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Impact of background field localization on vacuum polarization effects
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We aim at insights about how localization of the background field impacts nonlinear quantum vacuum
signatures probed by photons in purely magnetic, electric and crossed fields. The starting point of our study
are the one-loop results for the Heisenberg-Euler effective Lagrangian and the photon polarization tensor in
quantum electrodynamics (QED) evaluated in a uniform constant electromagnetic field. As is well known
and often employed, especially in the weak-field limit, within certain restrictions these results also allow for
the reliable analysis of vacuum polarization effects in slowly varying background fields. Here, our main
interest is in manifestly nonperturbative effects. To this end, we make use of the fact that for the particular
case of background field inhomogeneities of Lorentzian shape with 0 < d < 3 inhomogeneous directions
analytical insights are possible. We study the scaling of conventional nonlinear QED signatures, such as
probe-photon polarization flip and probe-photon induced electron-positron pair production, with relevant

parameters. Special attention is put on the d dependence of the considered effects.
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I. INTRODUCTION

Charged particle-antiparticle fluctuations give rise to
effective interactions between electromagnetic fields.
Within the Standard Model of particle physics these are
mainly governed by quantum electrodynamics (QED),
i.e., are driven by virtual electrons and positrons. The
fluctuations in particular affect the propagation of probe
photons (four-potential a*) sent through strong macro-
scopic electromagnetic fields (field strength tensor
F = F*) via the photon polarization tensor II**. The
latter encodes vacuum fluctuation mediated corrections to
photon propagation at linear order in the fine-structure
constant @ = e%/(4rx) and beyond; e >0 denotes the
elementary charge, and we use Heaviside-Lorentz units
with ¢ =f =¢,=1. In position space, the effective
action at quadratic order in a* relevant for the study
of probe photon propagation effects can be expressed
as [1,2]
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e = = [ d5fu(0r
—%/d4x’/d4xa”(x’)l'[””(x’,xF)a,,(x), (1)

with probe field strength tensor f*(x) = #a* — d“a*.
Here, the polarization tensor specifically mediates an—
in general nonlocal—interaction between in- and outgoing
probe photons. Its last argument indicates its dependence
on the background field F. In the low-energy regime we
have a ~ 1/137 < 1, suggesting that the one-loop con-
tribution linear in a constitutes the dominant fluctuation-
induced correction; see also the reviews [3-7] and
references therein.

Currently, only one-loop results for the photon polariza-
tion tensor in the presence of an external electromagnetic
field F are known explicitly, namely in uniform constant
[8] and plane wave [9,10] backgrounds. See also Ref. [11]
for a recent study of vacuum polarization effects in impul-
sive fields probed by on-shell photons. In momentum space
the photon polarization tensor is conventionally expressed
as TI"(k', k) =11"(k', k|F), where k' =k and k= k*
denote the four-momenta of the in and out going photon,
respectively; we use all-incoming conventions, i.e., four-
momenta in the argument of IT*(k’, k) coming with the
same sign are formally considered as incoming. We empha-
size that IT*(k’,k|F) does not feature any explicit x
dependence via F' = F(x) in inhomogeneous fields because
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its derivation involves an integration over x. The vacuum-
fluctuation-induced effective couplings to F(x) generically
break the translational invariance of the vacuum and thereby
result in a finite overlap between in and out states with
k'™ # k*. Moreover, these may change the polarization
properties of probe light because for two polarization vectors
e¢“(k), €| (k) fulfilling € (k)e, (k) = 0 the forward ampli-
tude €' (k)IT,, (—k, k)e* (k) can be nonvanishing.

Aside from the specific background field configurations
mentioned above, analytical insights into the one-loop
polarization tensor are possible (i) for slowly varying back-
ground fields of generic spatiotemporal structure, and photon
momenta that are much smaller than the electron mass
m=~511keV, ie. {|k*|,|k*|} < m for each component
labeled by u. Similarly, slowly varying fields are characterized
by typical frequency scales of variation v fulfilling |v| < m.
We emphasize that these encompass the subcategory of
weakly localized fields, under which we understand fields
that are slowly varying and—at least in one direction x;—
confined to a finite space-time interval, in the sense that the
field vanishes for x; = =o0. The corresponding result for the
photon polarization tensor [12] can be readily extracted from
the one-loop Heisenberg-Euler effective action in constant
fields [13—15]; for reviews see Refs. [16,17]. Itis correct up to
quadratic order in k’* ~ k* and at zeroth-order in v. Especially
for magnetic and electric fields this result allows for con-
trolled insights into both perturbative and manifestly non-
perturbative parameter regimes in the coupling to the
background field F. Moreover, (ii) in the special case where
the in an out momentum components equal each other, the
photon polarization tensor can be reliably analyzed for slowly
varying fields and arbitrary large values of the momentum
transfer. The restriction to k¥ = k* arises from the fact
that it is impossible to recover the full momentum
structure of I1*(k’, k|F)) by adopting a slowly varying field
approximation to the uniform constant field result
11#(k', k|F = const.) ~ (27)*6*) (k' 4 k), with Dirac delta
function &“(-) in four space-time dimensions. See
Refs. [18,19] and also the important clarification in
Ref. [20]. This approach (ii) is particularly relevant for the
study of the polarization tensor in slowly varying inhomo-

geneous crossed fields fulfilling [B| = |E| and B-E = 0
because in this case strategy (i) only provides access to the
perturbative weak-field result at quadratic order in F [12]. The
reason for this is that the scalar field invariants 7 = F,, F** /4
and G=F,*F"/4, with dual field strength tensor
*FM = eP?F , /2, vanish identically in crossed fields, such
that higher powers in F necessarily come with higher powers
of k¥ ~ k#.

In this work, we aim at analyzing how the localization of
the background field influences the scaling of the photon
polarization tensor with various parameters relative to the
well-studied constant-field results. See also Ref. [21] for a
study of the impact of a finite pulse duration in stimulated

laser pair production, and Ref. [22] for a study of finite size
effects on light-by-light scattering in the low-energy, weak-
field regime. To this end, we focus on parameter regimes
where reliable approximate results can be obtained via (i) and
(i1). To be specific, we limit our analysis to background field
inhomogeneities of Lorentzian shape with 0 < d < 3 inho-
mogeneous directions, for which closed-form calculations are
possible [18,23]; see Eq. (2) below for the explicit expression.
We are convinced that such a study is very relevant, because it
can provide us with important new insights in phenomena that
are inaccessible with constant-field and plane-wave studies.
This becomes particularly evident for electromagnetic fields
reaching near or above critical peak field strengths: especially
in infinitely extended, constant electromagnetic fields, the
regimes of perturbative weak and nonperturbative strong
fields are conventionally clearly separated and amount to two
complementary limits. Conversely, probe light sent through
localized inhomogeneous field configurations reaching non-
perturbative peak field strengths inevitably experience both
perturbative and nonperturbative field strengths. Hence, we
expect significant modifications in the strong-field scaling of
quantum vacuum phenomena affecting the propagation of
probe light.

Our article is organized as follows: In Sec. II we detail
our derivation of the photon polarization tensor in the
presence of a Lorentzian field inhomogeneity for the cases
(i) and (ii). In this context, we also extract approximate
results in various limits. Section II A focuses on either a
purely magnetic or electric field background, and Sec. II B
on a crossed-field configuration. Subsequently, in Sec. I1 C
we discuss the consequences of our findings on physical
signatures of quantum vacuum nonlinearity that are—at
least in principle—accessible in experiment. Finally, we
end with conclusions and a outlook in Sec. III. Our metric
convention is ¢** = diag(—1,1,1,1).

II. PHOTON POLARIZATION TENSOR

Our goal is to obtain analytical insights into the photon
polarization tensor IT*(k,k'|F(x)) in weakly localized
background fields characterized by a Lorentzian amplitude
profile,

&
=——0 >0, with 0<d<3. (2)
1+ 3 (%)

Here, d €N, counts the number of inhomogeneous direc-
tions, & is the peak field amplitude and w; is the full width at
half maximum (FWHM) in i direction. For weakly localized
background fields as considered throughout this work, by
definition we have w; > A, with reduced Compton wave-
length of the electron - = 1/m. Clearly, in four space-time
dimensions as considered here, a background field with d
inhomogeneous directions has 4 — d homogeneous direc-
tions. By construction, the uniform constant field result is

E(x)
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retained for d = 0. In the latter case the expression in Eq. (2)
reduces to £(x) = &.

To be specific, in this work we only study the cases
of either a purely magnetic B(x) = £ (x)K orelectric E(x) =

E(x )K field pointing in a fixed direction k. %, and a so-called
crossed field characterized by perpendicular electric an
magnetic fields featuring the same amplitude profile £(x)

such that ¥ = (E X E)/EZ amounts to a globally fixed

direction, respectively. Here, « denotes a unit vector. For
the purely magnetic or electric field case we exclusively
focus on the regime of low momentum transfers and work
out the exact expression for the polarization tensor at O(k?)
accessible via (i). On the other hand, for the crossed-field
configuration we resort to (ii). However, for completeness

|

H’w(—k/,k) /d4xe i(k—K')x |:<(k/k)g;w _k/ykv)n.T +

where 2F = F, F" /2 = (B* — E*) and the scalar func-

tions are given by

B ds _Lffs 1 coth s . 2 @)
= 27r s sinh2s s 3)°

a [ods _&’72_3 1 —2scoths+coths (5)
sinh?s s )

_a [eds o '”zzfs 1 coths n 2 coth
FxFxF = "5 o s sinh?s s 3 ot
(6)

The parameter s in Eqgs. (4)—(6) is generically referred to as
the propertime. For later reference we note that in the special
kinematic limit where k* = k* the tensor structure multi-
plying 77 in Eq. (3) becomes equal to (k*g" — k*k)=
K*PY’, with transverse projector P4 This is precisely the
structure of the Maxwell term in Eq. (1) in momentum space

because —§ [d*xf,, f* = (3354 a,(k)k*P a,(k) and

indicates that z; contains 1nf0rmat10n about renormaliza-
tion group properties of the theory. Some additional
clarifications are in order here: Eq. (3) neglects contributions
scaling as ~K'k[O((£)%) + O((2)?)], where we count
O(k') = O(k). The square root in the exponential of
Eqs. (4)—(6) is to be understood as v/2F = /2| F|[O(F) —
i®(=F)] and m* = m> —i0*; O(-) is the Heaviside func-
tion. Moreover, the integration contour in Egs. (4)—(6) is
implicitly assumed to lie slightly above the real positive s

|

Hm/(_k/’k) (2”)4 d54 d

o) e s,

we note that in the “Tsai and Erber” regime [24-26]
characterized by a purely magnetic/electric field in con-
junction with large-momentum probe photons the respective
polarization tensor effectively reduces to the crossed field
one, which directly implies that our crossed-field study is
also relevant there.

A. Magnetic or electric field

For electromagnetic fields fulfilling G = F,,*F* /4 =

-E-B=0, encompassing the cases of purely magnetic or
electric fields, the photon polarization tensor in momentum
space extracted from the constant-field result of the one-
loop Heisenberg-Euler effective action [13—15] can be
compactly represented as [12]

(K'F) (kF) _— (K'*F)*(k* F)?
2F FE 2F

T xFxF |» (3)

|

axis. Especially for the cases of either a purely magnetic or
electric field to be considered in the remainder of
this section, the four-vectors (kF)* := k,F* and (k* F )V :=
k,* F* can be expressed as (kF)* = —(0, k x E), (K*F) =
—(k-B,k°B) and (kF)* = —(k-E.k°E), (k* F)* = (0,k x E),
respectively. In turn, for a purely magnetic or electric field
our normalization of the tensor structures in Eq. (3) clearly
ensures that these are independent of the amplitude profile of
the background field and may depend only on its orientation.
Also note that in the constant field limit (d,F* = 0 for all
values of the indices a, u and v) the expression in the square
brackets in Eq. (3) becomes independent of x. In this case the
integration over space-time can be performed right away,
resulting in an overall momentum conserving Dirac delta
function that ensures k* = k*.

Especially due to the rather complicated dependence of
Egs. (4)-(6) on the background field amplitude, in general the
Fourier integral in Eq. (3) cannot be evaluated analytically for
inhomogeneous fields. On the other hand, the parameter
integrals in Egs. (4)—(6) can be performed in closed form [12].
However, noting that the structure of Egs. (3)—(6) is such that
the Fourier integral can be carried out explicitly for magnetic
and electric fields with the Lorentzian amplitude profile in
Eq. (2), in the present work we pursue this direction. The
Fourier integral in a inhomogeneous direction simply
amounts to an elementary Gaussian integral.

Focusing on the case of a purely magnetic field, inserting
the field profile (2) into Egs. (3)—(6) and carrying out the
Fourier integral, we arrive at

(KF(kF)" ,  (K*F)F(k*F)

ﬂiF*F . (1)
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where 5(4=9) (k' —
the homogeneous directions of the background field. The

k) denotes the Dirac delta function in 4 — d dimensions which ensures energy/momentum conservation in

scalar functions in Eq. (7) are given by

d ,
J ods (eEy1\2 g céy S0 1 coths 2
= - — — | —= e ¢ m § - 5 | 8
T 2n )y s \m?s ’ sinh%s s * 3 (8)
wds (e£y1\% _u2, fswn (1 —2scoths coths

d — 0 PR
-z 22020 % m , 9
RFF 2n Jo s <m2 s> ' < snhZs s ) ®)

d /
4 a [ods (e£y1\2 _ns /Wi 1 coths 2

TxF*F " A " (WE e o m snnds s 13t coths |, (10)

with the dimensionless parameter,

1 d
= oD WK~ ki)
i=1

measuring the momentum difference between the in and
outgoing probe photon legs. Nonzero values of Eq. (11)
imply a finite momentum transfer from the inhomogeneous
background to the probe field. From the above discussion it
is clear that the analogous result for a purely electric field
follows from Eqgs. (7)—(10) by the substitution £, — —i&,.
Accounting for the fact that (27)*- 9549 (K' —k = 0) =
[d*4x=:V#9 amounts to the (4 — d)-dimensional
space-time volume associated with the homogeneous
directions of the field inhomogeneity, from Eq. (7) it is
obvious that, in accordance with expectations, the four-
dimensional space-time region V=9 ([, w;) where the
|

>0, (11)

|
background field can impact the propagation of probe light
gets reduced with an increasing localization of the inho-
mogeneity.

We emphasize that within the constraints inherent to its
determination via (i), Eqs. (7)—(11) allow for the study of
photon propagation effects at one loop in field Lorentzian
field inhomogeneities (2) of arbitrarily strong peak field
amplitudes. However, we first note that in the perturbative
weak field limit characterized by e£,/m? < 1 the expres-
sions in Eqgs. (8)—(10) are amenable to closed-form all-order
Taylor expansions. To this end, it is convenient to shift the
integration variable of the parameter integration as s —
(e€y/m?)s and make use of the power series for cothx
about x = 0; note that 1/sinh?>x = —0, cothx. Upon
exchanging the all-order summation and the parameter
integration over s, the latter can be performed explicitly,
and we obtain

J 1
T
co 2n
I 2( TR )zn—% K (2 / ) 2By (2e& 2n 12
dﬂ—FF ﬂnz:; f(k s k) 2n—‘§’ f(k s k) (21’! + 1)y m2 il By ’ ( )
% F*F =% P

for a magnetic field and d > 1. Here, K,(-) denotes the
modified Bessel function of the second kind, and B, are
Bernoulli numbers. Clearly, the analogous expansion
for an electric field differs only by a factor of (—1)" in
each summand. The modified Bessel functions ensure
that Eq. (12) is strongly peaked at f(k',k) = 0, i.e
receives its main contribution for vanishing momentum
transfer from the background field. As to be expected
[18,19], because of K,(z) = +/x/(22)e*(1 + O(1/z)),
|

(271.)4 dé (4— d

(Hw)() 2(VFWR) " Koy (2VFRR)) = 2) 60 K - k).

|
the components of the polarization tensor receive an
exponential suppression for large momentum transfers
fK',f)> 1, see formula 10.25.3 of [27]. Though
Eq. (12) was derived for d > 1, it also allows us to recover
the uniform constant field result corresponding to d = 0:
namely, by taking the limit of w; - oo for all inhomo-
geneous dimensions 1 < i < d and using the expansion of
the modified Bessel function for small arguments (Ref. [27]:
10.30.2). From this we infer that

(13)
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which recovers the well-known results in a uniform
constant background field. Moreover, we emphasize
that in the special case where k; =k; in the inhomo-
geneous directions 1 <i<d, and thus f(k',k) =0,
Eq. (12) can be substantially simplified by noting that

limy_o 2(v/F)*" 2K, 4(2Vf) =T(2n —9), where I'(-) is
the gamma function; see formula 10.30.2 of Ref. [27]. As a
direct consequence of Furry’s theorem [28] (charge con-
jugation invariance of QED) the expansion in Eq. (12) is in
even powers of e&,. We remark that alternatively one could
arrive at Eq. (12) by first carrying out an all-order weak-
field expansion of the coefficients (4)—(6) of the photon
polarization tensor in a constant magnetic/electric field,
then replacing the amplitude profile by Eq. (2) and finally
performing the Fourier integral in Eq. (3). In line with this,

with respect to the dependence on the peak amplitude &,
the structure of Eq. (12) is not surprising.

On the other hand, in the special case of f(k',k) =0,
which is for instance determining the amplitude of strict
forward scattering for probe photons with k* = k*, the
parameter integrations in Eqgs. (8)—(10) can be performed
explicitly for 0 < d < 3, thereby allowing for analytical
insights for arbitrary values of the peak field amplitude &,
encoded in the dimensionless parameter e&)/m?=
1/(2h) <> h = m?/(2e&,) [29]. For the case of a magnetic
field inhomogeneity and 0 < d < 3 the explicit results of
these calculations can be expressed in terms of the Hurwitz
zeta function {(s,h) and derivatives thereof; {'(s, h) =
0,¢(s,h), ¢(s) = (s, 1) is the Riemann zeta function and
w(h) =T"(h)/T'(h) is the digamma function. This results
in the following rather compact representations:

1 1
g0 = —3{44’(—1 h) = h[2¢'(0.h) =Inh + h] = S Inh —5},
20 = —j—z‘{% h[2Z'(0. k) + Inh + 2h(1 = y(h)) — 1}},
790, = —3{44“'(—1, h) — h[2¢'(0, h) —Inh + h] —%[21//(%1) + R 1]}, (14)
n‘fl:—z—alh ‘{-104( >+6h¢ L ) ha( 1—2h)}
372 2
ng;‘:—z—ojh ‘{—5§<—— h)+12h§ l, >—3h2c( )—2h%},
32 2
a1 2, . Ly LA E Py
izl . 3”%11{ o¢< h>+6h§ 2,) (h) h <4 2h>}, (15)
ﬂ‘}zz:—%h‘l{—BC’(—Z,h)+h{2§’(—1,h) Shin h+12(2h2+4lnh+ )H
1 5
miz2 = —:h“{—3§’(—2, h) + h {6@“’(—1,%1) — 5" h<2§’(0, h) —Inh +6h>} }
a. , 1, , 5 1
T == _h 1{—3((—2,h)+§C(O,h)+h[2§( 1 h)+12+6h2} 8(1—3h2)lnh}, (16)
N L S ) _3 2
= {14¢< 2,h) 10h¢j< 2,h>+h< Zh)}
miz3 = — da —-{21g<—§ h) 40h§<—§,h>+15h2g<—1,h)+2h%},
1572 2
e L U o R G b G R )
TwFxF = 157[2 ¢ ¢ ¢ + ] . (17)

We point out that the uniform constant field (d = 0) result given in Eq. (14) was already derived in Ref. [12]. In line with the
above discussion, the analogous results for an electric field follow via h — ih.
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While an expansion of Egs. (15)—(17) for large i — oo recovers the perturbative weak field expansion in Eq. (12), an
expansion about 4 = 0 provides access to their strong field behavior. With the help of the series representation of the
Hurwitz zeta function for small & we readily obtain

. a 1 , 1 S n n—2 n
ﬂg0:_;{—glnh+4é’(—1)—g—hlnh—l—[2—1n(27r)]h+2nz;(—1) n(TUC("_l)h }

1 n-2
miz0 = — ”{3+h1nh+[ln(2ﬂ)—1]h 2h2 — 2; n_lg(n—l)h"},
11 1 2
280 = _3{6E+4§/(_1> +6[2y— 1]=hlnh+ [2—ln(2ﬂ) —%}H 14 ¢(3)|n?
- 2 [2(n=2) (n+1)] .,
+n;(—1) [n(n_l)g(n— D+ }h } (18)
i __0f 2Y/a 4w s (=1)"(2n - 5) < _) }
T | R ﬂ{ 3 3 +n§:; al n h
4 © (=1)"(2n=5)(n—% ]
L afvm a e CrmSp(n=g) the(nt)
TS Far - Tﬁ_Th ;( 1) . h"2 5, (19)
_ 3¢(3)1 1 ) 1 1 21In(2 .
nﬂﬁ——%{ 4;{2)E+§lnh—4(j(—l)—g—i—ihlnh 2In27) -5 ”) h——h2 22 ¢(n—1Dh }
d:2__g 34,(3)1_1 3 _ )n(n_2) _ n
niz? = ﬂ{w s+l 21n(2ﬂ)h+2;—n_1)(n+1>§(n 1)h }
L, af 11 3¢(3) In(2z)]1  1-2y—24(-1) 1 = 5
ﬂiFiF —;{—gzlnhﬁ- |:477,'2 - 6 :|E+ 6 —|—§hlnh—|— |:1 (2ﬂ)+ﬁ—§:|h
© (=1)" [2(n —2) 1 .
_;Hl [n(n_1>§(n—1)+§C(n+l)]h } (20)

- > 21’l - 5 3
. ()
! ERRTEL z% r \"T2

g =——q———=h-— ,
FF b4 1522 = n!

i, o) _Vrl 8 h+§:( 1) (n_%)p(n_%>+%p(n_%)h"—i 1)

TFxF = 30 158 A n! ’

where y is the Euler—Mascheroni constant, and we used the shorthand notation p(s) = {(s)I'(s) = [ dr*™"/(e' — 1). We
emphasize that the contributions in Eqs. (18)—(21) are not necessarily ordered with respect to their importance in the strong
field limit. Instead, aiming at providing most compact representations, we have accounted for as many terms in the infinite
sums as poss1ble For completeness we also note that the leading contribution to 7%= in Eq. (18) is of the form
lim,_ 72$~0 = —ap; In(e&,/m?), where #; = 1/(3x) denotes the leading coefficient of the QED S function governing the
running of the fine structure constant.
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From Egs. (18)—(21) we infer that with an increasing
localization of the inhomogeneity the leading strong
field behavior of a given component 7% with pe
{T,FF,*F*F} becomes more pronounced: counting
In i ~ O(h®), an increase of the number of inhomogeneous
directions from d to d+ 1 generically comes with an
enhancement by a factor ~h~'/? = (2¢&,/m?)'/?. For
0<d<2 the scaling of z¢ and n{, with h <1 is

factor of In(1/h) ~ In(e€,/m?). Interestingly, for d = 3 all
components in Eq. (21) exhibit the same leading scal-
ing ~h73/2,

For insights into e&,/m?> > 1 and k’* # k* it is conven-
ient to invoke the same substitution as in the determination
of the perturbative weak field limit (12), but then instead to
perform an expansion of the expressions in the round
brackets in Egs. (8)—(10) containing the hyperbolic func-

subleading in comparison to 7%, .. In the case of d =2  tions for se&y/m* > 1. This yields
the scaling of the latter is just logarithmically enhanced by a

d 1_h
ﬂ:T o d 1 d , 3 N
(04 \) 2 f(K k)
d — —s—— h —s/h
TFF —_/ - (‘) e s +0O(e™") (22)
)y s \s
T 1s _h
*FxF 6h K

which, given that f(k’, k) in Eq. (11) is large enough such as to sufficiently dampen the potentially divergent contributions
multiplying the exponential factors in the integrand for s — 0, allows for a reliable approximation. The latter assumption is
increasingly well justified for large values of f(k’, k), while the limit of f(k’, k) — O has to be handled with care. Upon
performing the integration in Eq. (22) and keeping the leading terms for 7 < 1 only, we obtain

2 (FR) Ky (2R )

4

1 —(4
me px=g-3 6 (VIER) (2+1)Kg+1(2\/f<k’,k)) (23)
TS FaF

(viwm) kg, (2v7wm)

Equation (23) in particular implies that for sufficiently large momentum transfers from the field inhomogeneity (2) the leading
strong-field scaling of the components of the polarization tensor with # < 1 is independent of the number of inhomogeneous
directions 1 < d < 3. Because in uniform constant fields the polarization tensor is nonzero only for kK’ = k* considering this
limit for d = 0 makes no sense.

In slowly varying magneticlike background fields fulfilling 7 > 0 and for low-frequency photons the photon polarization
tensor is real valued, signalizing the impossibility of electron-positron pair production under these conditions. On the
other hand, in electriclike fields for which F < 0 the polarization tensor features an imaginary part and pair production
becomes possible. For its determination we specialize Egs. (8)—(10) to an electric field inhomogeneity via the replacement
&y — —i&,. Substituting s — —i§ and deforming the integration contour such as to lie slightly below the real positive

5 axis, the associated imaginary parts can then be worked out by noting that Im{z%} = [z — (z%)*]/2i. The latter
identity maps the determination of the imaginary part of 77,';1, to performing a contour integral in the complex § plane
enclosing the real positive § axis, which can be readily evaluated with the Cauchy’s residue theorem. This yields the exact

expression,

d
JTT w2 eEof(K k)
I J a €€y 1 \Te T
i I _2712Z m? nx n?
d n=1
7w FxF
dyom o, & f(Kk)
2+2+e€gn” m*  nm
d d m? o e& f(K k) w2 eE [(KK\2 _ 2 e& f(KK)
X 2 (2 + 2) + (1 + d> (ec‘,'o nr m?  nm + ey nr m? nm nm m®> nm (24)
d_ 2 2 omd o, e& f(K )
2+ 2 + 3 (}’Lﬂ') + e&y L
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Conversely, for the case of a magnetic field the hyperbolic
functions in Egs. (8)-(10) do not feature any poles on the
real positive s axis making the analogous contour integral
vanish. In turn no imaginary part appears in that case. We
emphasize that Eq. (24) is a manifestly nonperturbative
result: it is characterized by the same nonperturbative
exponent as the Schwinger effect [15]. Correspondingly,
it cannot be obtained by performing a naive perturbative
expansion, such as adopted in Eq. (12). In the weak electric
field limit e&,/m> < 1 the leading contributions to
Eq. (24) arise from the n = 1 term. Focusing on k* = k*,
which is the limit relevant for the determination of the
single photon assisted pair production rate in the electric
background field (cf. Sec. II C below), and keeping only the
leading terms we then find

d
T

24 a eSO e_%ﬂ
FF
J 2zr m*

T FxF

1
2
Im o

(25)

Equation (25) implies that in weak electric fields the
imaginary part of the polarization tensor decreases with
|

rf
a reEp\4
0\3
ImS 7y, = 2( 2)~ %l(
2= \mm
i
*F*xF g
37

where §; ; denotes the Kronecker, and we introduced the d
& & £ £
dependent quantities ho(%2) = }rfn" hy(52) = (fn—f)l/ 2
hz(enfzo) =1In eﬂfz", and h3(enf2°) = {(3). Note that with increas-
ing values of d the strong-field scaling of hd(‘%’) becomes
less pronounced. While it ensures the component z¢ ., - to
exhibit the leading strong-field behavior for 0 < d < 2, this
component becomes as important as the other ones for
d = 3. As to be expected, Eq. (26) recovers the leading
contributions to the imaginary part of the expressions in

r§
J a ey
Im< 74y &
J 3rm
T FxF

increasing localization of the background field: similarly as
for the Schwinger effect in the absence of additional
photons [23], each additional inhomogeneous direction
in Eq. (2) comes with a reduction by a factor of
(eEo/m*)/? <« 1.

Together with Eq. (12) specialized to the electric field
case forming its real part, Eq. (25) constitutes the full result
of the photon polarization tensor in the electric field
inhomogeneity (2). On the other hand, the strong field
expansions performed in Egs. (18)—-(21) and (22), (23)
provide direct access to both the real and imaginary
parts of the polarization tensor in strong electric fields
e€y/m*> 1. In fact, alternatively the strong field
e&y/m? > 1 limits for the imaginary part for both k* =
k™ and sufficiently large values of f(k, k") (cf. also above)
can be extracted directly from Eq. (24).

For f(k',k) =0, the sums can be performed explicitly
yielding polylogarithms (Ref. [27]: 25.12.10), the expan-
sions of which for e&£,/m?> 1 follow from formula
25.12.12 of [27]. This allows us to readily infer that the
leading terms are given by

(2+9)¢(2+9)

el ez | 8
1)+ (e

|
Eqgs. (18)—(21) specialized to an electric field inhomoge-
neity.

On the other hand, in the case of sufficiently large
f(k', k), where the summands are manifestly finite for
n — 0 by assumption, we can make use of the fact that the
n dependence of Eq. (24) is effectively in terms of the

combined parameter J- nzr and approximate the infinite

sum by an integral via anl g(ego nm) - eg" LIe dug(v)

Adopting this strategy to Eq. (24) and 11m1t1ng ourselves
only to the leading terms, we arrive at

o5 (V) ()
() (vER) Vi (5 |
2 (Viwm) i, (2y/FwR)

(27)
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which indeed recovers the imaginary part of Egs. (22) and (23). Note that in order to obtain the result for z¢ given here from
Eq. (22) one has to account for the next to leading order contribution; the leading term given in Eq. (23) is purely real

valued.

B. Crossed field

The exact expression for the one-loop photon polarization tensor in a constant crossed field fulfilling 7 = G = 0 which
accounts for arbitrary momentum transfers k* through the charged particle loop [30] can be expressed as

(=K k) = (27)*6W (k' — k) [(kzg”” — Kk mr +

with scalar functions

¢0+4 1 1/2

sl S o
20 27r

TxFF

where s is the propertime, v governs the momentum
distribution in the charged particle loop, and

2

¢0—1—1O++(1—1/)4 5

(30)

is a dimensionless phase. Equations (28)—(30) follow from
the expressions given in Egs. (2.114) and (2.115) of [2]
with the help of the identity (A.1) of [26]. Note that the
entire four-momentum dependence of Eq. (29) is in terms
of k2 and (kF)2. Upon introducing &% = (1,¥) with
K= (E x B)/(|B||E|), in constant crossed fields of ampli-
tude £ = |B| = |E| the latter expression can be compactly
represented as (kF)? = £2(kk)?> > 0. The overall energy
and momentum conserving delta function in Eq. (28)

T xFxF

Because of its specific tensor structure which is a direct
consequence of kK = k* in constant fields, unfortunately
Eq. (28) cannot be adopted to the study of most
generic situations where k' # k*. However, it should
allow for reliable insights in the specific limit of
k" = Ik# also for slowly varying inhomogeneous back-
ground fields. To this end, we first identically rewrite

the delta function in Eq. (28) as (27)*sW (K —k) =

)ze (kF)zsz
12m0

(kF)!(kF)”

(k*F) (k)
I O

(kF)? ;[*F*F:| , (28)

—is(3 —1%)? [%% %(1 - 1/2)762(1]‘212?2}

m2(3 4 12)(1 —12) SR o : (29)
e2(kF)?s?
C2m*(3 —1?)(1 —1?) =55

|

reflects the fact that a constant electromagnetic field cannot
transfer energy and momentum to the charged particle loop.
We emphasize that the structure of Eq. (28) is very similar
to Eq. (3) in the constant field limit. However, because of
F = 01in crossed fields, here we employ a slightly different
normalization to render the tensor structures ~(kF)*(kF)*
and ~(k* F)*(k* F)* independent of the field strength. This
immediately implies that in the present section their
coefficients have a slightly different meaning; to make
this evident we decorate them with a tilde. In particular note
that while 77 is dimensionless we have Zpp ~ 7, pyp ~ m>.
For later reference we also note that making use of the
substitution se+/(kF)?/m°(1 —1?)/(4v/3) — s, Eq. (29)
can alternatively be expressed as

2m2 3+zz s . (31)

(27)* 454D (K — k) [ dxe’ 2L k=k)xi ang subsequently
substitute the uniform constant field profile for a slowly
varying inhomogeneous one with d inhomogeneous direc-
tions. Upon setting k’* = k* for the momentum compo-
nents in the d inhomogeneous directions, determining the
explicit expression for the photon polarization tensor in the
inhomogeneous field in this particular limit then only
requires performing an integration over coordinate space.
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Specializing the study to a crossed field with amplitude
profile (2), similar as in Sec. Il A this integration can be
readily performed analytically for all scalar functions 77,
Zpp and 7, p.p determining the polarization tensor. This
becomes particularly obvious from Eq. (31) where the field
dependence in the exponential ~1/+/(kF)* ~ 1/&(x) and

|

(27)DS(K — k)™ (=K', k) = (27)*6*)

X [(k2gﬂ" — kMK +

where we multiplied both sides with the delta function (27)) (k' —

::1&

in the factor multiplying this exponential for 77 ensures that
only elementary Gaussian integrals are to be performed for
Lorentzian amplitude profiles (2).

Carrying out the space-time integrations over the d
inhomogeneous directions, we obtain

) )

(kFY'(KF)
(kF)Z FF

i=1

(K*FY(k*F)* _,

(kF)2 Ty FxF | > (32)

k) to signalize and ensure that only the contribution for

which K = k* in the d inhomogeneous directions is to be considered here. The explicit expressions for the scalar functions

in Eq. (32) are

ﬂ.d —1

T .
1 —ids

w2 [ Tag [ S
% = s v— 5
y 7 Jo 0 (i®ys)2

s FxF

where we introduced the quantum nonlinear parameter
(cf., e.g., Ref. [7]) of the peak field,'

e?(kFy)?  e&ylkk
/,{/0 — 60) — 0|3 | , (34)
m m
and made use of the shorthand notation,
43 1
= 2 —. 35
R (33)

In the next step, we note that the identity (id®gs)~%/?> =
1/T(d/2) [g° drt?/>~1e=(1@®9) can be employed to recast
Eq. (33) in a form where its entire dependence on i®gs

!

d a 1 /ld 2(3 2)< 4 )%/“d’ &
g =——— w*(3-1v7)(——) —_—
r 6F(‘—1) 0 1—12 0 (1—|—l)

2

and

~d
Tpp
#d

T FxF

Zﬁ(i3m1§)/) d”<1fy) A dt(li)g{;;y;)}Hi’(p),

appears only in the argument of the exponential function.
Recalling the definition of Scorer’s function [31],

Hi(z) =L [°dre3"+%, and rewriting it as

1 . 1 1 C .
Hi(—iz(3ia)‘§) = (3ia)}~ / dse-EHDs for a > 0,
T Jo

(36)

it is then obvious that the propertime integration in Eq. (33)
can be carried out explicitly and represented in terms of
Hi(z) and derivatives thereof, we use the notation
Hi'(z) = dHi(z)/dz. In turn, for 1 <d <3 Eq. (33) can
be expressed as

(1420 e £ i) + 2 () )| o9)
2°) |7 a0 V) Y

(38)

'Here, F1¥ denotes the field strength tensor of a constant crossed field of amplitude &.
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where the argument of Scorer’s function and its derivatives
depends on both parameters v and ¢ to be integrated over,
and is given by

_ i 1+t 4
’ xo 1-07

) (39)

At this point, we also emphasize that the uniform
constant field (d = 0) results can be represented in a
form very similar to those for d > 0 given in Egs. (37)-
(39). They can be recovered from these expressions by
omitting the integral over f, f(;” dr — 1, then setting
t9/71/T'(d/2) — 1, and finally identifying ¢ — 0 in all
the other terms. Aside from two multiplicative factors of
K2/ (4m2)yy*" and y2/, respectively, the entire dependence

of Egs. (37) and (38) on the field amplitude and the
momentum is encoded in the argument p of Scorer’s
function. This considerably simplifies the determination
of the weak and strong field behavior discussed below.

Clearly, the weak field limit amounts to y; < 1 and thus
follows from an expansion of Egs. (37) and (38) for p — 0.
In turn, the corresponding result can be readily obtained
from the power series of Scorer’s function Hi(p) for
large arguments (Ref. [27]: 9.12.27); the power series for
Hi'(p) and Hi’(p) follow by differentiation. Given that
401 + K2/ (4m?)| /53 > 1 holds, the condition |p| > 1 is
fulfilled for all relevant values of the integration parameters
0<v<1 and 0<?< o0. Therewith, we immediately
obtain the following all-order perturbative weak field
expansions,

e 1)![r(2n—g> +4r(2n-1 _g>]

d
5 =- -
; 48"T'(2n)I'(n)
Lo 2@B =) (1 =) 11 K 1= 1
d 1t 2 40
XA v > 3 a2 ¢ 2(3n—-2)(3n—1) X0 (40)
and
ﬁ-j{_F 2a 5 ® (3]1 - 2) 'F(Zi’l — %) 1 (1 _ y2)2n—1 34+v )
~d = " Z n dv 31 X0 (41)
T FxF o i A8TQ2a)(n) o 0 2(3-v)

Similarly as in Eq. (12) above, these weak field expansions start with terms ~(e&,)? and contain only even powers of e&,.
Correspondingly, and in line with expectations, for the real part of the polarization tensor in the weak field limit in Egs. (40)
and (41) the only effect of the inhomogeneity is a d dependent modification of the expansion coefficients We emphasize that
the integrations over v in Egs. (40) and (41) could in principle be carried out and be expressed in terms of hypergeometric
functions. As this does not come with any new insights we prefer to leave it unperformed for general kinematics. On the
other hand, for on-shell photons with k> = 0 we have ¢, — 1 and the integrations over v simplify significantly. In this limit,
they can be readily evaluated and yield the following compact expressions:

20 &1 Bn= )@= DP(20—4) +47(20-1-9) ]

d 2n
Trle=0 = X0 (42)
Va4 48T (20 +3)T(n)
and
fr __2a , . (3n—2)!1“<2n—‘§1) 3n+17 ,,
~d m X0 - (43)
Ty FwF ) 1K2=0 V- 48"F(2n + %) I(n) LOn+1

The perturbative weak field expansions for k> = 0 given in Egs. (42) and (43) clearly do not feature any imaginary parts.
However, even for k> = 0 the components of the photon polarization tensor in a crossed field are known to generically
feature manifestly nonperturbative imaginary parts. With the help of the asymptotic expansion for Hi(z) given in formula
9.12.29 of Ref. [27] that also accounts for a contribution that cannot be exclusively represented in terms of a power series in
1/z, the latter can be easily extracted from Eqs. (37) and (38). Using formula 9.12.29 of Ref. [27] for Hi(z) and determining
the analogous representations for Hi’'(z) and Hi”(z) therefrom by differentiation, one finds that precisely the nonpower
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series contributions constitute the imaginary parts of Egs. (37) and (38); to this end note that e5p~1/4 ~ e75pl/* ~ p3/4 ~ i

while (p/¢g)>/? is real-valued. Upon limiting ourselves to the most relevant limit of on shell photons with k> = 0, we first
substitute (1 +¢)/(1 — %) — ¢ and make use of the fact that the integration domain of the resulting double integral can be

reexpressed as [j dv | i)

Im{zr%} lie—o =

and

~d
TFF
Im s
T FxF

Here, the expansion coefficients are given by

C():l,

¢o=1 and

with (Ref. [27]: 9.7.1)

(2n+1)(2n+3)(2n+5)---
216"n!
forn>1. (47)

(6n—1)

up=1 and u,=

We emphasize that in Eq. (45) the integration over v could
even be carried out explicitly in terms of elementary
functions, leaving us with a single parameter integral to
be performed. The resulting expression (45) is even valid
for the case of d = 0 and thus holds for field amplitude
profiles (2) with 0 < d < 3 inhomogeneous directions. In
fact, also the integration over ¢ in Eq. (45) can be taken and
expressed in terms of the Whittaker hypergeometric func-
tion via formula 3.383.4 of Ref. [32], which then can be
expanded for y, < 1 with the help of Ref. [32]: 9.383.4.
This yields the compact expression,

Im{ e } \Famz{l}(%{)ug
- = ~\/3 QA0
”iF*F K*=0 3 2)\8

e[l + Oxo)], (48)
that clearly recovers the well-known d = 0 result. Alter-
natively the result in Eq. (48) can be readily obtained by
performing a Taylor expansion of the prefactor of the
exponential function in the integrand of Eq. (45) about
t = 1 prior to carrying out the integration; this is justified
because the strong exponential damping with ¢ for yy < 1
ensures that the main contribution of the integral over ¢

F: - [T [a(s

5
ci=u; and c,=u,—-2(n—1)u n_l—l—[

dr = [ dr [ "“'" 4u. With the additional substitution (1 —1?) > v we then obtain

Y N\ =121 d\ (3yo\"? s
B L R Yoo (44
t)<+t) % (1/—1+ ><8t e (44)

1 Lo [(AE3d)i—1 (1-1)F (3 ”
e 36 F(M);C"(_l)[ dl{(4+6d)t+2}tT<8%to> oW

n—1)(n-2)u,, forn>2,
36

5
Ty = U, + <8_ n> u,, forn>1, (46)

|
arises from the vicinity of its lower bound. A similar
strategy can be adopted to extract the leading contribution
to Eq. (44) for yy < 1: To this end, we first expand the
integrand of the double integral in Eq. (44) about v = ¢ to
leading order, i.e., O((t —v)'/?) and perform the integra-
tion over v. It is immediately obvious that higher order
contributions come with additional powers of # — 1 and thus
only give rise to subleading terms in the subsequent
integration over . The latter one is carried out along the
lines just discussed as an alternative route to Eq. (48). This
results in

r M)
2 a (2
Im{7$}e—= \/:—

Sy

(o) e 11+ 0]
(49)

Note that I'(334) /T'($)]4—o = 0, such that for y, < 1 and

k* =0 there is no contribution scaling as ~y, to the
imaginary part of z7 in a uniform constant field. From
Egs. (48) and (49) we infer that, as opposed to its real part,
the imaginary part of the polarization tensor for weak
crossed fields evaluated at k> =0 shows a pronounced
dependence on the number of inhomogeneous directions of
the field inhomogeneity (2). While the overall nonpertur-
bative exponential suppression remains unaffected by the
dimension d of the inhomogeneity, in essence the imagi-
nary part gets additionally suppressed by a factor of
(3x0/8)"/? < 1 for each increase of d — d + 1.
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Finally, we turn to the strong field limit y, > 1 of the
polarization tensor in the special case of k> = 0. For this
analysis it is helpful to first rewrite Eqgs. (37) and (38)
specialized to k*> = 0, using the substitutions introduced

|

right above Eq. (44). However, after having implemented
these substitutions, here we additionally rescale the inte-
gration variable 7/y, — t such as to render p, independent
of yo. Therewith, we obtain

1 d_q
1-¢)*(2+v¢ U_L)Z
fleo =S [V ['4 (=)= g1 ap v .
rle=0 9)(0 F(%) L : i"(po) L v 2 ){0+2 v Yo (50)
and
5 1
{ﬁdFF } vaa o4 1 /wdl( —5e) " HiGpy) [ (4435, (51)
- m-y - 1
#rar Mo 6 Or(%) Lot A py | (46t 2
|
with parameter c fulfilling 1/y, < ¢ < 1 to split the integral in

po = e F (405, (52)
Similarly as for the imaginary part in Eq. (45) above, the
integration over v in Eq. (51) could once again be
performed explicitly in terms of elementary functions,
and the resulting expression also holds for d =0. We
remark that the integral over v in Eq. (50) can also be
carried out and expressed via hypergeometric functions.
However, as this representation is not particularly instruc-
tive, we refrain from giving it here.

Because their representation is considerably simpler, we
first extract the leading strong field behavior of 7%, and
#% o, - To this end, in a first step we introduce an auxiliary

|
~d
{ . }
~d
T FxF

20>1 2
— am~y,

k=0

6r)rii-9),
2.3 mze-‘”{ 5 } for d < 4/3.

ruar()

Eq. (51) into the two domains 1/yy <t < candc < t < 0.
By using the Maclaurin series of Hi'(py) (Ref. [27]:
9.12.18) in the former, it is easy to verify that its leading

contribution for y, > 1 scales as ;(3/ 3. At the same time, the

leading contribution of the latter clearly scales as )(g/ 2. In
turn, we have established that the strong field limit of

Eq. (51) scales as;(é/3 ford < 4/3 and as;gg/2 ford > 4/3.
Upon replacing the derivative of Scorer’s function in
Eq. (51) by its leading term Hi'(py) — I'(2/3)/(3'3x),
for d < 4/3 the integral over the full interval 1 /y, <t < oo
remains finite and can be evaluated in terms of elementary
functions. This yields the following explicit result for the

relevant contribution N)((Z)/ 3,

3

(53)

On the other hand, the contribution ~;(‘01/ *ford > 4/3 follows from Eq. (51) by taking the limit 1/y, — 0 in the integral,
which also yields a manifestly finite expression. Correspondingly, we have

epar ) li2=0 6 F(M) ot po |4+6d
TE-1)r(1-9) (4434
= am2)((_2; 4 : 4 e—l’z‘d{ } for d > 4/3, (54)
4/7(4/3)T (%) 4+ 6d

where the integral over ¢ could be straightforwardly evaluated analytically by expressing the derivative of Scorer’s function
in terms of its integral representation via Eq. (36); upon performing the integration over ¢, the integration over s can be easily

taken. In summary, we showed that the strong field limits of #%, and #¢ ., . scale as N)((z)

/3 in both constant crossed fields
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and crossed fields with a single inhomogeneous direction
along which the field features a Lorentzian amplitude
profile (2). For Lorentzian crossed field inhomogeneities
with 2 < d < 3 inhomogeneous directions the strong field

scaling is found to be enhanced to N)(g/ ? and thus features
an explicit dependence on the dimension of the inhomo-
geneity. We also determined the associated numerical
coefficients depending on d.

Next, we aim at a similar analysis for the strong field
limit of z¢. To this end, we first note that with the
substitution 1/(1 —12?)/y, — t the result for d =0 that
follows with the replacements detailed below Eq. (39) from
Eq. (37) can be compactly represented as

77 lie—o =

_L%( L)
_2_0{/00%([ )(0) [+210 Hi//(po)
1

9 t A

X0

—Hi" (/’0)
1

14 3d F(% +‘§i)r<§ +

where the first line still holds for generic values of y,. The
limit provided in the second line of Eq. (55) can be
straightforwardly extracted by using the auxiliary param-
eter ¢ introduced in the paragraph below Eq. (52) and
employing the Mclaurin series of Hi”(pg) in the relevant
domain 1/yy, <t <c; the latter follows from formula
9.12.18 of Ref. [27] by differentiation. Equation (55)
implies that, similar to its magnetic/electric field analogue
in Eq. (18), the leading strong field behavior of 740 is
characterized by a logarithmic scaling: in the present case
we obviously have lim,, _, 740 = —af; Inyg> [33].

On the other hand, applying the same strategy as used for
the determination of the strong field scaling of #%, and
7 o, above, Eq. (50) allows us to establish that the strong

field limit of n? scales as )((1)/ A2 for d > 1. In turn, for
d > 1 the leading strong field behavior of z¢ can be
obtained form Eq. (50) by once again taking the limit

1/y9 — O in the integral, yielding

[w0-9+2
_(z+

t
0
3d 5_d
4)F 6 4)

While the integration over v in Eq. (56) could be readily
taken and be expressed in terms of gamma functions, to
perform the ¢ integration we used the same strategy as in
Eq. (54) and reexpressed the second derivative of Scorer’s
function in terms of its integral representation via Eq. (36)
in an intermediate step. A comparison of Egs. (53), (54) and
(55), (56) unveils that whereas #%, and #%, . dominate
over 74 in the strong field limit for d = 0, interestingly this

behavior is reversed for d > 1 where the dominant con-

G 2
tribution arises from 7% ~ y{*9/6,

C. Physical implications

The results for the photon polarization tensor in an
electromagnetic field inhomogeneity with Lorentzian
amplitude profile (2) derived in Sec. II have several direct
consequences for observables to be studied in quantum
vacuum experiments. To be specific, in this section we only
feature a selection of effects that can be reliably studied
within the limitations of both approaches (i) and (ii) invoked
in Sec. II.

In general, the real part of the polarization tensor encodes
dispersive effects on photon propagation and its imaginary
part absorptive effects. A prominent example of the former
are different polarization eigenmodes that are effectively

Q). (56)

—iZ
e 4\3

243d4 ravaHr (9r (2 +9)

|

imprinted onto the vacuum by the background field.
These generically come with distinct indices of refraction
for probe photons and lead, e.g., to the experimental
signature of vacuum birefringence. On the other hand, a
well-known absorptive effect is the background-field-
assisted conversion of probe photons into real electron-
positron pairs inherently coming with a loss of probe
photons.

One can easily convince oneself that the normalized
four-vectors () (k) == (kF)"/+/(kF)*> and ef, (k) =
(k*F)*/+/(kF)? form a basis for the photon polarizations
transverse to k* for k*> =0, where (k*F)*= (kF)?;
cf., e.g., Ref. [34]. These vectors are independent
of the amplitude profile of the background field by

construction and depend only on its direction X They
fulfill e(p)ﬂ(k)e’(‘w(k) =1 and kﬂe’(l)(k) = kﬂe’é)(k) =
€(1)u(k)€fy (k) = 0. In line with that, they also span the
physical transverse photon polarizations at zero back-
ground field. The polarization mode characterized by
e’(‘l)(k) is polarized perpendicular to the one associated
with e’(‘z)(k). Hence, a generic transverse monochromatic

positive energy photon field solving the linear Maxwell
equations can be represented as
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1 .
(k) = 5 ey (K) + aacly ()} g, (57)

with amplitudes a;,, that are real (complex) valued for
linear (elliptic) polarizations. Clearly, also the above
expressions for the photon polarization tensor in a purely
magnetic or electric field in Egs. (3), (7) and a crossed field
in Egs. (28), (32) are already written in this basis. By
definition, a monochromatic plane wave is infinitely
extended in the directions perpendicular to its propagation
direction k and lasts infinitely long. Correspondingly, it
always samples the full extent of the field inhomogeneity
transverse to k.

Specifically in the strict forward limit, where k' = k*,
the polarization tensor is diagonal in this basis, and the only
nonvanishing polarization matrix elements for the crossed
field case are

{ el (O, (~k. k)t (&) }
6;&)(]()1—1””(—]{, k>€I(J2)<k) =0

T DIHE T

—

We emphasize that while clearly only the components of
the polarization tensor labeled by p € {FF,* F*F} exhibit
a direct coupling to real transverse on shell photons the
study of the p =T component in Sec. I is also very
relevant because it encodes important information about the
renormalization group properties of the theory; see also the
corresponding comment in the paragraph below Eq. (6).
Apart from an overall normalization, the expressions in
Eq. (58) amount to the background field dependent
asymptotic forward scattering amplitudes 7..(k) [35] for

probe photons of wave vector k* = w(1,k/|k|) in the
polarization basis spanned by e’(‘l) and e’('2>. To be precise,

in our conventions (and at leading, linear order in a) we
have [35,36]

T. (k) o _€/ﬂ(k)nﬂv(_k7 k)e”(k) (59)
o 2a)V(f) =0

Here, V(f) denotes the three-dimensional space-time vol-

ume perpendicular to k: e'(k) and € (k) are normalized
polarization four-vectors transverse to k*. Also recall that
the overall factor of (27)* %54 (k =0) in Eq. (58)
amounts to the (4 — d)-dimensional space-time volume
V=4 associated with the homogeneous directions of
the background field; cf. the paragraph below Eq. (11).
While the real part of Eq. (59) can be attributed to
dispersive effects, its imaginary part describes an

photon-absorbing property of the quantum vacuum that
can be related to the effect of electron positron pair-
production. A comparison of Egs. (3) and (28) unveils
that the analogous results for a purely magnetic/electric
field pointing in direction « can be obtained from Eq. (58)
by substituting 74 — (kF)*/(2F)n4% = sign(F) (k x K)2 d
with p € {FF,*F*F}, where the latter identity holds only
for k> = 0. Recall that in our conventions sign(F) is
positive (negative) for the purely magnetic (electric)
field case.

Using notations closely paralleling those of Ref. [35], the
associated e (k) — €' (k) forward scattering probability (at
quadratic order in «) follows from Eq. (59) as

Pee(k) = [Tec(k)P. (60)

A nonvanishing polarization-flip probability can be attrib-
uted to a birefringence property of the quantum vacuum in
the presence of the background field [37-39]. On the other
hand, the imaginary part of the nonflip (k) — ¢*(k)
scattering amplitude is related to the total probability of
electron-positron pair production induced by e*(k)-polar-

ized probe-photons of wave vector k* = w(1, k/ |E|) via the
optical theorem (cf., e.g., [24,40]). At linear order in a, we
have

Pe(pair) = 2Im{T(k)}. (61)

At this point, we remark that the explicit expressions for the
probabilities at leading order in a given below can be only
adopted in parameter regimes where these are sufficiently
small: for fields of sufficiently large strength or frequency
electron-positron pair production becomes so large that
field-depletion and backreaction effects of the created
charges on the field can no longer be ignored.

In the linearly polarized case it is particularly convenient
to represent Eq. (57) in terms of a single amplitude a and an
angle f that parametrizes the possible linear polarizations.
To this end one identifies a; = acosf and a, = asinf.
The associated polarization vector is then given by
e (k) = e’(‘ (k) cos g + e” )(k)sin, and that for the per-
pendicularly polarized mode by €| (k) = —¢{; (k) sinfp +
e’(‘z)(k) cos B. In this basis we generically encounter both
background field dependent polarization flip and no-flip

amplitudes. These are easily inferred from Egs. (58) and
(59). The former is given by

d 4sin 2ﬁ) e — 7
FF FXF
Feeth) = ([T (52 e

im1 k=0

(62)

and the latter by
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d

- V(““’)(ﬁ ) <ﬂ>g7?FFcoszﬂ+ﬁiF*Fsin2ﬂ

(63)

While these expressions can be analyzed for arbitrary
probe-photon propagation directions k, for simplicity it is
most convenient to assume that k is aligned with one of the

coordinate axes. For directions perpendicular to k in which
the background field (2) is homogeneous the corresponding

extents in the ratio V44 /V) cancel out. Conversely, if
the background field is inhomogeneous in such a direction
we are left with a factor of w;/L; from the ratio

(TT4, wi)/ V(f>. Here, L; > w; measures the—formally
infinite—extent of the probe in i direction. Similarly, a
factor of L; from V@9 is retained if k points in a
homogeneous direction i, and a factor of w; out of

(IT4_, w;) for an inhomogeneous propagation direction.
Subsequently, we provide explicit results for the polari-
zation-flip probability P, .(k) in Eq. (60) for linearly
polarized probe photons and the associated electron-posi-
tron pair production probability (61). Both of these quan-
tities are—at least in principle—accessible in experiment.
While the polarization-flip phenomenon in the weak field
limit can be attributed to a dispersive property of the
quantum vacuum subjected to the external field, in the
|

— 3 w .
v LM\ 20 ¥eo

strong field limit it typically arises from the combination of
dispersive and absorptive effects.

First, we focus on the case of a crossed background field
with amplitude profile (2). We note that for on shell
photons as considered here and in the remainder of this
article, the quantum nonlinear parameter of the peak field
introduced in Eq. (34) can be recast into

ey

Xo=-—5 (1 =cos o), (64)

with collision angle 0., defined as K- 12/ |1€| = C08 O
The polarization-flip probability for linearly polarized
probe photons in weak crossed fields fulfilling y, < 1
can be obtained straightforwardly by plugging the leading
order result in Eq. (43) into Egs. (60) and (62). This yields

yla-d) d P . r(2-4
Pele(k) = <V(3—)?\CHWI> (%) dsmz(zﬁ) %
1L hci=

xa?(2) 71 + 0GR, (65)

for 0 < d < 3. The results in the complementary parameter
regime of y,> 1 follow from Egs. (53), (54) and are
given by

P, 0] 2> (V?zc)zsin%zmér;f%@f (Z) 4.

Pe,c(k)l gt “> (;g:;)zsin%zﬁ) 6%5;(5) (%) %,

[P’qe(k”dzz it (V‘(j(}v;};\fz) 2sin2(2ﬂ) 3(7)[;2 a? (g) 2)((2),

Pe,elR)]oms 25 (V“;?;f%)zsm%zﬂ)%& @p (66)

Interestingly the scaling of the polarization-flip probability with y, remains the same for 0 < d < 1, but changes and
becomes more pronounced for larger values of d.

At the same time, Egs. (48), (61), and (63) imply that in the crossed field case the pair production probability in the weak
field limit y, < 1 induced by linearly polarized probe photons can be expressed as

. yl-d) [ d . V6 ey m3 \{ s
P.(pair) = o | | w; | (1 = cos @) (cos?f + 2sin?p) ?am—zo (Zg;(())ze 30[1+ O(y)] (67)
1 Ac \i=1

for 0 < d < 3. While the overall exponential suppression of the effect remains independent of d, Eq. (67) clearly implies
that the more pronounced the localization of the background field, the smaller the pair yield for fixed y. At this point we
emphasize that this result is also of interest and importance for studies of nonlinear Breit-Wheeler pair production [41,42] in
the collision of gamma rays with a focused intense laser beam; cf., e.g., [43,44]. While laser beams are reasonably well-
modeled as crossed fields,—especially transverse to their propagation direction—these typically feature field profiles
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different from Lorentzian ones. Nevertheless, similar localization effects are to be expected also there; cf., e.g., Refs. [45—
47] and references therein. On the other hand, from Eqgs. (53) and (54) we obtain the pair production probabilities in the
strong field limit,

v 3 (2 2
P.(pair)|,_o Lkl — (2cos?f + 3sin2ﬁ)7(23)aﬂ)(f),
VU %¢ 14x ®
. 201 V() 6%F(2) m 2
P, (pair)|,_, == 2cos’f3 + 3sin L oa—x,
(p )ldf] VS_)%C( :B ﬁ) 14\/§ w)(O
142 3
P.(pair)|,_, Ll $(500s2ﬁ—|— 8sin [J’)%amgo,
P
v LT
P, (pair)|,_s 22> W23 (1300525 4 2sitp) G) ,m s (68)
v1c 1442 "0

These expressions show a similar dependence on d as Eq. (66). In summary, we inferred that whereas in the perturbative
limit the scaling of the polarization-flip probabilities (65) with y remains unaltered relative to the reference case withd = 0
and only the coefficients become d dependent, the scaling of the nonperturbative results (66)—(68) changes notably with d.
Moreover, in passing we note that our results for the crossed field case with y > 1 also touch upon questions relevant in the
context of the Ritus-Narozhny conjecture [7,48,49]: They indicate that even in weakly localized crossed fields the
strong field scaling at one loop may significantly deviate from the constant field (d = 0) behavior 7, ~ a)(é/
amplitude level.

Second, we discuss the analogous results for the purely magnetic or electric field case with the additional restriction on
low-frequency w/m < 1 probe photons. The corresponding perturbative weak field e&,/m? < 1 result follows from

Egs. (12), (60), and (62) and reads

P, (k) ( Ve Z]iw> (7) sm49Fsin2(2ﬂ)F2(920;%)a2 (’;‘%’)4{1 +(’)<<f20>2)] (69)

Here, 1 = 27/ w is the probe wavelength and 0 = A(I; 1%) the angle between the probe-photon propagation direction k and
the direction ¥ of the magnetic or electric field, respectively; cf. the corresponding discussion in the second paragraph
below Eq. (2). We note that the d dependence of Eq. (69) is exactly the same as that of Eq. (65). This is in line with
expectations as in both cases the relevant contribution to the photon polarization tensor is quadratic in the coupling to the
background field. The results for the polarization-flip probability in the strong field limit e&,/m> > 1 following from
Egs. (18)—(21) read

A AT 1 £\ 2
P, (k)] ymo > ( > sin'0psin®(26) 2 <e 0) ,

via
P (s o (VV((—)JZ)G 00 fgg (5> |
1
Pﬂe(k)|d=2%>l <%>2sm4ﬁpsm (26) 5726a (650>21n2 (em_io>
1
B (s = (V(l);i222w3)2sm4em ) 515 (”:@ ——4( )) (Enff) | (70)
1

Similar as for the crossed-field case in Eq. (66), the scaling of Eq. (70) with the background field remains unchanged for
0 <d < 1, but is enhanced for an increased number of inhomogeneous directions 2 < d < 3. We emphasize that Eqs. (69)
and (70) hold for both purely magnetic and electric background fields.

As detailed in Sec. II A, in an electric field, but not in a purely magnetic field, the photon polarization tensor develops a
nonvanishing imaginary part for on-shell probe photons in the low-frequency limit w/m < 1. From Egs. (25), (61), and
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(63) we infer that in weak electric fields e£,/m? < 1 the associated total probability of electron-positron pair production
stimulated by low-frequency photons can be expressed as

. V(4_d> d . T 1 eSO [7’_ _L,, 650
P.(pair) = O <H wi) smzé’pcoszﬂﬁ (Z 2) [1 + (’)(m ﬂ . (71)

L

In line with its crossed field analogue (67), Eq. (71) implies a reduction of the pair production probability with an increasing
number of inhomogeneous directions d. The analogous result in the strong field limit e£,/m? > 1 readily follows from

Eq. (26), yielding

Iy 2 €&
P, (pair)| ,_o -—> 5 sinzerinzﬂgaQ,
v, m
”£°>>1 V3 e&
P.(pair)|,_, v Twlsmzermzﬂ a m;’
VO
“os1 ()
P, (pair)|,_, > (v:)lwz sin’0sin?f— a
v 6

20
221 VWwiwyws

v

P.(pair)|,_;

The general trend of the behavior of the pair probabilities
(72) with d again resembles that of the associated polari-
zation flip probabilities (70). Notably the d =3 result
exhibits a distinctly different dependence on the probe
photon polarization parametrized by f: While the leading
strong-field terms in Eq. (72) for 0 < d < 2 vanish iden-
tically for f — 0, the d = 3 contribution remains mani-
festly finite in this limit.

III. CONCLUSIONS AND OUTLOOK

In this work we analyzed the impact of a weak
localization of the background field on nonlinear quantum
vacuum signals probed by photons traversing this field. To
this end we considered two different background field
configurations, namely the case of a purely magnetic B or

electric E field pointing in a fixed direction, and a crossed
field fulfilling B L E and |B| =

B and E are once again fixed. The latter configuration can
be considered as a toy-model of a linearly polarized laser
field that does not resolve the modulation of the field with
the laser frequency.

Our study heavily relied on the possibility of explicit
analytical insights into the Heisenberg-Euler effective
action and the photon polarization tensor in a constant
electromagnetic field at one loop. As we pointed out in
detail, aiming at analytical insights into weakly localized
field configurations by using these results as starting point,
the specific structure of their propertime representations
suggests to focus on the study weakly localized field
configurations with Lorentzian amplitude profile (2).

|E|, where the directions of

6501

680

o)+ (556w ol).

|

This allowed us to construct relatively compact expressions
for the relevant one-loop photon polarization tensors in the
presence of background field inhomogeneities character-
ized by a Lorentzian amplitude profile and featuring
different numbers of inhomogeneous directions 0 < d < 3.
The resulting expressions are accurate at leading order in a
slowly varying field approximation and their complexity is
of the level of their constant-field analogues.

Our results for the magnetic/electric field case derived on
the basis of the Heisenberg-Euler effective action allow for
the analysis of generic probe photon scattering processes
but are by construction limited to the regime of low-energy
photons. On the other hand, those for the crossed field case
obtained from the photon polarization tensor are restricted
to the study of probe-photon forward scattering phenomena
but can be employed for arbitrarily large probe photon
momenta. In the present work, we studied both of these
results in full detail. Aside from their all-order perturbative
weak-field expansions, we mainly focused on parameter
regimes in which analytical insights are possible and the
coupling to the background field needs to be accounted for
in a manifestly nonperturbative way. Our main interest was
in the d dependence of the scaling of the different scalar
components constituting the respective expressions for the
photon polarization tensor with the peak field strength of
the Lorentzian amplitude profile (2) in these nonperturba-
tive parameter regimes.

As particular examples of physical signatures allowing to
make the studied effects, at least in principle, accessible in
experiment we discussed the vacuum-polarization-induced
polarization-flip phenomenon experienced by linearly
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polarized probe photons traversing the external electro-
magnetic field, and their polarization-sensitive absorption
in the background field, or equivalently, probe-photon
induced electron-positron pair production.

Our considerations could be extended in various ways.
We believe that a particularly interesting and prospective
avenue for future research would be to adopt a similar
approach towards the study of quantum vacuum processes
at higher-loop order.
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