

α

6
m2χ

d
2

0

1

Γ

�

3þd
2

�

Z

∞

0

dt

t
t
d
2

Hi0ðρ0Þ
ρ0

	

4þ 3d

4þ 6d




¼ αm2χ
d
2

0

Γ

�

3d
4
− 1

�

Γ

�

1 − d
4

�

4
ffiffiffi

π
p ð4

ffiffiffi

3
p

Þd2Γ
�

3þd
2

� e−i
π
4
d

	

4þ 3d

4þ 6d




for d > 4=3; ð54Þ

where the integral over t could be straightforwardly evaluated analytically by expressing the derivative of Scorer’s function
in terms of its integral representation via Eq. (36); upon performing the integration over t, the integration over s can be easily

taken. In summary, we showed that the strong field limits of π̃dFF and π̃d⋆F⋆F scale as ∼χ
2=3
0

in both constant crossed fields
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and crossed fields with a single inhomogeneous direction

along which the field features a Lorentzian amplitude

profile (2). For Lorentzian crossed field inhomogeneities

with 2 ≤ d ≤ 3 inhomogeneous directions the strong field

scaling is found to be enhanced to ∼χ
d=2
0

and thus features

an explicit dependence on the dimension of the inhomo-

geneity. We also determined the associated numerical

coefficients depending on d.
Next, we aim at a similar analysis for the strong field

limit of πdT . To this end, we first note that with the

substitution 1=ð1 − ν2Þ=χ0 → t the result for d ¼ 0 that

follows with the replacements detailed below Eq. (39) from

Eq. (37) can be compactly represented as

πd¼0
T jk2¼0 ¼ −

2α

9

Z

∞

1

χ0

dt

t

�

t − 1

χ0

�

1

2

�

tþ 1

2χ0

�

t
3

2

Hi00ðρ0Þ

→

χ0≫1

−
2

9

α

π
ln χ0; ð55Þ

where the first line still holds for generic values of χ0. The

limit provided in the second line of Eq. (55) can be

straightforwardly extracted by using the auxiliary param-

eter c introduced in the paragraph below Eq. (52) and

employing the Mclaurin series of Hi00ðρ0Þ in the relevant

domain 1=χ0 ≤ t ≤ c; the latter follows from formula

9.12.18 of Ref. [27] by differentiation. Equation (55)

implies that, similar to its magnetic/electric field analogue

in Eq. (18), the leading strong field behavior of πd¼0

T is

characterized by a logarithmic scaling: in the present case

we obviously have limχ0→∞ πd¼0
T ¼ −αβ1 ln χ

2=3
0

[33].

On the other hand, applying the same strategy as used for

the determination of the strong field scaling of π̃dFF and

π̃d⋆F⋆F above, Eq. (50) allows us to establish that the strong

field limit of πdT scales as χ
1=3þd=2
0

for d ≥ 1. In turn, for

d ≥ 1 the leading strong field behavior of πdT can be

obtained form Eq. (50) by once again taking the limit

1=χ0 → 0 in the integral, yielding

πdT jk2¼0→

χ0≫1

−
α

9
χ
1

3
þd

2

0

d
2

Γ

�

d
2

�

Z

∞

0

dt

t
Hi00ðρ0Þ

Z

t

0

dν
�

1 −
ν

t

�

1

2

�

2þ ν

t

�

ν
d
2
−2

3

¼ −αχ
1

3
þd

2

0

3d

2þ 3d

Γ

�

7

3
þ d

2

�

Γ

�

1

2
þ 3d

4

�

Γ

�

5

6
− d

4

�

4
ffiffiffi

π
p ð4

ffiffiffi

3
p

Þ13þd
2Γ

�

d
2

�

Γ

�

17

6
þ d

2

� e
−iπ

4

�

2

3
þd
�

: ð56Þ

While the integration over ν in Eq. (56) could be readily

taken and be expressed in terms of gamma functions, to

perform the t integration we used the same strategy as in

Eq. (54) and reexpressed the second derivative of Scorer’s

function in terms of its integral representation via Eq. (36)

in an intermediate step. A comparison of Eqs. (53), (54) and

(55), (56) unveils that whereas π̃dFF and π̃d⋆F⋆F dominate

over πdT in the strong field limit for d ¼ 0, interestingly this

behavior is reversed for d ≥ 1 where the dominant con-

tribution arises from πdT ∼ χ
ð2þ3dÞ=6
0

.

C. Physical implications

The results for the photon polarization tensor in an

electromagnetic field inhomogeneity with Lorentzian

amplitude profile (2) derived in Sec. II have several direct

consequences for observables to be studied in quantum

vacuum experiments. To be specific, in this section we only

feature a selection of effects that can be reliably studied

within the limitations of both approaches (i) and (ii) invoked

in Sec. II.

In general, the real part of the polarization tensor encodes

dispersive effects on photon propagation and its imaginary

part absorptive effects. A prominent example of the former

are different polarization eigenmodes that are effectively

imprinted onto the vacuum by the background field.

These generically come with distinct indices of refraction

for probe photons and lead, e.g., to the experimental

signature of vacuum birefringence. On the other hand, a

well-known absorptive effect is the background-field-

assisted conversion of probe photons into real electron-

positron pairs inherently coming with a loss of probe

photons.

One can easily convince oneself that the normalized

four-vectors ϵ
μ

ð1ÞðkÞ ≔ ðkFÞμ=
ffiffiffiffiffiffiffiffiffiffiffiffi

ðkFÞ2
p

and ϵ
μ

ð2ÞðkÞ ≔
ðk⋆FÞμ=

ffiffiffiffiffiffiffiffiffiffiffiffi

ðkFÞ2
p

form a basis for the photon polarizations

transverse to kμ for k2 ¼ 0, where ðk⋆FÞ2 ¼ ðkFÞ2;
cf., e.g., Ref. [34]. These vectors are independent

of the amplitude profile of the background field by

construction and depend only on its direction ˆκ⃗. They

fulfill ϵðpÞμðkÞϵμðpÞðkÞ ¼ 1 and kμϵ
μ

ð1ÞðkÞ ¼ kμϵ
μ

ð2ÞðkÞ ¼
ϵð1ÞμðkÞϵμð2ÞðkÞ ¼ 0. In line with that, they also span the

physical transverse photon polarizations at zero back-

ground field. The polarization mode characterized by

ϵ
μ

ð1ÞðkÞ is polarized perpendicular to the one associated

with ϵ
μ

ð2ÞðkÞ. Hence, a generic transverse monochromatic

positive energy photon field solving the linear Maxwell

equations can be represented as
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aμðkÞ ¼ 1

2
fa1ϵμð1ÞðkÞ þ a2ϵ

μ

ð2ÞðkÞgeikxjk2¼0; ð57Þ

with amplitudes a1;2, that are real (complex) valued for

linear (elliptic) polarizations. Clearly, also the above

expressions for the photon polarization tensor in a purely

magnetic or electric field in Eqs. (3), (7) and a crossed field

in Eqs. (28), (32) are already written in this basis. By

definition, a monochromatic plane wave is infinitely

extended in the directions perpendicular to its propagation

direction k⃗ and lasts infinitely long. Correspondingly, it

always samples the full extent of the field inhomogeneity

transverse to k⃗.
Specifically in the strict forward limit, where k0μ ¼ kμ,

the polarization tensor is diagonal in this basis, and the only

nonvanishing polarization matrix elements for the crossed

field case are

(

ϵ
μ

ð1ÞðkÞΠμνð−k; kÞϵνð1ÞðkÞ
ϵ
μ

ð2ÞðkÞΠμνð−k; kÞϵνð2ÞðkÞ

)�

�

�

�

�

k2¼0

¼ ð2πÞ4−dδð4−dÞðk ¼ 0Þ
�

Y

d

i¼1

wi

��π

4

�d
2

	

π̃dFF

π̃d⋆F⋆F




jk2¼0:

ð58Þ

We emphasize that while clearly only the components of

the polarization tensor labeled by p∈ fFF;⋆ F⋆Fg exhibit

a direct coupling to real transverse on shell photons the

study of the p ¼ T component in Sec. II is also very

relevant because it encodes important information about the

renormalization group properties of the theory; see also the

corresponding comment in the paragraph below Eq. (6).

Apart from an overall normalization, the expressions in

Eq. (58) amount to the background field dependent

asymptotic forward scattering amplitudes Tϵ0ϵðkÞ [35] for

probe photons of wave vector kμ ¼ ωð1; k⃗=jk⃗jÞ in the

polarization basis spanned by ϵ
μ

ð1Þ and ϵ
μ

ð2Þ. To be precise,

in our conventions (and at leading, linear order in α) we

have [35,36]

Tϵ0ϵðkÞ ¼ −
ϵ0μðkÞΠμνð−k; kÞϵνðkÞ

2ωV
ð3Þ
⊥

�

�

�

�

k2¼0

: ð59Þ

Here, V
ð3Þ
⊥

denotes the three-dimensional space-time vol-

ume perpendicular to k⃗; ϵ0μðkÞ and ϵμðkÞ are normalized

polarization four-vectors transverse to kμ. Also recall that

the overall factor of ð2πÞ4−dδð4−dÞðk ¼ 0Þ in Eq. (58)

amounts to the (4 − d)-dimensional space-time volume

Vð4−dÞ associated with the homogeneous directions of

the background field; cf. the paragraph below Eq. (11).

While the real part of Eq. (59) can be attributed to

dispersive effects, its imaginary part describes an

photon-absorbing property of the quantum vacuum that

can be related to the effect of electron positron pair-

production. A comparison of Eqs. (3) and (28) unveils

that the analogous results for a purely magnetic/electric

field pointing in direction ˆκ⃗ can be obtained from Eq. (58)

by substituting π̃dp → ðkFÞ2=ð2F Þπdp ¼ signðF Þðk⃗ × ˆκ⃗Þ2πdp
with p∈ fFF; ⋆F⋆Fg, where the latter identity holds only

for k2 ¼ 0. Recall that in our conventions signðF Þ is

positive (negative) for the purely magnetic (electric)

field case.

Using notations closely paralleling those of Ref. [35], the

associated ϵμðkÞ → ϵ0μðkÞ forward scattering probability (at
quadratic order in α) follows from Eq. (59) as

Pϵ0ϵðkÞ ¼ jTϵ0ϵðkÞj2: ð60Þ

A nonvanishing polarization-flip probability can be attrib-

uted to a birefringence property of the quantum vacuum in

the presence of the background field [37–39]. On the other

hand, the imaginary part of the nonflip ϵμðkÞ→ ϵμðkÞ
scattering amplitude is related to the total probability of

electron-positron pair production induced by ϵμðkÞ-polar-
ized probe-photons of wave vector kμ ¼ ωð1; k⃗=jk⃗jÞ via the
optical theorem (cf., e.g., [24,40]). At linear order in α, we

have

PϵðpairÞ ¼ 2ImfTϵϵðkÞg: ð61Þ

At this point, we remark that the explicit expressions for the

probabilities at leading order in α given below can be only

adopted in parameter regimes where these are sufficiently

small: for fields of sufficiently large strength or frequency

electron-positron pair production becomes so large that

field-depletion and backreaction effects of the created

charges on the field can no longer be ignored.

In the linearly polarized case it is particularly convenient

to represent Eq. (57) in terms of a single amplitude a and an

angle β that parametrizes the possible linear polarizations.

To this end one identifies a1 ¼ a cos β and a2 ¼ a sin β.

The associated polarization vector is then given by

ϵμðkÞ ¼ ϵ
μ

ð1ÞðkÞ cos β þ ϵ
μ

ð2ÞðkÞ sin β, and that for the per-

pendicularly polarized mode by ϵ
μ
⊥
ðkÞ ¼ −ϵ

μ

ð1ÞðkÞ sin βþ
ϵ
μ

ð2ÞðkÞ cos β. In this basis we generically encounter both

background field dependent polarization flip and no-flip

amplitudes. These are easily inferred from Eqs. (58) and

(59). The former is given by

Tϵ⊥ϵ
ðkÞ ¼ Vð4−dÞ

V
ð3Þ
⊥

�

Y

d

i¼1

wi

��

π

4

�d
2
sinð2βÞ

2

π̃dFF − π̃d⋆F⋆F
2ω

�

�

�

�

k2¼0

;

ð62Þ

and the latter by

IMPACT OF BACKGROUND FIELD LOCALIZATION ON VACUUM … PHYS. REV. D 111, 016005 (2025)

016005-15



TϵϵðkÞ¼−
Vð4−dÞ

V
ð3Þ
⊥

�

Y

d

i¼1

wi

��π

4

�d
2
π̃dFFcos

2βþ π̃d⋆F⋆Fsin
2β

2ω

�

�

�

�

k2¼0

:

ð63Þ

While these expressions can be analyzed for arbitrary

probe-photon propagation directions k⃗, for simplicity it is

most convenient to assume that k⃗ is aligned with one of the

coordinate axes. For directions perpendicular to k⃗ in which

the background field (2) is homogeneous the corresponding

extents in the ratio Vð4−dÞ=Vð3Þ
⊥

cancel out. Conversely, if

the background field is inhomogeneous in such a direction

we are left with a factor of wi=Li from the ratio

ð
Q

d
i¼1

wiÞ=Vð3Þ
⊥
. Here, Li ≫ wi measures the—formally

infinite—extent of the probe in i direction. Similarly, a

factor of Li from Vð4−dÞ is retained if k⃗ points in a

homogeneous direction i, and a factor of wi out of

ðQd
i¼1

wiÞ for an inhomogeneous propagation direction.

Subsequently, we provide explicit results for the polari-

zation-flip probability Pϵ⊥ϵ
ðkÞ in Eq. (60) for linearly

polarized probe photons and the associated electron-posi-

tron pair production probability (61). Both of these quan-

tities are—at least in principle—accessible in experiment.

While the polarization-flip phenomenon in the weak field

limit can be attributed to a dispersive property of the

quantum vacuum subjected to the external field, in the

strong field limit it typically arises from the combination of

dispersive and absorptive effects.

First, we focus on the case of a crossed background field

with amplitude profile (2). We note that for on shell

photons as considered here and in the remainder of this

article, the quantum nonlinear parameter of the peak field

introduced in Eq. (34) can be recast into

χ0 ¼
eE0

m2

ω

m
ð1 − cos θcollÞ; ð64Þ

with collision angle θcoll defined as ˆκ⃗ · k⃗=jk⃗j ¼ cos θcoll.

The polarization-flip probability for linearly polarized

probe photons in weak crossed fields fulfilling χ0 ≪ 1

can be obtained straightforwardly by plugging the leading

order result in Eq. (43) into Eqs. (60) and (62). This yields

Pϵ⊥ϵ
ðkÞ ¼

�

Vð4−dÞ

V
ð3Þ
⊥
ƛC

Y

d

i¼1

wi

�

2�π

4

�

d
sin2ð2βÞ

Γ
2

�

2 − d
2

�

3600π2

× α2
�m

ω

�

2

χ4
0
½1þOðχ2

0
Þ�; ð65Þ

for 0 ≤ d ≤ 3. The results in the complementary parameter

regime of χ0 ≫ 1 follow from Eqs. (53), (54) and are

given by

Pϵ⊥ϵ
ðkÞjd¼0→

χ0≫1

�

Vð4Þ

V
ð3Þ
⊥
ƛC

�

2

sin2ð2βÞ 6
4

3Γ
4
�

2

3

�

Γ
2
�

5

6

�

784π3
α2
�m

ω

�

2

χ
4

3

0
;

Pϵ⊥ϵ
ðkÞjd¼1→

χ0≫1

�

Vð3Þw1

V
ð3Þ
⊥
ƛC

�

2

sin2ð2βÞ 6
4

3Γ
2
�

2

3

�

784
α2
�m

ω

�

2

χ
4

3

0
;

Pϵ⊥ϵ
ðkÞjd¼2→

χ0≫1

�

Vð2Þw1w2

V
ð3Þ
⊥
ƛC

�

2

sin2ð2βÞ π2

3072
α2
�m

ω

�

2

χ2
0
;

Pϵ⊥ϵ
ðkÞjd¼3→

χ0≫1

�

Vð1Þw1w2w3

V
ð3Þ
⊥
ƛC

�

2

sin2ð2βÞ 3
5

2π2Γ4ð1
4
Þ

226
α2
�m

ω

�

2

χ3
0
: ð66Þ

Interestingly the scaling of the polarization-flip probability with χ0 remains the same for 0 ≤ d ≤ 1, but changes and

becomes more pronounced for larger values of d.
At the same time, Eqs. (48), (61), and (63) imply that in the crossed field case the pair production probability in the weak

field limit χ0 ≪ 1 induced by linearly polarized probe photons can be expressed as

PϵðpairÞ ¼
Vð4−dÞ

V
ð3Þ
⊥
ƛC

 

Y

d

i¼1

wi

!

ð1 − cos θcollÞðcos2β þ 2sin2βÞ
ffiffiffi

6
p

8
α
eE0

m2

�π

4

3

8
χ0

�d
2e

−8

3

1

χ0 ½1þOðχ0Þ� ð67Þ

for 0 ≤ d ≤ 3. While the overall exponential suppression of the effect remains independent of d, Eq. (67) clearly implies

that the more pronounced the localization of the background field, the smaller the pair yield for fixed χ0. At this point we

emphasize that this result is also of interest and importance for studies of nonlinear Breit-Wheeler pair production [41,42] in

the collision of gamma rays with a focused intense laser beam; cf., e.g., [43,44]. While laser beams are reasonably well-

modeled as crossed fields,—especially transverse to their propagation direction—these typically feature field profiles
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different from Lorentzian ones. Nevertheless, similar localization effects are to be expected also there; cf., e.g., Refs. [45–

47] and references therein. On the other hand, from Eqs. (53) and (54) we obtain the pair production probabilities in the

strong field limit,

PϵðpairÞjd¼0→

χ0≫1 Vð4Þ

V
ð3Þ
⊥
ƛC

ð2cos2β þ 3sin2βÞ 3
5

3Γ
4
�

2

3

�

14π2
α
m

ω
χ
2

3

0
;

PϵðpairÞjd¼1→

χ0≫1 Vð3Þw1

V
ð3Þ
⊥
ƛC

ð2cos2β þ 3sin2βÞ 6
7

6Γ
�

2

3

�

14
ffiffiffi

2
p α

m

ω
χ

2

3

0
;

PϵðpairÞjd¼2→

χ0≫1 Vð2Þw1w2

V
ð3Þ
⊥
ƛC

ð5cos2β þ 8sin2βÞ π
ffiffiffi

3
p

72
α
m

ω
χ0;

PϵðpairÞjd¼3→

χ0≫1 Vð1Þw1w2w3

V
ð3Þ
⊥
ƛC

ð13cos2β þ 22sin2βÞ 3
1

4πΓ2
�

1

4

�

6144
ffiffiffi

2
p α

m

ω
χ
3

2

0
: ð68Þ

These expressions show a similar dependence on d as Eq. (66). In summary, we inferred that whereas in the perturbative

limit the scaling of the polarization-flip probabilities (65) with χ0 remains unaltered relative to the reference case with d ¼ 0

and only the coefficients become d dependent, the scaling of the nonperturbative results (66)–(68) changes notably with d.
Moreover, in passing we note that our results for the crossed field case with χ0 ≫ 1 also touch upon questions relevant in the

context of the Ritus-Narozhny conjecture [7,48,49]: They indicate that even in weakly localized crossed fields the

strong field scaling at one loop may significantly deviate from the constant field (d ¼ 0) behavior Tϵ0ϵ ∼ αχ
2=3
0

at

amplitude level.

Second, we discuss the analogous results for the purely magnetic or electric field case with the additional restriction on

low-frequency ω=m ≪ 1 probe photons. The corresponding perturbative weak field eE0=m
2 ≪ 1 result follows from

Eqs. (12), (60), and (62) and reads

Pϵ⊥ϵ
ðkÞ ¼

 

Vð4−dÞ

V
ð3Þ
⊥
λ

Y

d

i¼1

wi

!

2
�π

4

�

d
sin4θFsin

2ð2βÞ
Γ
2

�

2 − d
2

�

900
α2
�eE0

m2

�

4

�

1þO

��

eE0

m2

�

2
��

: ð69Þ

Here, λ ¼ 2π=ω is the probe wavelength and θF ¼ ∠ðk⃗; ˆκ⃗Þ the angle between the probe-photon propagation direction k⃗ and
the direction ˆκ⃗ of the magnetic or electric field, respectively; cf. the corresponding discussion in the second paragraph

below Eq. (2). We note that the d dependence of Eq. (69) is exactly the same as that of Eq. (65). This is in line with

expectations as in both cases the relevant contribution to the photon polarization tensor is quadratic in the coupling to the

background field. The results for the polarization-flip probability in the strong field limit eE0=m
2 ≫ 1 following from

Eqs. (18)–(21) read

Pϵ⊥ϵ
ðkÞjd¼0→

eE0

m2
≫1
�

Vð4Þ

V
ð3Þ
⊥
λ

�

2

sin4θFsin
2ð2βÞ 1

36
α2
�

eE0

m2

�

2

;

Pϵ⊥ϵ
ðkÞjd¼1→

eE0

m2
≫1
�

Vð3Þw1

V
ð3Þ
⊥
λ

�

2

sin4θFsin
2ð2βÞ π2

144
α2
�

eE0

m2

�

2

;

Pϵ⊥ϵ
ðkÞjd¼2→

eE0

m2
≫1
�

Vð2Þw1w2

V
ð3Þ
⊥
λ

�

2

sin4θFsin
2ð2βÞ π2

576
α2
�

eE0

m2

�

2

ln2
�

eE0

m2

�

;

Pϵ⊥ϵ
ðkÞjd¼3→

eE0

m2
≫1
�

Vð1Þw1w2w3

V
ð3Þ
⊥
λ

�

2

sin4θFsin
2ð2βÞ 1

512

�

π

3
ζ

�

3

2

�

−
7

2π
ζ

�

7

2

��

2

α2
�

eE0

m2

�

3

: ð70Þ

Similar as for the crossed-field case in Eq. (66), the scaling of Eq. (70) with the background field remains unchanged for

0 ≤ d ≤ 1, but is enhanced for an increased number of inhomogeneous directions 2 ≤ d ≤ 3. We emphasize that Eqs. (69)

and (70) hold for both purely magnetic and electric background fields.

As detailed in Sec. II A, in an electric field, but not in a purely magnetic field, the photon polarization tensor develops a

nonvanishing imaginary part for on-shell probe photons in the low-frequency limit ω=m ≪ 1. From Eqs. (25), (61), and
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(63) we infer that in weak electric fields eE0=m
2 ≪ 1 the associated total probability of electron-positron pair production

stimulated by low-frequency photons can be expressed as

PϵðpairÞ ¼
Vð4−dÞ

V
ð3Þ
⊥
λ

�

Y

d

i¼1

wi

�

sin2θFcos
2β

π

16
α

�

1

4

eE0

m2

�d
2
−2

e
−m2

eE0
π

�

1þO

�

eE0

m2

��

: ð71Þ

In line with its crossed field analogue (67), Eq. (71) implies a reduction of the pair production probability with an increasing

number of inhomogeneous directions d. The analogous result in the strong field limit eE0=m
2 ≫ 1 readily follows from

Eq. (26), yielding

PϵðpairÞjd¼0→

eE0

m2
≫1 Vð4Þ

V
ð3Þ
⊥
λ
sin2θFsin

2β
2

3
α
eE0

m2
;

PϵðpairÞjd¼1→

eE0

m2
≫1 Vð3Þw1

V
ð3Þ
⊥
λ
sin2θFsin

2β
π

3
α
eE0

m2
;

PϵðpairÞjd¼2→

eE0

m2
≫1 Vð2Þw1w2

V
ð3Þ
⊥
λ

sin2θFsin
2β

π

6
α
eE0

m2
ln
eE0

m2
;

PϵðpairÞjd¼3→

eE0

m2
≫1 Vð1Þw1w2w3

V
ð3Þ
⊥
λ

sin2θF

�

21ζ

�

7

2

�

þ
�

8π2

3
ζ

�

3

2

�

− 7ζ

�

7

2

��

sin2β

�

1

4
5

2π
α

�

eE0

m2

�

3

2

: ð72Þ

The general trend of the behavior of the pair probabilities

(72) with d again resembles that of the associated polari-

zation flip probabilities (70). Notably the d ¼ 3 result

exhibits a distinctly different dependence on the probe

photon polarization parametrized by β: While the leading

strong-field terms in Eq. (72) for 0 ≤ d ≤ 2 vanish iden-

tically for β → 0, the d ¼ 3 contribution remains mani-

festly finite in this limit.

III. CONCLUSIONS AND OUTLOOK

In this work we analyzed the impact of a weak

localization of the background field on nonlinear quantum

vacuum signals probed by photons traversing this field. To

this end we considered two different background field

configurations, namely the case of a purely magnetic B⃗ or

electric E⃗ field pointing in a fixed direction, and a crossed

field fulfilling B⃗⊥ E⃗ and jB⃗j ¼ jE⃗j, where the directions of
B⃗ and E⃗ are once again fixed. The latter configuration can

be considered as a toy-model of a linearly polarized laser

field that does not resolve the modulation of the field with

the laser frequency.

Our study heavily relied on the possibility of explicit

analytical insights into the Heisenberg-Euler effective

action and the photon polarization tensor in a constant

electromagnetic field at one loop. As we pointed out in

detail, aiming at analytical insights into weakly localized

field configurations by using these results as starting point,

the specific structure of their propertime representations

suggests to focus on the study weakly localized field

configurations with Lorentzian amplitude profile (2).

This allowed us to construct relatively compact expressions

for the relevant one-loop photon polarization tensors in the

presence of background field inhomogeneities character-

ized by a Lorentzian amplitude profile and featuring

different numbers of inhomogeneous directions 0 ≤ d ≤ 3.

The resulting expressions are accurate at leading order in a

slowly varying field approximation and their complexity is

of the level of their constant-field analogues.

Our results for the magnetic/electric field case derived on

the basis of the Heisenberg-Euler effective action allow for

the analysis of generic probe photon scattering processes

but are by construction limited to the regime of low-energy

photons. On the other hand, those for the crossed field case

obtained from the photon polarization tensor are restricted

to the study of probe-photon forward scattering phenomena

but can be employed for arbitrarily large probe photon

momenta. In the present work, we studied both of these

results in full detail. Aside from their all-order perturbative

weak-field expansions, we mainly focused on parameter

regimes in which analytical insights are possible and the

coupling to the background field needs to be accounted for

in a manifestly nonperturbative way. Our main interest was

in the d dependence of the scaling of the different scalar

components constituting the respective expressions for the

photon polarization tensor with the peak field strength of

the Lorentzian amplitude profile (2) in these nonperturba-

tive parameter regimes.

As particular examples of physical signatures allowing to

make the studied effects, at least in principle, accessible in

experiment we discussed the vacuum-polarization-induced

polarization-flip phenomenon experienced by linearly
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polarized probe photons traversing the external electro-

magnetic field, and their polarization-sensitive absorption

in the background field, or equivalently, probe-photon

induced electron-positron pair production.

Our considerations could be extended in various ways.

We believe that a particularly interesting and prospective

avenue for future research would be to adopt a similar

approach towards the study of quantum vacuum processes

at higher-loop order.
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