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Abstract In the present work we determine the eight form
factors of the transversely-projected quark-gluon vertex in
general kinematics, in the context of Landau-gauge QCD
with two degenerate light dynamical quarks. The study is
based on the set of Schwinger–Dyson equations that govern
the vertex form factors, derived within the formalism of the
three-particle-irreducible (3PI) effective action. The analysis
is performed by employing lattice data for the main ingredi-
ents, such as gluon and quark propagators, and three-gluon
vertex. The numerical treatment is simplified by decoupling
the system of integral equations: the classical form factor is
determined from a single non-linear equation involving only
itself, while the remaining ones are subsequently computed
through simple integrations. The form factors are obtained
for arbitrary values of space-like momenta, and their angu-
lar dependence is examined in detail. A clear hierarchy is
established at the level of the corresponding dimensionless
effective couplings, in agreement with results of earlier stud-
ies. Furthermore, the classical form factor is found to be
in excellent agreement with recent unquenched lattice data
in the soft-gluon configuration, while the two non-classical
dressings depart substantially from the lattice results. Finally,
the accurate implementation of multiplicative renormaliz-
ability is confirmed, and the transition from Minkoswski to
Euclidean space is elucidated.

1 Introduction

The quark-gluon vertex, I�a
μ(q, p2,−p1), is one of the key

ingredients of Quantum Chromodynamics (QCD) [1], play-

a e-mail: aguilar@ifi.unicamp.br (corresponding author)

ing a central role in the dynamical breaking of chiral symme-
try [2–5] and the attendant emergence of constituent quark
masses [6–13], the formation of the bound states that com-
prise the physical spectrum [14–23], and the ongoing explo-
ration of the phase diagram of the theory [24–29]. Given
its paramount importance for contemporary hadron physics,
the quark-gluon vertex has been studied extensively within
perturbation theory [30–35], by means of continuous non-
perturbative approaches [10–12,19–21,36–55], and through
a plethora of lattice simulations [56–66].

An especially advantageous framework for studying the
nonperturbative aspects of the quark-gluon vertex in the con-
tinuum is the formalism based on the effective action [67,68],
and particularly its three-particle irreducible (3PI) version, at
the three-loop order [69–72], explored first in [45], and later
in the broader study of [20]. One of the special characteris-
tics of this formalism is that the resulting Schwinger–Dyson
equation (SDE) for the quark-gluon vertex, also known as
“equation of motion”, is composed of diagrams with all their
fundamental vertices fully-dressed. This is to be contrasted
with the standard SDE formulation, where one of the ver-
tices is always kept at its classical (tree-level) form. There
are two main implications stemming from this difference.
First, the typical difficulty of dealing with diagrams mul-
tiplied by a renormalization constant (the one assigned to
the vertex that has remained undressed) is bypassed, and
the renormalization procedure becomes subtractive; for an
alternative approach, see [12]. Second, the three-gluon ver-
tex, which enters in the numerically dominant diagram, is
fully-dressed; therefore, a firm grasp of its nonperturbative
properties becomes indispensable for the successful imple-
mentation of this approach.
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In the present work we revisit the SDE of the transversely-
projected quark-gluon vertex within the 3PI approach, under
the light of recent developments related to the infrared struc-
ture of the three-gluon vertex [73–77]. The importance of
this special vertex for the dynamics of the quark-gluon ver-
tex and the size of the constituent quark masses has been
amply emphasized already in a series of articles [78–80].
Nonetheless, our understanding of the three-gluon vertex has
advanced substantially in the last few years, thanks to the
combined scrutiny carried out by continuum methods [73–
75,81–90] and large-volume lattice simulations [76,77,91–
97]. The picture that has emerged may be summarized
through the following key features: (a) the form factor asso-
ciated with the classical tensor displays a considerable sup-
pression with respect to its tree-level value (unity), at inter-
mediate and low momentum scales [73–77,81–97]; (b) the
pivotal property of “planar degeneracy” reduces substantially
the kinematic complexity of this vertex [73–77], furnishing
simple and accurate forms for it, which are easily imple-
mentable in complicated computations; and (c) the classical
form factor diverges logarithmically in the deep infrared, as
a consequence of the nonperturbative masslessness of the
ghost propagator [81,98–109].

There are certain key aspects of our analysis that need
to be emphasized from the outset. To begin with, a consid-
erable simplification is implemented through the effective
decoupling of the vertex SDE from the dynamical equations
that govern the evolution of all other correlation functions,
including the gap equation of the quark propagator. In par-
ticular, we do not solve a system of coupled SDEs, but use
instead lattice inputs for all elements entering into this SDE,
with the exception of the quark-gluon vertex itself. Note in
particular, that we use lattice ingredients for the N f = 2
gluon [110,111] and quark propagators [61,112], and minor
variations around the best fit to the N f = 2 + 1 data for the
three-gluon form factor [95]. In addition, the system of eight
coupled integral equations is simplified by retaining in their
kernels solely the dependence on the classical form factor,
λ1, setting all others to zero. This gives rise to a single self-
coupled integral equation for λ1; when solved, the λ1 found
is substituted into the kernels of the remaining form factors,
which are then obtained through simple integration.

The main results of this analysis include:

(i) The eight form factors of the transversely-projected
quark-gluon vertex are computed for arbitrary values of
the incoming space-like momenta.

(ii) The λ1(q, p2,−p1) displays a considerable dependence
on the angle between the momenta p1 and p2, while the
non-classical form factors present a comparably milder
dependence on this angle [46,79].

(iii) The construction of a renormalization-group invariant
(RGI) and dimensionless effective coupling for each form

factor reveals a clear hierarchy amongst them, in quali-
tative agreement with the results of [10,12,46].

(iv) The infrared behaviour of λ1 is particularly sensitive to
variations of the gluon dressing function, while variations
of the three-gluon vertex and the quark propagator have
a lesser impact.

(v) The λ1 in the soft-gluon limit shows excellent agreement
with the lattice data of [61], with a 7% departure in the
deep infrared, which can be further reduced through mini-
mal adjustments of the three-gluon vertex dressing. How-
ever, the other two relevant form factors are very different
from the lattice results.

The article is organized as follows. In Sect. 2 we introduce
the notation and main ingredients, and discuss general fea-
tures of the quark-gluon vertex. In Sect. 3 the relevant SDE
is derived, and its renormalization is discussed. In Sect. 4
we discuss the simplifications implemented and the inputs
employed. Section 5 contains the main results of this work;
most notably, a detailed study of the angular dependence
of the form factors, and a comparison with the lattice data
of [61]. Then, in Sect. 6 we verify the multiplicative renor-
malizability of the SDE solution for the classical form fac-
tor. In Sect. 7 we present our discussion and conclusions.
Finally, in Appendix A we elaborate on the transformation
rules between Minkowski and Euclidean space.

2 Notation and main ingredients

In this section, we introduce the notation and the main ele-
ments that are relevant for the ensuing considerations. Our
discussion will be restricted to the case of two degenerate
light dynamical quarks, denoted by N f = 2. Note that the
formal analysis is carried out in Minkowski space; for the pur-
pose of the numerical treatment, some key formulas are then
converted to Euclidean space, and are evaluated for space-
like momenta.

The full quark-gluon vertex, represented diagrammati-
cally in panel (a) of Fig. 1, is denoted by

I�a
μ(q, p2,−p1) = igtaI�μ(q, p2,−p1), (2.1)

where g is the gauge coupling, q and p2 are the incoming
gluon and quark momenta, p1 = q+ p2 is the outgoing anti-
quark momentum. In addition, ta (a = 1, 2, . . . , N 2 − 1)

are the generators of the group SU(N ) in the fundamental
representation. The matrices ta are hermitian and traceless,
generating the closed algebra

[ta, tb] = i f abctc, (2.2)

where f abc are the totally antisymmetric structure constants.
In the case of SU(3), we have that ta = λa/2, where λa
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Fig. 1 Diagrammatic
representations of: (a) the full
quark-gluon vertex,
I�a

μ(q, p2,−p1), defined in
Eq. (2.1); (b) the full
three-gluon vertex,
I�abc

αμν(q, r, p); (c) the
fully-dressed gluon propagator,
�ab

μν(q); (d) the full quark

propagator, Sab(p)

are the Gell–Mann matrices. At tree-level, the quark-gluon
vertex reduces to

�
μ
0 (q, p2,−p1) = γ μ. (2.3)

The main focus of this study is the transversely-projected
vertex, I�μ(q, p2,−p1), defined as

I�μ(q, p2,−p1) := Pμν(q)I�ν(q, p2,−p1),

Pμν(q) := gμν − qμqν/q
2. (2.4)

Its tree-level expression, to be denoted by �
0
μ(q, p2,−p1),

is obtained from Eq. (2.4) through the substitution I�ν(q, p2,

−p1) → �ν
0 (q, p2,−p1).

In general kinematics, I�μ(q, p2,−p1) can be spanned
by eight independent tensors, namely (Minkowski space)

I�μ(q, p2,−p1) =
8∑

i=1

λi (q, p2,−p1)Pμν(q)τ ν
i (p2,−p1),

(2.5)

where the λi (q, p2,−p1) denote scalar form factors, which
depend on three Lorentz scalars. Even though several forms
for the tensors τ ν

i have been employed over the years, in the
present analysis we opt for the basis put forth in [10,12,46];
as was shown therein, this basis has the advantages of being
free of kinematic singularities and originating from gauge-
invariant operators. The elements of this basis in Minkowski
space are given by

τ ν
1 (p2,−p1) = γ ν,

τ ν
2 (p2,−p1) = (p1 + p2)

ν,

τ ν
3 (p2,−p1) = (/p1 + /p2)γ

ν,

τ ν
4 (p2,−p1) = (/p1 − /p2)γ

ν,

τ ν
5 (p2,−p1) = (/p1 − /p2)(p1 + p2)

ν,

τ ν
6 (p2,−p1) = (/p1 + /p2)(p1 + p2)

ν,

τ ν
7 (p2,−p1) = −1

2
[/p1, /p2]γ ν,

τ ν
8 (p2,−p1) = −1

2
[/p1, /p2](p1 + p2)

ν. (2.6)

It is important to emphasize that, when the τ ν
i of Eq. (2.6) are

rotated to Euclidean space following the procedure outlined
in Appendix A, one recovers precisely the basis of [10], given
in Eq. (A2). This coincidence, in turn, ensures the unambigu-
ous correspondence (and with the correct signs) between our
form factors and those of [10].

Notice that the full vertex, I�μ(q, p2,−p1), must obey
the same transformation properties as the bare vertex under
the charge conjugation operation C , namely [31,32]

CI�μ(q, p2,−p1)C
−1 = −I�

T
μ(q,−p1, p2). (2.7)

Then, interchanging the momenta p1 ↔ −p2 in the basis
defined in Eq. (2.6), and using the fact that

CγμC
−1 = −γ T

μ , C[γμ, γν]C−1 = [γ T
μ , γ T

ν ], (2.8)

we find that

Cτ ν
i (p2,−p1)C

−1= − [τ ν
i (−p1, p2)]T , i=1, 2, 4, 6, 8,

Cτ ν
3 (p2,−p1)C

−1 = [τ ν
3 (−p1, p2)]T − 2[τ ν

2 (−p1, p2)]T ,

Cτ ν
5 (p2,−p1)C

−1 = [τ ν
5 (−p1, p2)]T ,

Cτ ν
7 (p2,−p1)C

−1 = −[τ ν
7 (−p1, p2)]T − [τ ν

5 (−p1, p2)]T ,

(2.9)

up to terms proportional to qν (first equation, for i = 4, and
last one), which vanish when contracted by Pμν(q). There-
fore, in order to satisfy Eq. (2.7), we must have

λi (q, p2,−p1) = λi (q,−p1, p2), i = 1, 4, 6, 7, 8,

λ2(q, p2,−p1) + 2λ3(q, p2,−p1) = λ2(q,−p1, p2),

λ3(q, p2,−p1) = −λ3(q,−p1, p2),
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λ5(q, p2,−p1) − λ7(q, p2,−p1) = −λ5(q,−p1, p2).

(2.10)

Combining the above relations with Lorentz invariance,
which implies that the λi can only depend on the squares
of the momenta, it follows that λ3(q, p2,−p1) = 0, and
λ7(q, p2,−p1) = 2λ5(q, p2,−p1) when p2

1 = p2
2. It is

useful to separate the basis tensors into subsets that are either
chirally symmetric (cs) or chiral symmetry breaking (csb):
tensors with an odd (even) number of γ matrices belong to
the set τcs (τcsb). Specifically, we have

τcs = {τ ν
1 , τ ν

5 , τ ν
6 , τ ν

7 }, τcsb = {τ ν
2 , τ ν

3 , τ ν
4 , τ ν

8 }. (2.11)

In theLandaugauge that we employ, the gluon propagator,
�ab

μν(q) = −iδab�μν(q), is fully transverse, i.e.,

�μν(q) = �(q2)Pμν(q), �(q2) = Z(q2)/q2, (2.12)

where �(q2) denotes the scalar component of the gluon prop-
agator and Z(q2) the corresponding dressing function. The
diagrammatic representation of �μν(q) is given in panel (c)
of Fig. 1.

In addition, we denote by Sab(p) = iδabS(p) the quark
propagator [see panel (d) of Fig. 1], whose standard decom-
position is given by

S−1(p) = A(p2)/p − B(p2), (2.13)

where A(p2) and B(p2) are the Dirac vector and scalar com-
ponents, respectively. The dynamical quark mass function,
M(p2), is then defined as M(p2) = B(p2)/A(p2). At tree-
level,

S−1
0 (p) = /p − mq , (2.14)

such that A0 = 1 and B0 = mq , where mq is the current
quark mass.

Finally, we introduce the three-gluon vertex, I�abc
αμν(q, r, p)

= g f abcI�αμν(q, r, p), depicted in panel (b) of Fig. 1. At
tree-level, I�αμν(q, r, p) reduces to the standard expression

�
αμν
0 (q, r, p) = gμν(r − p)α + gαν(p − q)μ

+ gαμ(q − r)ν. (2.15)

Note that, in our analysis, the three-gluon vertex is naturally
contracted by three transverse projectors, namely

I�αμν(q, r, p) = Pα′
α (q)Pμ′

μ (r)Pν′
ν (p)I�α′μ′ν′(q, r, p).

(2.16)

3 SDE of the quark-gluon vertex

In this section we introduce the SDE of the quark-gluon ver-
tex that will be employed in our analysis, and elaborate on
the procedure adopted for its renormalization.

3.1 General structure

In this study, we employ the formulation of the quark-
gluon SDE derived within the framework of the 3PI effective
action [67,68], at the three-loop level [20,45,69–72].

It is well-known that, within the nPI formalism, the SDE
of a given Green’s function (also known as “equations of
motion”) is obtained through the functional differentiation
and subsequent extremization of the effective action with
respect to the Green’s function in question. In the 3PI case,
the relevant SDEs are derived from the effective action shown
diagrammatically in Figs. 1–2 of [20,69,70]. At this level
of approximation, all propagators (gluon, ghost, and quark)
comprising this action are fully dressed, and so are the quark-
gluon and three-gluon vertices; instead, the four-gluon vertex
is kept at its tree-level value. Note also that the resulting
propagator SDEs are “two-loop dressed”, while the vertex
SDEs are “one-loop dressed”.

Specializing to the quark-gluon vertex, the corresponding
SDE is diagrammatically depicted in Fig. 2. In particular, the
transversely-projected quark-gluon vertex can be expressed
in terms of the Abelian (aμ) and non-Abelian (bμ) diagrams
as

I�
μ
(q, p2,−p1) = �

μ

0 (q, p2,−p1) + aμ(q, p2,−p1)

+ b
μ
(q, p2,−p1), (3.1)

where

aμ(q, p2,−p1) = Pμ
ν (q)aν(q, p2,−p1),

b
μ
(q, p2,−p1) = Pμ

ν (q)bν(q, p2,−p1). (3.2)

After carrying out the color algebra, the corresponding
contributions in Minkowski space are given by

aμ(q, p2,−p1)=κa

∫

k
�(k2)I�

α
(−k, k1,−p1)S(k1)

I�μ(q, k2,−k1)S(k2)I�α(k, p2,−k2),

bμ(q, p2,−p1)=κb

∫

k
�(�2

1)�(�2
2)I�μαβ(q, �1,−�2)

I�
α
(−�1, k,−p1)S(k)I�

β
(�2, p2,−k),

(3.3)
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Fig. 2 Diagrammatic representation of the SDE for the full quark-
gluon vertex, I�a

μ(q, p2,−p1), derived from the 3PI effective action
at the three-loop level. White circles denote full propagators, and the

green (red) circles denote the fully dressed quark-gluon (three-gluon)-
vertices. Diagrams aμ and bμ are often referred to as “Abelian” and
“non-Abelian”, respectively

where k1 := k + p1, k2 := k + p2, �1 := k − p1, and
�2 := k − p2, and we have introduced the factors

κa := −ig2
(
CF − CA

2

)
, κb := ig2CA

2
, (3.4)

whereCF andCA denote the eigenvalues of the Casimir oper-
ator in the fundamental and adjoint representations, respec-
tively [CF = (N 2 − 1)/2N and CA = N for SU(N )].

Finally, we denote by
∫

k
:= 1

(2π)4

∫
d4k, (3.5)

the integration over virtual momenta, where the use of
a symmetry-preserving regularization scheme is implicitly
assumed.

It is straightforward to show that the expressions in
Eq. (3.3) preserve charge conjugation symmetry; therefore,
the form factors derived from these integrals automatically
satisfy the constraints given in Eq. (2.10).

In order to derive the dynamical equations governing the
form factors λi (q, p2,−p1) in general kinematics, one has
to construct a set of appropriate projectors, Pμ

i (q, p2,−p1),
satisfying the basic property

Tr
[
Pμ
i (q, p2,−p1)Pμν(q)τ ν

j (p2,−p1)
]

= δi j , (3.6)

such that

λi (q, p2,−p1) = Tr
[
Piμ(q, p2,−p1)I�

μ

R (q, p2,−p1)
]
.

(3.7)

The explicit construction of the projectors Pμ
i proceeds by

casting them in the form

Pμ
i (q, p2,−p1) =

8∑

j=1

Ci j (p2,−p1)τ
μ
j (p2,−p1), (3.8)

imposing Eq. (3.6), and solving the resulting system to deter-
mine the coefficients Ci j . This procedure yields

Pμ
1 = c1

[
4hτ

μ
1 + r2τ

μ
5 − q2τ

μ
6

]
,

Pμ
5 = c2

[
4h(r2τ

μ
1 −2τ

μ
7 )+(3r4+4h)τ

μ
5 −3r2q2τ

μ
6

]
,

Pμ
2 = c1

[
q2(τ

μ
2 +τ

μ
3 ) − r2τ

μ
4

]
,

Pμ
6 = −c2

[
4hq2τ

μ
1 + 3q2(r2τ

μ
5 −q2τ

μ
6 )

]
,

Pμ
3 = c1

[
q2(τ

μ
2 −τ

μ
3 ) + r2τ

μ
4

]
,

Pμ
7 = −2c1

[
τ

μ
5 + 2τ

μ
7

]
,

Pμ
4 = c1

[
r2(τ

μ
3 −τ

μ
2 )−(p1+ p2)

2τ
μ
4 −2τ

μ
8

]
,

Pμ
8 = −4c2

[
2hτ

μ
4 + 3q2τ

μ
8

]
, (3.9)

where we suppressed the argument (q, p2,−p1) in the Pμ
i

and τ
μ
i , and introduced the definitions

r2 := p2
1 − p2

2, h := p2
1 p

2
2 − (p1 · p2)

2,

c1 := 1/32h, c2 := 1/128h2. (3.10)

The SDE of Eq. (3.1) may be expressed in terms of the
individual λi (q, p2,−p1). To that end, it is convenient to
denote by Ai and Bi the contributions arising from the con-
traction of the Abelian and non-Abelian diagrams in Fig. 2
by the projectors Pμ

i , namely

Ai (q, p2,−p1) := Tr
[
Piμ(q, p2,−p1) a

μ(q, p2,−p1)
]
,

Bi (q, p2,−p1) := Tr
[
Piμ(q, p2,−p1) b

μ
(q, p2,−p1)

]
.

(3.11)

Then, using Eqs. (3.6) and (3.7) it is easy to arrive at the
system

λi (q, p2,−p1) = δi1 + Ai (q, p2,−p1) + Bi (q, p2,−p1),
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i = 1, . . . , 8. (3.12)

3.2 Renormalization

We next turn to the renormalization of the SDE for the quark-
gluon vertex. Clearly, all quantities appearing in Eq. (3.1)
are bare; the conversion to their renormalized counterparts is
carried out multiplicatively, using the standard relations [1]

�R(q
2)=Z−1

A �(q2), SR(p)=Z−1
F S(p), gR=Z−1

g g,

I�αμν
R (q, r, p) = Z3I�αμν(q, r, p),

I�μ
R (q, p2,−p1) = Z1I�μ(q, p2,−p1), (3.13)

where the subscript “R” denotes renormalized quantities, and
ZA, ZF , Zg , Z3, and Z1 are the corresponding renormaliza-
tion constants. In addition, we employ the exact relations

Z−1
g = Z−1

1 Z1/2
A ZF = Z−1

3 Z3/2
A , (3.14)

which are imposed by the fundamental Slavnov–Taylor iden-
tities (STIs) [113,114].1

We point out that the renormalization constant of the quark
current mass, usually denoted by Zmq , has been omitted
in Eq. (3.13). To be sure, in a self-contained SDE analy-
sis, where the quark propagator is determined by its own
SDE, the inclusion of Zmq would be indispensable. Indeed,
in such a treatment, the current mass would appear explicitly
in the quark SDE through the tree-level quark propagator,
see Eq. (2.14); then, upon renormalization, Zmq would enter
in the system of SDEs. Instead, in the present work we will
employ renormalized lattice inputs for the external ingredi-
ents of Eq. (3.1). Then, since Eq. (3.1) does not explicitly
contain the quark current mass, its corresponding renormal-
ization constant does not appear in our analysis. For further
details on this subject, the reader is referred to [10,22,27–
29,39,46,115–117], and references therein.

By substituting the relations of Eq. (3.13) into (3.1), and
using Eq. (3.14), we readily obtain the renormalized version
of (3.1), expressed as

I�
μ

R (q, p2,−p1) = Z1�
μ

0 (q, p2,−p1) + aμ
R (q, p2,−p1)

+ b
μ

R (q, p2,−p1), (3.15)

where the subscript “R” in aμ
R and b

μ

R indicates that the
expressions provided in Eq. (3.3) have been replaced by their
renormalized counterparts, as defined in Eq. (3.13). Then,

1 Evidently, the aforementioned renormalization constants Z depend
on the regulator employed. However, as stated after Eq. (3.5), our anal-
ysis assumes a symmetry-preserving (translational and gauge) regu-
larization scheme at intermediate steps, such as dimensional regular-
ization, which guarantees that the STIs are preserved. After obtaining
a manifestly finite expression for the renormalized λi,R(q, p2,−p1) [
see Eq. (3.20)], the regulator can be lifted.

from Eq. (3.15) one may readily derive the renormalized
analog of Eq. (3.12), namely

λi,R(q, p2,−p1) = Z1δi1 + Ai,R(q, p2,−p1)

+ Bi,R(q, p2,−p1), i = 1, . . . , 8.

(3.16)

Note that, due to the fact that all vertices comprising the
diagrams aμ and b

μ
are fully-dressed, no renormalization

constants appear multiplying them in Eq. (3.15). In fact, the
only renormalization constant that survives in Eq. (3.15),
namely Z1, is multiplying the tree-level contribution, thus
converting the procedure of renormalization into subtractive
instead of multiplicative. This is one of the main advantages
offered by the 3PI formulation [20,45,71,72], bringing about
a major operational simplification.

To determine Z1 we employ a variation of the momentum

subtraction (MOM) scheme [118,119], the so-called M̃OM
scheme [120].

In particular, denoting by λ
sg
1 (p2) := λ1(0, p,−p) the

classical form factor of the quark-gluon vertex in the soft-
gluon limit (q → 0), this particular scheme is defined by the
prescriptions [57].

�−1
R (μ2) = μ2, AR(μ

2) = 1, λ
sg
1,R(μ

2) = 1. (3.17)

The implementation of this condition at the level of
Eq. (3.16) proceeds by considering the case i = 1 and taking
the limit q → 0. Employing the notation Ai,R(0, p,−p) :=
A
sg
i,R(p

2) and Bi,R(0, p,−p) := B
sg
i,R(p

2), we find

λ
sg
1,R(p

2) = Z1 + A
sg
1,R(p

2) + B
sg
1,R(p

2). (3.18)

Then, by imposing the renormalization condition of Eq. (3.17),
we find

Z1 = 1 − A
sg
1,R(μ

2) − B
sg
1,R(μ

2). (3.19)

Thus, substituting Eq. (3.19) into Eq. (3.16), we arrive at the
renormalized version of Eq. (3.16) , namely

λi,R(q, p2,−p1) = [1 − A
sg
i,R(μ

2) − B
sg
i,R(μ

2)]δi1
+ Ai,R(q, p2,−p1) + Bi,R(q, p2,−p1). (3.20)

From now on the index “R” will be suppressed, to avoid
notational clutter.

The SDEs in Eq. (3.20) will be solved under certain sim-
plifying assumptions that we discuss in detail in the next
section.
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4 Numerical setup and inputs

In this section we discuss the basic simplifications imposed
on Eq. (3.20), derive its Euclidean version, and provide inputs
for the propagators and vertices that comprise the terms Ai

and Bi .

4.1 Simplifications

To reduce the algebraic complexity of this system, we
approximate all transversely-projected quark-gluon vertices
appearing on the rhs of Eq. (3.3) by retaining only their clas-
sical tensorial structures. Specifically, we set

I�μ(q, p2,−p1) → λ1(q, p2,−p1)Pμν(q)γ ν. (4.1)

Notice that implementing this approximation leads to two
major simplifications: (i) the dynamical equation for the clas-
sical form factor, λ1(q, p2,−p1), decouples from the seven
remaining form-factors, and (ii) the equation for the remain-
ing form factors, λi (q, p2,−p1) for i �= 1, are expressed in
terms of only λ1. Therefore, λ1(q, p2,−p1) is described by
an integral equation, whereas the remaining λi are expressed
in terms of ordinary integrals involving the form factor λ1.

Regarding the three-gluon vertex, we retain only its tree-
level tensorial structure, and resort to the planar degener-
acy approximation for the associated form factor, which has
been validated by a series of studies [73–77]. Specifically,

I�
μαβ

(q, �1,−�2) can be accurately approximated by the
compact form

I�
μαβ

(q, �1,−�2) = Lsg(s
2)�

μαβ

0 (q, �1,−�2),

s2 = 1

2
(q2 + �2

1 + �2
2), (4.2)

where �
μαβ

0 (q, �1,−�2) = Pμ

μ′(q)Pα
α′(�1)P

β

β ′(�2)�
μ′α′β ′

0

(q, �1,−�2), with �
μ′α′β ′
0 denoting the three-gluon vertex at

tree-level given by Eq. (2.15). The function Lsg(s2) is the
form factor associated with the soft-gluon limit of the three-
gluon vertex, (q = 0, �1 = �2), and has been determined
from various lattice simulations [76,77,91–96,101].

4.2 Euclidean space

The conversion of Eq. (3.20) to Euclidean space proceeds
by assuming that the external momenta are space-like, e.g.,
q2 → −q2

E with q2
E ≥ 0, and similarly for p1 and p2. We

then apply the following standard conversion rules

�E(q
2
E ) = −�(−q2

E ), AE(q
2
E ) = A(−q2

E ),

BE(q
2
E ) = B(−q2

E ), LE
sg(q

2
E ) = Lsg(−q2

E ), (4.3)

and suppress the index “E” for simplicity.

In addition, it is convenient to employ hyperspherical
coordinates, writing the integral measure as

∫

k
→

∫

E
= i

16π3

∫ ∞

0
dz z

∫ π

0
dφ1s

2
φ1

∫ π

0
dφ2sφ2 , (4.4)

where sφ1 := sin φ1. We then express all relevant form factors
as functions of p2

1, p2
2, and the angle between them, θ , namely

λi (q, p2,−p1) → λi (p
2
1, p

2
2, θ). (4.5)

After implementing the above steps, we find that Eq. (3.16)
assumes the schematic form

λi (p
2
1, p

2
2, θ) = Z1δi1 +

∫

E
KiAλ3

1 +
∫

E
KiBλ2

1, (4.6)

where KiA and KiB are the kernels of diagrams aμ and bμ in
Fig. 2, respectively.

Moreover, in conformity with Eq. (3.19), the renormaliza-
tion constant Z1 is obtained as the soft-gluon limit of Eq. (4.6)
for i = 1; specifically, setting q = 0, p1 = p2 := p, and
θ = 0, and subsequently fixing p2 = μ2, we find

Z1 = 1 − lim
q→0

[∫

E
K1Aλ3

1 +
∫

E
K1Bλ2

1

]

p2=μ2
. (4.7)

4.3 Inputs

In what follows, the system of equations for the λi formed
by Eqs. (4.6) and (4.7) are solved treating �(q2), A(p2),
M(p2), and Lsg(r2) as external inputs.

(i) For �(q2) we use a fit to the lattice data from [110,
111], with N f = 2 (two degenerate light quarks), computed
with current masses between 20 to 50 MeV, and pion masses
ranging from 270 to 510 MeV. The functional form of this fit
is provided in Eq. (A1) of [121], and is shown in the left panel
of Fig. 3, together with the corresponding dressing function
Z(q2).

(ii) When dealing with the form factor Lsg(r2), additional
care is needed, because, at present, there are no available
lattice data for this quantity with N f = 2. Given this limita-
tion, we will employ a fit for lattice data with N f = 2 + 1,
which was used recently in the analysis of [121], see Eq. (A1)
therein. Note that this simulation involves two light quarks
with a current mass of 1.3 MeV, and a heavier one with a
current mass of 63 MeV [95]. Moreover, the lattice results
of [95] were originally computed in the so-called asymmetric
MOM scheme, defined by the prescription Lassg (μ

2) = 1. To

employ them in our analysis, we convert them to the M̃OM
scheme through the rescaling Lsg(r2) = 1.16Lassg (r

2), valid
for μ = 2 GeV, as determined in the Appendix B of [121].

In the right panel of Fig. 3 we show the M̃OM con-
verted lattice data and the corresponding fit (black curve),
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Fig. 3 Left panel: The lattice data of [110,111] for the gluon propaga-
tor, �(q2), with N f = 2 (points), together with the fit given by Eq. (A1)
of [121] (black solid line). In the inset we show the gluon dressing func-
tion, Z(q2), defined in Eq. (2.12). Right panel: Lattice data of [95] for

Lsg(r2) with N f = 2+1 (points), converted to the M̂OM scheme, which
entails a rescaling by a factor of 1.16 [121]. The black continuous curve
is the corresponding fit, given by Eq. (A1) of [121]

denoted by L∗
sg(r

2), which minimizes the χ2 deviation from
the data. The curve L∗

sg(r
2) will serve as our reference input

for Lsg(r2), i.e., Lsg(r2) → L∗
sg(r

2), for the bulk of our
computations. However, minor variations from L∗

sg(r
2) will

be implemented in order to optimize the coincidence with
the lattice data for λ1 in the soft-gluon limit, and check the
numerical stability of the entire procedure.

(iii) For the quark wave function, 1/A(p2), and the
corresponding dynamical mass, M(p2), we employ fits
for the setup denominated “L08” in the lattice simulation
of [61,112]. This simulation was performed for a current
quark massmq = 6.2 MeV, and a pion massmπ = 280 MeV.
The functional forms of the fits for A(p2) and M(p2) are
given in Eqs. (A5) and (A6) of [121], respectively; these func-
tional forms were adjusted to remove certain lattice artifacts
in the ultraviolet, and to reproduce the respective one-loop
resumed perturbative behaviour. Both the lattice data and the
corresponding fits for A(p2) andM(p2) are shown in Fig. 4.

(iv) All these inputs are renormalized in the M̃OM scheme
defined by Eq. (3.17), at the renormalization point μ =
2 GeV. For this particular μ we need to choose a value
for αs(μ

2) := g2(μ2)/4π ; whereas in [121] the estimate
αs(μ

2) = 0.47 was obtained by combining one-loop calcu-
lations and fits to lattice data, our SDE reproduces the lat-
tice results for values of the strong charge in the vicinity of
αs(μ

2) = 0.55 (see next section).

5 Results

We next solve Eq. (4.6) for i = 1 iteratively, in order to obtain
λ1. The integration is performed using a double-precision

adaptive routine based on the Gauss–Kronrod integration
rule [122]. The external momenta grid interval ranges log-
arithmically from [10−3, 103] GeV 2, with 30 points, while
the external angle grid is uniformly distributed across 10
points within the range [0, π ].2 The interpolations in three
variables, needed for evaluating the λ1, are performed with
B-splines [123]. Once λ1 has been determined, we substitute
it into Eq. (4.6) for i = 2, . . . , 8, and obtain all remaining
λi through simple integration. In the rest of this Section, we
present the main results of this analysis.

5.1 Classical (tree-level) form factor

In Fig. 5 we present numerical results for λ1, obtained from
the iterative solution of Eq. (4.6). The results are displayed
in four panels, each for a different value of θ . The diagonals
of these plots (p1 = p2) are identified with the special kine-
matic configurations: (i) soft-gluon, blue curve; (ii) totally
symmetric, red curve; (iii) quark-symmetric, brown curve;
and (iv) asymmetric, yellow curve.3

The sequence of all diagonals, obtained as the angle θ

varies within the interval [0, π ], may be plotted as a function
of θ , giving rise to the collection of curves shown in the
left panel of Fig. 6 [46,79,124]. The band is delimited by the
soft-gluon and asymmetric configurations, θ = 0 and θ = π ,
respectively.

Clearly, as the angle θ increases, the peak of the form
factors becomes more pronounced, in a continuous fashion.

2 We have verified that our numerical results remain stable when the
grid size is increased.
3 Note that the value of θ in the totally symmetric configuration is not
2π/3, since in our kinematics the antiquark momentum is outgoing.
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Fig. 4 The lattice data (points) of [61,112] for the quark wave function, 1/A(p2) (left panel) and the running mass, M(p2) (right panel), both
corresponding to the “L08” setup. The fits (black solid lines) given by Eqs. (A4) and (A5) of [121] are also shown

This pattern is displayed in the the right panel of Fig. 6,
where the four aforementioned kinematic configurations are
highlighted; note a 27% increase between the maxima of the
soft-gluon and asymmetric configurations. For large values
of the momentum, all curves decrease logarithmically, at the
rate predicted in [32].

Note that the main contribution to this form factor stems
from the non-Abelian diagram bμ; for instance, for the
soft-gluon configuration, we have λ

sg
1 (0) = 2.138, with

B
sg
1,R(0) = 1.142 and A

sg
1,R(0) = −0.004, the rest (unity)

coming from the tree-level contribution.

5.2 Non-classical form factors

Once the solution for λ1(p2
1, p

2
2, θ) in general kinematics

is known, one may use it as input in Eq. (4.6) and deter-
mine the remaining form factors; in fact, each one of them is
obtained through a single integration. The results for the chi-
rally symmetric form factors λ5 (upper left), λ6 (upper right),
λ7 (lower) are shown in Fig. 7; while in Fig. 8, we present
the results for the chiral symmetry breaking form factors λ2

(upper left), λ3 (upper right), λ4 (lower left), λ8 (lower right).
In each of these figures, the corresponding form factor is plot-
ted in terms of the momenta p1 and p2, fixing the value of
the angle at θ = 0.

First, notice that the form factors λi with i = 4, 6, 7, 8
shown in Figs. 7 and 8 are symmetric with respect to the
diagonal plane (p1 = p2) (blue or purple curves, respec-
tively). This is a direct consequence of the charge conjuga-
tion symmetry satisfied by these form factors, as stated in
Eq. (2.10). Observe that this property becomes visible in 3D
surfaces only when λi (p2

1, p
2
2, θ) is plotted as a function of

the momenta p1 and p2. In the case of λ2, this symmetry
with respect to the diagonal is approximately satisfied, since
λ3 is very small, as shown in Fig. 8. The fourth relation in
Eq. (2.10) is also satisfied numerically.

In addition, notice that the (blue or purple) continuous
curves along the diagonals in these plots represent the corre-
sponding soft-gluon limit of each form factor, since they are
defined by the condition p1 = p2 or equivalently q = 0, and
the angle was fixed at θ = 0 in all panels.

In Fig. 9 we display the angular dependence of all non-
classical form factors when p2

1 = p2
2 = p2, with the excep-

tion of λ3, which is identically zero in this limit. As in the case
of Fig. 6, all bands are delimited by the soft-gluon (θ = 0)

and asymmetric (θ = π) configurations. It is evident that λ2

and λ8 exhibit the weakest angular dependence. In contrast,
λ4 and λ6 show a slightly stronger dependence on θ , concen-
trated mainly in the momentum region where p ≤ 2 GeV.
Finally, λ5 and λ7 display a noticeably stronger dependence,
practically in the entire range of momenta, although still
milder than the angular dependence of λ1 shown in Fig. 6.

As a general remark we point out that the non-classical
form factors are infrared finite and depart considerably
from their (vanishing) tree-level values, approaching their
expected perturbative behavior in the deep ultraviolet.

Note that the non-Abelian diagram dominates again
numerically, especially in the cases of the form factors λ2

and λ4, where its contribution exceeds the Abelian one by at
least one order of magnitude.

5.3 The quark-gluon effective couplings

In order to carry out a meaningful comparison of the relative
size of the various vertex form factors, it is advantageous
to introduce dimensionless and RGI combinations, which
serve as generalizations of the traditional effective couplings.
Specifically, one singles out special kinematic configurations
(e.g., soft-gluon, totally symmetric, etc), where the λi depend
on a single kinematic variable, and constructs a family of
dimensionless effective couplings, ĝi (p2), defined as [10,
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Fig. 5 The form factor λ1(p2
1, p2

2, θ) plotted as a function of the anti-
quark, p1, and quark, p2, momenta, for fixed angles θ = 0 (upper left),
θ = π/3 (upper right), θ = 2π/3 (lower left), and θ = π (lower right).

Four kinematic limits are highlighted in the diagonals of each of the 3D
surfaces: soft-gluon (blue), totally symmetric (red), quark-symmetric
(brown), and asymmetric (yellow) configurations

12,46,91,95]4

ĝi (p
2) = g(μ2) [pniλi (p2)]A−1(p2)Z1/2(p2),

with n1 = 0, n2,3,4 = 1,

n5,6,7 = 2, n8 = 3, (5.1)

whereZ(p2) and A(p2) are defined in Eqs. (2.12) and (2.13),
respectively.

In what follows, we will focus on two special configura-
tions: (shape i) the soft-gluon limit, where the form factors
correspond to the diagonals of the 3D plots shown in Figs. 5,
7, and 8; and (shape ii) the totally symmetric configuration,
for which only the form factor λ1 was presented in Fig. 5
as the red diagonal line. We will therefore use the indices
“sg” and “sym” to denote the corresponding form factors
and effective couplings, implementing these into Eq. (5.1)

4 In [10,12] the coupling g(μ2) is included in the definition of the
quark-gluon form factor λ1, whereas here it has been factored out, see
Eq. (2.1).

through the following replacements

ĝi (p
2), λi (p

2) −→ ĝ k
i (p2), λki (p

2) ; k =sg, sym.

(5.2)

In Fig. 10 we present the results for ĝ sg
i (p2) and ĝ sym

i (p2),
separating them into two subsets, those associated with the
τcs (left panels), and those related to the τcsb (right panels), in
accordance with the definition in Eq. (2.11). It is clear from
Fig. 10 that for both kinematics the effective couplings satisfy
the same hierarchy. More specifically, for the two groups, we
found that

ĝ k
1 (p2) > ĝ k

7 (p2) > ĝ k
5 (p2) > |̂g k

6 (p2)|,
|̂g k

4 (p2)| > |̂g k
2 (p2)| > ĝ k

8 (p2), k =sg, sym. (5.3)

Note that for both configurations ĝ k
3 (p2) vanishes iden-

tically, and that ĝ k
7 (p2) = 2ĝ k

5 (p2), manifesting the charge
conjugation symmetry of the vertex [see discussion below
Eq. (2.10)]. Clearly, in both kinematic limits, ĝ k

1 (p2) domi-
nates over the second-largest coupling, ĝ k

7 (p2). In the totally

123



Eur. Phys. J. C (2024) 84 :1231 Page 11 of 21 1231

Fig. 6 Left panel: The dependence of λ1(p2
1, p2

2, θ) on the angle θ , when we set p2
1 = p2

2 = p2. Right panel: The maximum value of the
λ1(p2, p2, θ) as a function of θ

Fig. 7 The chirally symmetric quark-gluon form factors λi (p2
1, p2

2, θ),
with i = 5, 6 (upper row) and i = 7 (lower row) plotted as functions of
the magnitudes of the momenta p1 and p2, for a fixed value of the angle,

θ = 0. The blue curves along the diagonals represent the corresponding
soft-gluon limits of each form factor

symmetric configuration, this dominance is even more pro-
nounced, with the maximum value of ĝ sym

1 (p2) exceeding
the peak of ĝ sym

7 (p2) by a factor of 5.5, compared to a factor
of 3 in the soft-gluon case. In addition, the spread among the
remaining couplings is noticeably smaller in the totally sym-
metric configuration compared to the soft-gluon kinematics.

It is important to highlight that we have also confirmed that
the hierarchies described in Eq. (5.3) persist in the quark-

symmetric limit. Moreover, our results qualitatively agree
with those presented in [10,12,46], where the effective cou-
plings were computed in the totally symmetric configuration.

We can also explore other kinematic configurations.
Specifically, by performing the replacement ĝ1(p2), λ1(p2)

→ ĝ1(p2, θ), λ1(p2, p2, θ) in ĝ1(p2) from Eq. (5.1),
we can obtain a continuous family of effective charges,
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Fig. 8 The chiral symmetry breaking quark-gluon form factors
λi (p2

1, p2
2, θ), with i = 2, 3 (upper row) and i = 4, 8 (lower row)

plotted as functions of the magnitudes of the momenta p1 and p2, for a

fixed value of the angle, θ = 0. The purple curves along the diagonals
represent the corresponding soft-gluon limit of each form factor

Fig. 9 The angular dependence of the λi (p2
1, p2

1, θ) for i = 2, 4, 5, 6, 7, 8, for p2
1 = p2

2 = p2
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Fig. 10 The quark-gluon effective couplings, ĝ sg
i (p2) and ĝ sym

i (p2),
for the chirally symmetric form factors λ1,5,6,7 (left panel), and for the
chiral symmetry breaking λ2,3,4,8 (right panel). The effective couplings

were determined from Eq. (5.1), with the λi (p2) in the soft-gluon and
totally symmetric kinematics, respectively

αqg(p2, θ) [10,46], defined as

αqg(p
2, θ) = ĝ2

1(p2, θ)

4π
. (5.4)

By employing λ1(p2, p2, θ) in the various kinematic config-
urations5 shown in Fig. 6, we obtain the results presented in
Fig. 11. We observe a considerable difference in size among
the members of this family; in particular, the limiting cases
θ = 0 (soft-gluon limit) and θ = π (asymmetric configura-
tion) are separated by a factor of 3 between peaks.

5.4 Varying the inputs

It is particularly important to acquire a quantitative under-
standing of how variations of the SDE inputs affect the final
result. To that end, we perform small variations around the

5 Note that each configuration is characterized by a specific value
of θ . In particular, one has for the soft-gluon λ1(p2, p2, 0) :=
λ
sg
1 (p2) and ĝ1(p2, 0) = ĝ sg

1 (p2), whereas for the totally symmetric
λ1(p2, p2, π/3) := λ

sym
1 (p2) and ĝ1(p2, π/3) = ĝ sym

1 (p2).

Fig. 11 Family of effective charges, αqg(p2, θ), extracted from the
quark-gluon vertex, using the different kinematic configurations for the
classical form factor λ1(p2, p2, θ), shown in Fig. 6

fits to lattice data used as inputs,6 and consider their impact
on λ

sg
1 .

6 In doing so, we keep the value of the strong charge fixed at αs(μ) =
0.55.

123



1231 Page 14 of 21 Eur. Phys. J. C (2024) 84 :1231

Specifically, we solve Eq. (4.6) for λ
sg
1 , each time substi-

tuting one input f = [�,Lsg, A,M] by f ±(p2), where

�±(p2) = �(p2) ± δ1/[1 + (p2/κ2
1 )2],

L±
sg(p

2) = L∗
sg(p

2) ± δ2/[1 + (p2/κ2
2 )2],

1/A±(p2) = 1/A(p2) ± δ2/[1 + (p2/κ2
2 )2],

M±(p2) = M(p2) ± δ3/[1 + (p2/κ2
2 )2], (5.5)

with δ1 = 0.16 GeV−2, δ2 = 0.03, and δ3 = 0.015 GeV,
κ2

1 = 0.5 GeV2, and κ2
2 = 2 GeV2. With this choice of

parameters, the infrared finite ingredients, �±, 1/A±, and
M± differ from their central values by ∼ 4%, within the
interval p ∈ [0, 1] GeV, while L±

sg(p
2), which diverges at

the origin, shows the same variation for p ∈ [0.1, 1] GeV.
All f ±(p2) approaches f (p2) rapidly for p � 2 GeV.

The λ
sg
1 resulting from performing each of the above vari-

ations is shown as a separate panel in Fig. 12; the inset in
each case displays the ingredient being varied. In order to
visually track the direction of the variations in λ

sg
1 , the lower

bound, f −, of any given ingredient, and the λ1 resulting from
using this f −, are marked with a dashed line. We note that
λ
sg
1 is enhanced when increasing �, Lsg , or the quark wave

function, 1/A. On the other hand, as expected, an increase in
M reduces λ

sg
1 .

Since the numerically dominant non-Abelian diagram
(see Sect. 5.1) is linear in 1/A and Lsg , but quadratic in �,
we expect λ

sg
1 to be especially sensitive to the gluon dressing

function. Indeed, we observe in Fig. 12 that a variation of 4%
in 1/A (Lsg) in the infrared region, has a 5% (3%) effect on
λ
sg
1 (0). Moreover, λsg1 is rather insensitive to small variations

of the constituent quark mass, M, changing by only 1% in
our tests. In contrast, enhancing � by the same 4% increases
λ
sg
1 by 14%.

Note finally that the above variations are uncorrelated, in
contradistinction to what happens in a self-contained SDE
analysis, where a change to one of them affects all others
in complicated ways; nonetheless, we hope that the main
tendencies are correctly captured.

5.5 Comparison with the lattice

In this subsection we compare our results for the quark-gluon
vertex in the soft-gluon configuration with those obtained in
the N f = 2 lattice simulation of [61].

We first recall that in the soft-gluon limit, four out of
the eight tensor structures given by (2.6) vanish identically.
Upon setting p1 = p2 = p, the tensorial structure of
the transversely-projected vertex, I�μ(0, p,−p), simplifies
to Eq. (A8), where the vanishing of λ

sg
3 (p2) has already

been taken into account. From the analysis presented in the
Appendix A, it is clear that, formally, the classical form fac-

tors of the SDE and the lattice are exactly the same, i.e.,
λ
sg
1 (p2) = λL

1 (p2), as dictated by Eq. (A11).
In the left panel of Fig. 13, we compare the SDE result for

the form factor λ
sg
1 (p2), (black continuous curves) with the

“L08” lattice data of [61] (circles). Evidently, both curves
nearly coincide over most of the momentum range, show-
ing a minor departure only in the deep infrared, where the
corresponding saturation points differ by approximately 7%.
Note that the value used in the SDE for obtaining this solu-
tion is αs(μ

2) = 0.55. Finally, the black dashed line repre-
sents the one-loop result for λ

sg
1 (p2) taken from [32], duly

renormalized in the M̃OM scheme; we observe that both the
SDE and lattice results recover the perturbative behavior for
p � 2 GeV.

Given the analysis of the previous subsection, it is clear
that the coincidence between SDE and lattice may be easily
improved even further, by introducing slight deviations in the
inputs employed in the SDE. To demonstrate this possibility
with a concrete example, let us allow for minor variations of
the Lsg(r2) around L∗

sg(r
2), using the same functional depen-

dence as in Eq. (5.5).
In particular, we consider the family Lisg(r

2), given by

Li
sg(r

2) = L∗
sg(r

2) + εi

1 + (r2/κ2)2 , i = 0, 1, 2, (5.6)

with ε0 = 0, ε1 = 0.03, ε2 = 0.06, and, κ2 = 5 GeV2;
the three curves are represented together in the right panel of
Fig. 13. The resulting L1

sg(r
2) and L2

sg(r
2) clearly improve

the overall coincidence with the lattice in the deep infrared.
Similar levels of agreement may be obtained by varying the
other inputs, in the spirit of Eq. (5.5); we will not pursue this
possibility any further.

The excellent agreement found in the case of λ
sg
1 (p2)

between the SDE results and the lattice is in stark contrast
to what happens with the remaining two form factors of
the soft-gluon configuration. Specifically, using the formal
correspondence λ

sg
6 (p2) = λL

2 (p2) and λ
sg
2 (p2) = λL

3 (p2)

[see Eq. (A10)], in Fig. 14 we compare the typical dimen-
sionless combinations 4p2λ

sg
6 (p2) and 2pλsg2 (p2), observing

strong qualitative discrepancies with respect to the lattice
data of [61].

Historically, the lattice determination of the form factor
4p2λ

sg
6 (p2) [left panel of Fig. 14] has been rather problem-

atic. In the quenched simulations of [58], 4p2λ
sg
6 (p2) appears

to diverge at the origin, contrary to all continuous studies
that yield a vanishing result [20,36,47,48,125]. Although the
N f = 2 simulation appears to have ameliorated this flaw, the
ultraviolet tail of the data is clearly at odds with the correct
one-loop perturbative behavior [32], shown as black dashed
in Fig. 14. It would seem, therefore, that additional analysis
is required before a meaningful comparison with the SDE
results may be conducted.
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Fig. 12 The effect of varying the inputs Z(q2) (upper left), Lsg(r2) (upper right), 1/A(p2) (lower left), and M(p2) (lower right). The insets depict
the corresponding variations, while the main plots show their impact on λ1

Fig. 13 Left panel: Comparison of the form factor λ1(p2) in the soft-
gluon configuration (continuous curves), computed with the Lisg(r

2)

shown in the right panel, with the “L08” lattice data (circles) of [61].

The one-loop result of [32] is shown as a black dashed line. Right panel:
The Lisg(r

2) given by Eq. (5.6) used to compute λ
sg
1 (p2)

Regarding 2pλsg2 (p2), shown in the right panel of Fig. 14,
we again observe a discrepancy between the lattice data and
the expected one-loop behavior [32]. Although our result
for 2pλsg2 (p2) exhibits a qualitative pattern similar to the
unquenched lattice data [61], the minimum found in the deep
infrared is considerably shallower than the one observed on
the lattice.

It is worth stressing that the lattice λ
sg
2 (p2) and λ

sg
6 (p2)

are known to be more severely affected by discretization arti-
facts than λ

sg
1 (p2). Indeed, the “tree-level correction” proce-

dure employed in [61], for the purpose of reducing discretiza-
tion artifacts, improves significantly the agreement ofλsg1 (p2)

with its perturbative behavior. However, as explicitly stated
in [61], it has the opposite effect on λ

sg
2 (p2), pushing it away
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Fig. 14 Comparison of the dimensionless soft-gluon form factors 4p2λ
sg
6 (p2) (left) and 2pλsg2 (p2) (right) (blue continuous curves) with lattice

data of [61] (circles). We also plot the corresponding one-loop results from [32] (black dashed curve)

from its one-loop result at large momenta. Moreover, while
for λ

sg
1 (p2) and λ

sg
2 (p2) the discretization artifacts are appar-

ent mostly in the ultraviolet (see Figs. 4 and 6 of [61]), the
aforementioned procedure affects λ

sg
6 (p2) within the entire

range of momentum (see Fig. 5 of [61]).

6 Verifying multiplicative renormalizability

In this section we probe the veracity of multiplicative renor-
malizability at the level of the form factor λ

sg
1 (p2). This exer-

cise is particularly relevant in view of the subtractive nature of
the renormalization procedure employed on the SDE derived
from the 3PI effective action formalism, concretely Eqs. (4.6)
and (4.7), as discussed in Sect. 3.2. The upshot of these con-
siderations is that multiplicative renormalizability is faith-
fully reflected in the solutions of the SDE, essentially due to
the fact that all vertices entering in diagrams aμ and bμ of
Fig. 2 are fully dressed.

The main idea of our procedure is to repeat the calculation

ofλ1, with Eq. (4.6) renormalized in the same scheme, M̃OM,
but at a different renormalization point, to be denoted by ν,
i.e., imposing Eqs. (3.17) and (4.7) with μ → ν. Then, if
multiplicative renormalizability is respected, the two answers
must be related by

λ
sg
1 (p2, μ2) = λ

sg
1 (p2, ν2)

λ
sg
1 (μ2, ν2)

. (6.1)

In order to proceed, we need the inputs for �(q2), Lsg(r2),
and A(p2), shown in Figs. 3 and 4, respectively, at differ-
ent renormalization points.7 To obtain them, we will assume
that multiplicative renormalizability is valid for these three

7 Notice that the quark dynamical mass, M(p2), is a μ-independent
quantity, and therefore does not need to be rescaled.

functions, and use relations analogous to Eq. (6.1) to deduce
their form at the new renormalization point.

Specifically, it follows from Eq. (3.13), and the fact that
the unrenormalized Green’s functions do not depend on the
renormalization point, that

�(q2, ν2) = �(q2, μ2)
ZA(μ2)

ZA(ν2)
,

A(p2, ν2) = A(p2, μ2)
ZF (ν2)

ZF (μ2)
,

λ
sg
1 (p2, ν2) = λ

sg
1 (p2, μ2)

Z1(ν
2)

Z1(μ2)
,

Lsg(s
2, ν2) = Lsg(s

2, μ2)
Z3(ν

2)

Z3(μ2)
. (6.2)

Now, the values �(ν2, ν2), A(ν2, ν2), and λ
sg
1 (ν2, ν2), are

fixed by the renormalization prescription of Eq. (3.17) with
μ → ν. Hence, evaluating Eq. (6.2) at q2 = p2 = ν2 entails

ZA(μ2)

ZA(ν2)
= 1

ν2�(ν2, μ2)
,

ZF (ν2)

ZF (μ2)
= 1

A(ν2, μ2)
,

Z1(ν
2)

Z1(μ2)
= 1

λ
sg
1 (ν2, μ2)

. (6.3)

Then, substituting into Eq. (6.2) we obtain Eq. (6.1) with
μ ↔ ν, together with

�(q2, ν2) = �(q2, μ2)

ν2�(ν2, μ2)
, A(p2, ν2) = A(p2, μ2)

A(ν2, μ2)
.

(6.4)

On the other hand, the renormalization conditions of Eq. (3.17)
do not specify the value of Lsg(ν2, ν2). Instead, to deter-
mine Z3(ν

2)/Z3(μ
2), we employ the fundamental relation

Z3 = Z1ZA/ZF , derived directly from Eq. (3.14), together
with Eq. (6.3), which yield
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Fig. 15 Verification that our solution for λ
sg
1 (p2) satisfies the multi-

plicative renormalizability property given by Eq. (6.1)

Z3(ν
2)

Z3(μ2)
= ν2�(ν2, μ2)A(ν2, μ2)

λ
sg
1 (ν2, μ2)

, (6.5)

and so,

Lsg(s
2, ν2) = ν2�(ν2, μ2)A(ν2, μ2)

λ
sg
1 (ν2, μ2)

Lsg(s
2, μ2). (6.6)

The next step is to relate the values of αs(ν
2) and αs(μ

2),
which we achieve by invoking the effective coupling ĝ sg

1 (p2)

of Eq. (5.1). Since ĝ sg
1 (p2) is RGI, its value is the same when

computed with ingredients renormalized at either μ or ν, i.e.,

ĝ sg
1 (p2) = g(μ2)λ

sg
1 (p2, μ2)Z1/2(p2, μ2)

A(p2, μ2)

= g(ν2)λ
sg
1 (p2, ν2)Z1/2(p2, ν2)

A(p2, ν2)
. (6.7)

Therefore, setting p = ν in the above, using the renormaliza-
tion prescription of Eq. (3.17) with μ → ν, and g2 = 4παs ,
leads to

αs(ν
2) = αs(μ

2)
[
λ
sg
1 (ν2, μ2)

]2
A−2(ν2, μ2)ν2�(ν2, μ2).

(6.8)

Then, using the previously obtained curve for λ
sg
1 (p2, μ2),

shown in Fig. 13, together with the external inputs renormal-
ized at μ = 2 GeV, discussed in items (i–iv) of Sect. 4.3,
we get all required inputs renormalized at ν = 4.3 GeV
through Eqs. (6.4), (6.6) and (6.8). In particular, we find
αs(ν

2) = 0.28.
With all the necessary inputs in hand, we solve Eqs. (4.6)

and (4.7) again to obtain λ1(p2, ν2) at ν = 4.3 GeV. The
result is then rescaled to μ = 2 GeV using Eq. (6.1), and
compared to the λ1(p2, μ2) obtained by solving the SDE
directly at μ. The comparison is shown in Fig. 15, where the
blue continuous curve shows the result of the SDE renor-

malized at μ, whereas the black dashed corresponds to the
solutions of the SDE renormalized at ν and subsequently
rescaled to μ through Eq. (6.1). The nearly perfect coinci-
dence of the two curves confirms that indeed multiplicative
renormalizability is satisfied in our truncation.

7 Conclusions

In the present work we have studied the transversely-
projected quark-gluon vertex of QCD with two light degen-
erate quarks, in the Landau gauge. Our analysis is based on
the SDE derived within the 3PI formalism at the three-loop
level, where lattice results have been employed for all SDE
components, except the quark-gluon vertex itself.

Under certain simplifying assumptions, we obtain all
eight form factors, λi , of this vertex for arbitrary space-like
momenta. Importantly, the classical form factor, λ1, exhibits
a considerable angular dependence, displaying a large peak
at the “asymmetric limit”, which is absent in the “soft-gluon”
configuration (see Fig. 6). Moreover, our results confirm
the hierarchy of the RGI effective couplings ĝi (p2) found
in the functional renormalization group analysis of [10,46],
and the SDE study of [12]. In particular, ĝ sg

1 (p2) is clearly
dominant, its maximum value exceeding that of the second-
largest ĝ sg

7 (p2) by a factor of 3. In addition, in the soft-gluon
limit, the comparison with the lattice results of [61] reveals
excellent agreement for the classical form factor λ

sg
1 (p2), and

rather strong discrepancies for λ
sg
2 (p2) and λ

sg
6 (p2).

The aforementioned strong angular dependence of λ1 pre-
cludes the possibility of accurately describing λ1 in terms of
a single variable, e.g., s2 = (q2 + p2

1 + p2
2)/2, in contradis-

tinction to the approximate “planar degeneracy” displayed by
the form factors of the vertices with three (see Sect. 4.1) and
four-gluons [126,127]. In hindsight, this difference appears
natural, given that the planar degeneracy hinges crucially on
the Bose symmetry of the vertex in question, which is clearly
absent in the case of the quark-gluon vertex. To be sure, the
analysis of [121], carried out under the hypothesis of planar
degeneracy for the quark-gluon vertex, needs to be revis-
ited, and the full kinematic dependence of λ1(q, p2,−p1)

obtained here must be properly taken into account.
The numerical treatment in this work has been greatly sim-

plified by decoupling the system of eight integral equations
given in Eq. (4.6); in particular, the full dependence of all
SDE kernels on λ1 was maintained, while all other form fac-
tors were dropped. An evident improvement on the present
analysis may be achieved by restoring the full dependence of
the λi , and solving the resulting system of equations; calcu-
lations in this direction are already in progress.

It is especially challenging to couple the quark-gluon ver-
tex to the gap equation of the quark propagator, and solve the
resulting system self-consistently, maintaining the full kine-
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matic structure of the λi . Evidently, such a treatment would
determine dynamically the functions A(p2) and M(p2),
eliminating the need of using lattice inputs for them, as was
done here. Within such a framework, one may explore the
impact of the λi found in this work on the standard param-
eters describing dynamical chiral symmetry breaking, such
as the constituent quark mass, the pion decay constant, and
the light chiral condensate, see [12] and references therein.
In fact, it would be interesting to study the effect that the
pronounced angular dependence of λ1 might have on chiral
dynamics. We hope to be able to address some of these open
issues in the near future.
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Appendix A: Transformation rules from Minkowski to
Euclidean space

In this Appendix, we derive the relations between the form
factors of the Minkowski tensor basis of Eqs. (2.5) and
(2.6) and those of the direct Euclidean decompositions given
by [10,61].

As mentioned in the main text, the basis of Eq. (2.6)
ensures, by construction, the equivalence between our form
factors and those of [10], upon passing to Euclidean space.
In [10], the Euclidean vertex, I�

E

μ(qE, pE
2,−pE

1), is decom-
posed directly as

I�
E

μ(qE, pE
2,−pE

1)

=
8∑

i=1

λE
i (q

E, pE
2,−pE

1)Pμν(q
E)τ ν

i E(p
E
2,−pE

1), (A1)

with

τ ν
1 E(p

E
2,−pE

1) = γ ν
E ,

τ ν
2 E(p

E
2,−pE

1) = i(pE
1 + pE

2)
ν,

τ ν
3 E(p

E
2,−pE

1) = i(/pE
1 + /pE

2)γ
ν

E ,

τ ν
4 E(p

E
2,−pE

1) = i(/pE
2 − /pE

1)γ
ν

E ,

τ ν
5 E(p

E
2,−pE

1) = (/pE
1 − /pE

2)(p
E
1 + pE

2)
ν,

τ ν
6 E(p

E
2,−pE

1) = −(/pE
1 + /pE

2)(p
E
1 + pE

2)
ν,

τ ν
7 E(p

E
2,−pE

1) = −1

2
[/pE

1, /pE
2]γ ν

E ,

τ ν
8 E(p

E
2,−pE

1) = − i

2
[/pE

1, /pE
2](pE

1 + pE
2)

ν. (A2)

To demonstrate that the basis above is the Euclidean
equivalent of Eqs. (2.5) and (2.6), we follow the procedure
described in [57].

We begin by contracting Eq. (2.5) from the right8 by the
Minkowski Dirac matrix, γ μ, and transforming the result to
Euclidean space, to obtain

[
I�μ(q, p2,−p1)γ

μ
]

E
. Then, we

verify that the result is the same as contracting Eq. (A1) by
the Euclidean Dirac matrix, γ

μ
E , i.e.,

[
I�μ(q, p2,−p1)γ

μ
]

E
= I�

E

μ(q, p2,−p1)γ
μ

E . (A3)

For simplicity, we illustrate this procedure below by
retaining only the contributions from the form factors λ1 and
λ3; generalizing to the remaining λi is straightforward.

Contracting Eq. (2.5) from the right with γ μ one obtains

I�μ(q, p2,−p1)γ
μ = (d − 1) [λ1(q, p2,−p1)

+λ3(q, p2,−p1)(/p1 + /p2)
] + . . . ,

(A4)

where d is the spacetime dimension. Using the standard rules
to convert the above result to Euclidean space [6], and requir-
ing that the form factors do not change sign in the process,
i.e.,

/p → i /pE
, p2 → −p2

E,

λi (q, p2,−p1) → λE
i (q

E, pE
2,−pE

1), (A5)

8 Since γμτ
μ
7 = 0, contracting with γμ from the left leaves the

Euclidean form of τ
μ
7 undetermined.
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one gets that

[
I�μ(q, p2,−p1)γ

μ
]

E

= (d − 1)
[
λE

1(q
E, pE

2,−pE
1) − iλE

3(q
E, pE

2,−pE
1)

(/pE
1 + /pE

2)
] + · · · . (A6)

An additional step may be required, depending on the con-
ventions adopted for the Euclidean quark propagator. Apply-
ing Eq. (A5) to Eq. (2.14), we obtain S−1

0E (pE) = i /pE
− mq .

However, [10] adopts the convention that S−1
0E (pE) = i /pE

+
mq . These two conventions are related by the additional trans-
formation pE → −pE [6], up to an overall sign that may be
reabsorbed in the definition of the propagator. With this extra
step, we obtain

[
I�μ(q, p2,−p1)γ

μ
]

E

= (d − 1)
[
λE

1(q
E, pE

2,−pE
1)

+iλE
3(q

E, pE
2,−pE

1)(/p
E
1 + /pE

2)
] + · · · . (A7)

The above result is exactly what we obtain when contracting
the Euclidean form in Eq. (A1) with γ

μ
E from the right, estab-

lishing that Eqs. (A1) and (A2) is the Euclidean equivalent
of Eqs. (2.5) and (2.6).

The same procedure can be applied in the soft-gluon con-
figuration, to relate our form factors λ

sg
i (p2) with the λL

j (p
2
E)

computed on the lattice study of [61].
Specifically, in the soft-gluon limit, Eq. (2.5) reduces to

I�μ(0, p,−p) = γμλ
sg
1 (p2) + 2pμλ

sg
2 (p2)

+ 4/p pμλ
sg
6 (p2). (A8)

Note that, although in this kinematic limit the tensor
τ ν

3 (p,−p) = 2/pγ ν is non-zero, the associated form fac-
tor λ

sg
3 (p2) vanishes due to charge conjugation symmetry, as

discussed below Eq. (2.10).
Then, contracting Eq. (A8) with γ ν , passing to Euclidean

space through Eq. (A5), and using pE → −pE to account for
the convention S−1

0E (pE) = i /pE
+ mq used in [61], yields

[
I�μ(0, pE,−pE)γ

μ
]

E

= dλ
sg
1E(p

2
E) − 2i /pE

λ
sg
2E(p

2
E) − 4p2

Eλ
sg
6E(p

2
E), (A9)

where we note that the last equality in Eq. (A5) implies
λ
sg
iE(p

2
E) = λ

sg
i (−p2

E).
Finally, substituting Eq. (A9) into Eq. (A3), it follows that

the Minkowski basis for the soft-gluon kinematics in Eq. (A8)
is equivalent to decomposing the vertex directly in Euclidean
space as

I�
E

μ(0, pE,−pE)

= γ E
μλ

sg
1E(p

2
E) − 2i pE

μλ
sg
2E(p

2
E) − 4/pE pE

μλ
sg
6E(p

2
E). (A10)

The above is precisely the same as the basis used in the lattice
study of [61], with the identification

λ
sg
1E(p

2
E) = λL

1 (p2
E), λ

sg
6E(p

2
E) = λL

2 (p2
E),

λ
sg
2E(p

2
E) = λL

3 (p2
E). (A11)

References

1. W.J. Marciano, H. Pagels, Phys. Rep. 36, 137 (1978). https://doi.
org/10.1016/0370-1573(78)90208-9

2. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961). https://
doi.org/10.1103/PhysRev.122.345

3. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961). https://
doi.org/10.1103/PhysRev.124.246

4. K.D. Lane, Phys. Rev. D 10, 2605 (1974). https://doi.org/10.1103/
PhysRevD.10.2605

5. H.D. Politzer, Nucl. Phys. B 117, 397 (1976). https://doi.org/10.
1016/0550-3213(76)90405-3

6. C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33, 477
(1994). https://doi.org/10.1016/0146-6410(94)90049-3

7. P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003). https://
doi.org/10.1142/S0218301303001326

8. C.S. Fischer, R. Alkofer, Phys. Rev. D 67, 094020 (2003). https://
doi.org/10.1103/PhysRevD.67.094020

9. A.C. Aguilar, J. Papavassiliou, Phys. Rev. D 83, 014013 (2011).
https://doi.org/10.1103/PhysRevD.83.014013

10. M. Mitter, J.M. Pawlowski, N. Strodthoff, Phys. Rev. D 91,
054035 (2015). https://doi.org/10.1103/PhysRevD.91.054035

11. A.C. Aguilar, J.C. Cardona, M.N. Ferreira, J. Papavassiliou, Phys.
Rev. D 98, 014002 (2018). https://doi.org/10.1103/PhysRevD.98.
014002

12. F. Gao, J. Papavassiliou, J.M. Pawlowski, Phys. Rev. D 103,
094013 (2021). https://doi.org/10.1103/PhysRevD.103.094013

13. J.R. Lessa, F.E. Serna, B. El-Bennich, A. Bashir, O. Oliveira, Phys.
Rev. D 107, 074017 (2023). https://doi.org/10.1103/PhysRevD.
107.074017

14. A. Bender, C.D. Roberts, L. Von Smekal, Phys. Lett. B 380, 7
(1996). https://doi.org/10.1016/0370-2693(96)00372-3

15. P. Maris, P.C. Tandy, Phys. Rev. C 60, 055214 (1999). https://doi.
org/10.1103/PhysRevC.60.055214

16. A. Bender, W. Detmold, C. Roberts, A.W. Thomas, Phys.
Rev. C 65, 065203 (2002). https://doi.org/10.1103/PhysRevC.65.
065203

17. A. Holl, A. Krassnigg, C.D. Roberts, Nucl. Phys. Proc. Suppl. 141,
47 (2005). https://doi.org/10.1016/j.nuclphysbps.2004.12.009

18. L. Chang, C.D. Roberts, Phys. Rev. Lett. 103, 081601 (2009).
https://doi.org/10.1103/PhysRevLett.103.081601

19. R. Williams, Eur. Phys. J. A 51, 57 (2015). https://doi.org/10.
1140/epja/i2015-15057-4

20. R. Williams, C.S. Fischer, W. Heupel, Phys. Rev. D 93, 034026
(2016). https://doi.org/10.1103/PhysRevD.93.034026

21. H. Sanchis-Alepuz, R. Williams, Phys. Lett. B 749, 592 (2015).
https://doi.org/10.1016/j.physletb.2015.08.067

22. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S.
Fischer, Prog. Part. Nucl. Phys. 91, 1 (2016). https://doi.org/10.
1016/j.ppnp.2016.07.001

23. M. Gomez-Rocha, T. Hilger, A. Krassnigg, Phys. Rev. D 92,
054030 (2015). https://doi.org/10.1103/PhysRevD.92.054030

123

https://doi.org/10.1016/0370-1573(78)90208-9
https://doi.org/10.1016/0370-1573(78)90208-9
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1103/PhysRevD.10.2605
https://doi.org/10.1103/PhysRevD.10.2605
https://doi.org/10.1016/0550-3213(76)90405-3
https://doi.org/10.1016/0550-3213(76)90405-3
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1142/S0218301303001326
https://doi.org/10.1142/S0218301303001326
https://doi.org/10.1103/PhysRevD.67.094020
https://doi.org/10.1103/PhysRevD.67.094020
https://doi.org/10.1103/PhysRevD.83.014013
https://doi.org/10.1103/PhysRevD.91.054035
https://doi.org/10.1103/PhysRevD.98.014002
https://doi.org/10.1103/PhysRevD.98.014002
https://doi.org/10.1103/PhysRevD.103.094013
https://doi.org/10.1103/PhysRevD.107.074017
https://doi.org/10.1103/PhysRevD.107.074017
https://doi.org/10.1016/0370-2693(96)00372-3
https://doi.org/10.1103/PhysRevC.60.055214
https://doi.org/10.1103/PhysRevC.60.055214
https://doi.org/10.1103/PhysRevC.65.065203
https://doi.org/10.1103/PhysRevC.65.065203
https://doi.org/10.1016/j.nuclphysbps.2004.12.009
https://doi.org/10.1103/PhysRevLett.103.081601
https://doi.org/10.1140/epja/i2015-15057-4
https://doi.org/10.1140/epja/i2015-15057-4
https://doi.org/10.1103/PhysRevD.93.034026
https://doi.org/10.1016/j.physletb.2015.08.067
https://doi.org/10.1016/j.ppnp.2016.07.001
https://doi.org/10.1016/j.ppnp.2016.07.001
https://doi.org/10.1103/PhysRevD.92.054030


1231 Page 20 of 21 Eur. Phys. J. C (2024) 84 :1231

24. C.D. Roberts, S.M. Schmidt, Prog. Part. Nucl. Phys.45, S1 (2000).
https://doi.org/10.1016/S0146-6410(00)90011-5

25. J. Braun, L.M. Haas, F. Marhauser, J.M. Pawlowski, Phys. Rev.
Lett. 106, 022002 (2011). https://doi.org/10.1103/PhysRevLett.
106.022002

26. K. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74, 014001 (2011).
https://doi.org/10.1088/0034-4885/74/1/014001

27. C.S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019). https://doi.
org/10.1016/j.ppnp.2019.01.002

28. W.-J. Fu, J.M. Pawlowski, F. Rennecke, Phys. Rev. D 101, 054032
(2020). https://doi.org/10.1103/PhysRevD.101.054032

29. F. Gao, J.M. Pawlowski, Phys. Rev. D 102, 034027 (2020). https://
doi.org/10.1103/PhysRevD.102.034027

30. J.S. Ball, T.-W. Chiu, Phys. Rev. D 22, 2542 (1980). https://doi.
org/10.1103/PhysRevD.22.2542

31. A. Kizilersu, M. Reenders, M. Pennington, Phys. Rev. D 52, 1242
(1995). https://doi.org/10.1103/PhysRevD.52.1242

32. A.I. Davydychev, P. Osland, L. Saks, Phys. Rev. D 63, 014022
(2001). https://doi.org/10.1103/PhysRevD.63.014022

33. J. Gracey, Phys. Rev. D 90, 025014 (2014). https://doi.org/10.
1103/PhysRevD.90.025014

34. J.A. Gracey, Phys. Rev. D 84, 085011 (2011). https://doi.org/10.
1103/PhysRevD.84.085011

35. R. Bermudez, L. Albino, L.X. Gutiérrez-Guerrero, M.E. Tejeda-
Yeomans, A. Bashir, Phys. Rev. D 95, 034041 (2017). https://doi.
org/10.1103/PhysRevD.95.034041

36. M. Bhagwat, P. Tandy, Phys. Rev. D 70, 094039 (2004). https://
doi.org/10.1103/PhysRevD.70.094039

37. F.J. Llanes-Estrada, C.S. Fischer, R. Alkofer, Nucl. Phys. Proc.
Suppl. 152, 43 (2006). https://doi.org/10.1016/j.nuclphysbps.
2005.08.008

38. H.H. Matevosyan, A.W. Thomas, P.C. Tandy, Phys. Rev. C 75,
045201 (2007). https://doi.org/10.1103/PhysRevC.75.045201

39. C.S. Fischer, J. Phys. G 32, R253 (2006). https://doi.org/10.1088/
0954-3899/32/8/R02

40. S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, S.M. Schmidt, Phys.
Lett. B 722, 384 (2013). https://doi.org/10.1016/j.physletb.2013.
04.034

41. D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, C.D. Roberts,
Phys. Rev. D 95, 031501 (2017). https://doi.org/10.1103/
PhysRevD.95.031501

42. M. Hopfer, A. Windisch, R. Alkofer, PoS ConfinementX, 073
(2012). https://doi.org/10.22323/1.171.0073

43. E. Rojas, J. de Melo, B. El-Bennich, O. Oliveira, T. Frederico,
J. High Energy Phys. 10, 193 (2013). https://doi.org/10.1007/
JHEP10(2013)193

44. M. Peláez, M. Tissier, N. Wschebor, Phys. Rev. D 92, 045012
(2015). https://doi.org/10.1103/PhysRevD.92.045012

45. R. Alkofer, C.S. Fischer, F.J. Llanes-Estrada, K. Schwenzer, Ann.
Phys. 324, 106 (2009). https://doi.org/10.1016/j.aop.2008.07.001

46. A.K. Cyrol, M. Mitter, J.M. Pawlowski, N. Strodthoff, Phys.
Rev. D 97, 054006 (2018). https://doi.org/10.1103/PhysRevD.97.
054006

47. A.C. Aguilar, D. Binosi, D. Ibañez, J. Papavassiliou, Phys.
Rev. D 90, 065027 (2014). https://doi.org/10.1103/PhysRevD.90.
065027

48. A.C. Aguilar, J.C. Cardona, M.N. Ferreira, J. Papavassiliou, Phys.
Rev. D 96, 014029 (2017). https://doi.org/10.1103/PhysRevD.96.
014029

49. O. Oliveira, W. de Paula, T. Frederico, J.P.B.C. de Melo,
Eur. Phys. J. C 79, 116 (2019). https://doi.org/10.1140/epjc/
s10052-019-6617-7

50. L. Albino, A. Bashir, L.X.G. Guerrero, B.E. Bennich, E. Rojas,
Phys. Rev. D 100, 054028 (2019). https://doi.org/10.1103/
PhysRevD.100.054028

51. C. Tang, F. Gao, Y.-X. Liu, Phys. Rev. D 100, 056001 (2019).
https://doi.org/10.1103/PhysRevD.100.056001

52. M.Q. Huber, Phys. Rep. 879, 1 (2020). https://doi.org/10.1016/j.
physrep.2020.04.004

53. L. Albino, A. Bashir, B. El-Bennich, E. Rojas, F.E. Serna,
R.C. da Silveira, JHEP 11, 196 (2021). https://doi.org/10.1007/
JHEP11(2021)196

54. A. Windisch, M. Hopfer, R. Alkofer, Acta Phys. Polon. Suppl. 6,
347 (2013). https://doi.org/10.5506/APhysPolBSupp.6.347

55. O. Oliveira, T. Frederico, W. de Paula, Eur. Phys. J. C 80, 484
(2020). https://doi.org/10.1140/epjc/s10052-020-8037-0

56. J. Skullerud, P.O. Bowman, A. Kizilersu, in5th InternationalCon-
ference on Quark Confinement and the Hadron Spectrum, pp.
270–272 (2002). https://doi.org/10.1142/9789812704269_0033

57. J. Skullerud, A. Kizilersu, J. High Energy Phys. 09, 013 (2002).
https://doi.org/10.1088/1126-6708/2002/09/013

58. J.I. Skullerud, P.O. Bowman, A. Kizilersu, D.B. Leinweber, A.G.
Williams, J. High Energy Phys. 04, 047 (2003). https://doi.org/
10.1088/1126-6708/2003/04/047

59. J.I. Skullerud, P.O. Bowman, A. Kizilersu, D.B. Leinweber, A.G.
Williams, Nucl. Phys. Proc. Suppl. 141, 244 (2005). https://doi.
org/10.1016/j.nuclphysbps.2004.12.037

60. H.-W. Lin, Phys. Rev. D 73, 094511 (2006). https://doi.org/10.
1103/PhysRevD.73.094511

61. A. Kızılersü, O. Oliveira, P.J. Silva, J.-I. Skullerud, A. Stern-
beck, Phys. Rev. D 103, 114515 (2021). https://doi.org/10.1103/
PhysRevD.103.114515

62. A. Kizilersu, D.B. Leinweber, J.-I. Skullerud, A.G. Williams,
Eur. Phys. J. C 50, 871 (2007). https://doi.org/10.1140/epjc/
s10052-007-0250-6

63. A. Sternbeck, P.-H. Balduf, A. Kizilersu, O. Oliveira, P. J. Silva,
J.-I. Skullerud, A.G. Williams, PoS LATTICE2016, 349 (2017).
https://doi.org/10.22323/1.256.0349

64. J.-I. Skullerud, A. Kızılersü, O. Oliveira, P. Silva, A. Sternbeck,
PoSLATTICE2021, 305 (2022). https://doi.org/10.22323/1.396.
0305

65. O. Oliveira, A. Kizilersu, P.J. Silva, J.-I. Skullerud, A. Sternbeck,
A.G. Williams, Acta Phys. Polon. Suppl. 9, 363 (2016). https://
doi.org/10.5506/APhysPolBSupp.9.363

66. O. Oliveira, T. Frederico, W. de Paula, J.P.B.C. de Melo,
Eur. Phys. J. C 78, 553 (2018). https://doi.org/10.1140/epjc/
s10052-018-6037-0

67. J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428
(1974). https://doi.org/10.1103/PhysRevD.10.2428

68. J. Cornwall, R. Norton, Phys. Rev. D 8, 3338 (1973). https://doi.
org/10.1103/PhysRevD.8.3338

69. J. Berges, Phys. Rev. D 70, 105010 (2004). https://doi.org/10.
1103/PhysRevD.70.105010

70. J. Berges, AIP Conf. Proc. 739, 3 (2004). https://doi.org/10.1063/
1.1843591

71. M.C.A. York, G.D. Moore, M. Tassler, JHEP 06, 077 (2012).
https://doi.org/10.1007/JHEP06(2012)077

72. M.E. Carrington, Y. Guo, Phys. Rev. D 83, 016006 (2011). https://
doi.org/10.1103/PhysRevD.83.016006

73. G. Eichmann, R. Williams, R. Alkofer, M. Vujinovic, Phys.
Rev. D 89, 105014 (2014). https://doi.org/10.1103/PhysRevD.89.
105014

74. M.N. Ferreira, J. Papavassiliou, Particles 6, 312 (2023). https://
doi.org/10.3390/particles6010017

75. A.C. Aguilar, M.N. Ferreira, J. Papavassiliou, L.R. Santos,
Eur. Phys. J. C 83, 549 (2023). https://doi.org/10.1140/epjc/
s10052-023-11732-3

76. F. Pinto-Gómez, F. De Soto, M.N. Ferreira, J. Papavassiliou, J.
Rodríguez-Quintero, Phys. Lett. B 838, 137737 (2023). https://
doi.org/10.1016/j.physletb.2023.137737

123

https://doi.org/10.1016/S0146-6410(00)90011-5
https://doi.org/10.1103/PhysRevLett.106.022002
https://doi.org/10.1103/PhysRevLett.106.022002
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1016/j.ppnp.2019.01.002
https://doi.org/10.1016/j.ppnp.2019.01.002
https://doi.org/10.1103/PhysRevD.101.054032
https://doi.org/10.1103/PhysRevD.102.034027
https://doi.org/10.1103/PhysRevD.102.034027
https://doi.org/10.1103/PhysRevD.22.2542
https://doi.org/10.1103/PhysRevD.22.2542
https://doi.org/10.1103/PhysRevD.52.1242
https://doi.org/10.1103/PhysRevD.63.014022
https://doi.org/10.1103/PhysRevD.90.025014
https://doi.org/10.1103/PhysRevD.90.025014
https://doi.org/10.1103/PhysRevD.84.085011
https://doi.org/10.1103/PhysRevD.84.085011
https://doi.org/10.1103/PhysRevD.95.034041
https://doi.org/10.1103/PhysRevD.95.034041
https://doi.org/10.1103/PhysRevD.70.094039
https://doi.org/10.1103/PhysRevD.70.094039
https://doi.org/10.1016/j.nuclphysbps.2005.08.008
https://doi.org/10.1016/j.nuclphysbps.2005.08.008
https://doi.org/10.1103/PhysRevC.75.045201
https://doi.org/10.1088/0954-3899/32/8/R02
https://doi.org/10.1088/0954-3899/32/8/R02
https://doi.org/10.1016/j.physletb.2013.04.034
https://doi.org/10.1016/j.physletb.2013.04.034
https://doi.org/10.1103/PhysRevD.95.031501
https://doi.org/10.1103/PhysRevD.95.031501
https://doi.org/10.22323/1.171.0073
https://doi.org/10.1007/JHEP10(2013)193
https://doi.org/10.1007/JHEP10(2013)193
https://doi.org/10.1103/PhysRevD.92.045012
https://doi.org/10.1016/j.aop.2008.07.001
https://doi.org/10.1103/PhysRevD.97.054006
https://doi.org/10.1103/PhysRevD.97.054006
https://doi.org/10.1103/PhysRevD.90.065027
https://doi.org/10.1103/PhysRevD.90.065027
https://doi.org/10.1103/PhysRevD.96.014029
https://doi.org/10.1103/PhysRevD.96.014029
https://doi.org/10.1140/epjc/s10052-019-6617-7
https://doi.org/10.1140/epjc/s10052-019-6617-7
https://doi.org/10.1103/PhysRevD.100.054028
https://doi.org/10.1103/PhysRevD.100.054028
https://doi.org/10.1103/PhysRevD.100.056001
https://doi.org/10.1016/j.physrep.2020.04.004
https://doi.org/10.1016/j.physrep.2020.04.004
https://doi.org/10.1007/JHEP11(2021)196
https://doi.org/10.1007/JHEP11(2021)196
https://doi.org/10.5506/APhysPolBSupp.6.347
https://doi.org/10.1140/epjc/s10052-020-8037-0
https://doi.org/10.1142/9789812704269_0033
https://doi.org/10.1088/1126-6708/2002/09/013
https://doi.org/10.1088/1126-6708/2003/04/047
https://doi.org/10.1088/1126-6708/2003/04/047
https://doi.org/10.1016/j.nuclphysbps.2004.12.037
https://doi.org/10.1016/j.nuclphysbps.2004.12.037
https://doi.org/10.1103/PhysRevD.73.094511
https://doi.org/10.1103/PhysRevD.73.094511
https://doi.org/10.1103/PhysRevD.103.114515
https://doi.org/10.1103/PhysRevD.103.114515
https://doi.org/10.1140/epjc/s10052-007-0250-6
https://doi.org/10.1140/epjc/s10052-007-0250-6
https://doi.org/10.22323/1.256.0349
https://doi.org/10.22323/1.396.0305
https://doi.org/10.22323/1.396.0305
https://doi.org/10.5506/APhysPolBSupp.9.363
https://doi.org/10.5506/APhysPolBSupp.9.363
https://doi.org/10.1140/epjc/s10052-018-6037-0
https://doi.org/10.1140/epjc/s10052-018-6037-0
https://doi.org/10.1103/PhysRevD.10.2428
https://doi.org/10.1103/PhysRevD.8.3338
https://doi.org/10.1103/PhysRevD.8.3338
https://doi.org/10.1103/PhysRevD.70.105010
https://doi.org/10.1103/PhysRevD.70.105010
https://doi.org/10.1063/1.1843591
https://doi.org/10.1063/1.1843591
https://doi.org/10.1007/JHEP06(2012)077
https://doi.org/10.1103/PhysRevD.83.016006
https://doi.org/10.1103/PhysRevD.83.016006
https://doi.org/10.1103/PhysRevD.89.105014
https://doi.org/10.1103/PhysRevD.89.105014
https://doi.org/10.3390/particles6010017
https://doi.org/10.3390/particles6010017
https://doi.org/10.1140/epjc/s10052-023-11732-3
https://doi.org/10.1140/epjc/s10052-023-11732-3
https://doi.org/10.1016/j.physletb.2023.137737
https://doi.org/10.1016/j.physletb.2023.137737


Eur. Phys. J. C (2024) 84 :1231 Page 21 of 21 1231

77. F. Pinto-Gómez, F. De Soto, J. Rodríguez-Quintero, Phys. Rev.
D 110, 014005 (2024). https://doi.org/10.1103/PhysRevD.110.
014005

78. A.L. Blum, R. Alkofer, M.Q. Huber, A. Windisch, EPJ
Web Conf. 137, 03001 (2017). https://doi.org/10.1051/epjconf/
201713703001

79. A.L. Blum, Three-gluon vertex and quark-gluon vertex func-
tions in the Landau gauge, Ph.D. thesis, Graz U. (2017). https://
inspirehep.net/files/8819b2a2c94d412a8367ce363c2b7b47

80. R. Alkofer, Symmetry 15, 1787 (2023). https://doi.org/10.3390/
sym15091787

81. A.C. Aguilar, D. Binosi, D. Ibañez, J. Papavassiliou, Phys.
Rev. D 89, 085008 (2014). https://doi.org/10.1103/PhysRevD.89.
085008

82. A. Blum, M.Q. Huber, M. Mitter, L. von Smekal, Phys. Rev. D 89,
061703 (2014). https://doi.org/10.1103/PhysRevD.89.061703

83. A.L. Blum, R. Alkofer, M.Q. Huber, A. Windisch, Acta
Phys. Polon. Suppl. 8, 321 (2015). https://doi.org/10.5506/
APhysPolBSupp.8.321

84. M.Q. Huber, Phys. Rev. D 93, 085033 (2016). https://doi.org/10.
1103/PhysRevD.93.085033

85. A.K. Cyrol, L. Fister, M. Mitter, J.M. Pawlowski, N. Strodthoff,
Phys. Rev. D 94, 054005 (2016). https://doi.org/10.1103/
PhysRevD.94.054005

86. L. Corell, A.K. Cyrol, M. Mitter, J.M. Pawlowski, N.
Strodthoff, SciPost Phys. 5, 066 (2018). https://doi.org/10.21468/
SciPostPhys.5.6.066

87. A.C. Aguilar, M.N. Ferreira, C.T. Figueiredo, J. Papavassil-
iou, Phys. Rev. D 99, 094010 (2019). https://doi.org/10.1103/
PhysRevD.99.094010

88. M.Q. Huber, Phys. Rev. D 101, 114009 (2020). https://doi.org/
10.1103/PhysRevD.101.114009

89. J. Papavassiliou, A.C. Aguilar, M.N. Ferreira, Rev. Mex.
Fis. Suppl. 3, 0308112 (2022). https://doi.org/10.31349/
SuplRevMexFis.3.0308112

90. N. Barrios, M. Peláez, U. Reinosa, Phys. Rev. D 106, 114039
(2022). https://doi.org/10.1103/PhysRevD.106.114039

91. A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J. Papavassil-
iou, J. Rodriguez-Quintero, S. Zafeiropoulos, Phys. Lett. B 761,
444 (2016). https://doi.org/10.1016/j.physletb.2016.08.065

92. A.G. Duarte, O. Oliveira, P.J. Silva, Phys. Rev. D 94, 074502
(2016). https://doi.org/10.1103/PhysRevD.94.074502

93. P. Boucaud, F. De Soto, J. Rodríguez-Quintero, S. Zafeiropou-
los, Phys. Rev. D 95, 114503 (2017). https://doi.org/10.1103/
PhysRevD.95.114503

94. M. Vujinovic, T. Mendes, Phys. Rev. D 99, 034501 (2019). https://
doi.org/10.1103/PhysRevD.99.034501

95. A.C. Aguilar, F. De Soto, M.N. Ferreira, J. Papavassiliou, J.
Rodríguez-Quintero, S. Zafeiropoulos, Eur. Phys. J. C 80, 154
(2020). https://doi.org/10.1140/epjc/s10052-020-7741-0

96. A.C. Aguilar, F. De Soto, M.N. Ferreira, J. Papavassiliou, J.
Rodríguez-Quintero, Phys. Lett. B 818, 136352 (2021). https://
doi.org/10.1016/j.physletb.2021.136352

97. G.T.R. Catumba, O. Oliveira, P.J. Silva, PoSLATTICE2021, 467
(2022). https://doi.org/10.22323/1.396.0467

98. L. von Smekal, R. Alkofer, A. Hauck, Phys. Rev. Lett. 79, 3591
(1997). https://doi.org/10.1103/PhysRevLett.79.3591

99. A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 78, 025010
(2008). https://doi.org/10.1103/PhysRevD.78.025010

100. C.S. Fischer, A. Maas, J.M. Pawlowski, Ann. Phys. 324, 2408
(2009). https://doi.org/10.1016/j.aop.2009.07.009

101. A.C. Aguilar, C.O. Ambrósio, F. De Soto, M.N. Ferreira, B.M.
Oliveira, J. Papavassiliou, J. Rodríguez-Quintero, Phys. Rev.
D 104, 054028 (2021). https://doi.org/10.1103/PhysRevD.104.
054028

102. A. Cucchieri, T. Mendes, PoS LATTICE2007, 297 (2007).
https://doi.org/10.22323/1.042.0297

103. A. Cucchieri, T. Mendes, Phys. Rev. Lett. 100, 241601 (2008).
https://doi.org/10.1103/PhysRevLett.100.241601

104. I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker, A. Sternbeck,
PoSLATTICE2007, 290 (2007). https://doi.org/10.22323/1.042.
0290

105. I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker, A. Sternbeck,
Phys. Lett. B 676, 69 (2009). https://doi.org/10.1016/j.physletb.
2009.04.076

106. O. Oliveira, P. Silva, PoS LAT2009, 226 (2009). https://doi.org/
10.22323/1.091.0226

107. O. Oliveira, P. Bicudo, J. Phys. G G38, 045003 (2011). https://
doi.org/10.1088/0954-3899/38/4/045003

108. A. Cucchieri, T. Mendes, Phys. Rev. D 81, 016005 (2010). https://
doi.org/10.1103/PhysRevD.81.016005

109. P. Boucaud, F. De Soto, K. Raya, J. Rodriguez-Quintero, S.
Zafeiropoulos, Phys. Rev. D 98, 114515 (2018). https://doi.org/
10.1103/PhysRevD.98.114515

110. A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, J. Rodriguez-
Quintero, Phys. Rev. D 86, 074512 (2012). https://doi.org/10.
1103/PhysRevD.86.074512

111. D. Binosi, C.D. Roberts, J. Rodriguez-Quintero, Phys. Rev. D 95,
114009 (2017). https://doi.org/10.1103/PhysRevD.95.114009

112. O. Oliveira, P.J. Silva, J.-I. Skullerud, A. Sternbeck, Phys.
Rev. D 99, 094506 (2019). https://doi.org/10.1103/PhysRevD.99.
094506

113. J. Taylor, Nucl. Phys. B 33, 436 (1971). https://doi.org/10.1016/
0550-3213(71)90297-5

114. A. Slavnov, Theor. Math. Phys. 10, 99 (1972). https://doi.org/10.
1007/BF01090719

115. S. Aoki et al. [Flavour Lattice Averaging Group], Eur. Phys. J. C
80, 113 (2020). https://doi.org/10.1140/epjc/s10052-019-7354-7

116. F. Gao, J.M. Pawlowski, Phys. Lett. B 820, 136584 (2021). https://
doi.org/10.1016/j.physletb.2021.136584

117. N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J.M. Pawlowski,
M. Tissier, N. Wschebor, Phys. Rep. 910, 1 (2021). https://doi.
org/10.1016/j.physrep.2021.01.001

118. W. Celmaster, R.J. Gonsalves, Phys. Rev. D 20, 1420 (1979).
https://doi.org/10.1103/PhysRevD.20.1420

119. A. Hasenfratz, P. Hasenfratz, Phys. Lett. B 93, 165 (1980). https://
doi.org/10.1016/0370-2693(80)90118-5

120. E. Braaten, J.P. Leveille, Phys. Rev. D 24, 1369 (1981). https://
doi.org/10.1103/PhysRevD.24.1369

121. A.C. Aguilar, M.N. Ferreira, D. Ibañez, J. Papavassiliou,
Eur. Phys. J. C 83, 967 (2023). https://doi.org/10.1140/epjc/
s10052-023-12103-8

122. J. Berntsen, T.O. Espelid, A. Genz, A.C.M. Trans, Math. Softw.
17, 452 (1991). https://doi.org/10.1145/210232.210234

123. C. de Boor, A Practical Guide to Splines (Springer, New York,
2001)

124. M.Q. Huber, L. von Smekal, J. High Energy Phys. 04, 149 (2013).
https://doi.org/10.1007/JHEP04(2013)149

125. F.J. Llanes-Estrada, C.S. Fischer, R. Alkofer, Nucl. Phys. B Proc.
Suppl. 152, 43 (2006). https://doi.org/10.1016/j.nuclphysbps.
2005.08.008

126. A.C. Aguilar, M.N. Ferreira, J. Papavassiliou, L.R. Santos,
Eur. Phys. J. C 84, 676 (2024). https://doi.org/10.1140/epjc/
s10052-024-12970-9

127. A.C. Aguilar, F. De Soto, M.N. Ferreira, J. Papavassiliou, F. Pinto-
Gómez, J. Rodríguez-Quintero, L.R. Santos, arXiv:2408.06135
[hep-ph] (2024)

123

https://doi.org/10.1103/PhysRevD.110.014005
https://doi.org/10.1103/PhysRevD.110.014005
https://doi.org/10.1051/epjconf/201713703001
https://doi.org/10.1051/epjconf/201713703001
https://inspirehep.net/files/8819b2a2c94d412a8367ce363c2b7b47
https://inspirehep.net/files/8819b2a2c94d412a8367ce363c2b7b47
https://doi.org/10.3390/sym15091787
https://doi.org/10.3390/sym15091787
https://doi.org/10.1103/PhysRevD.89.085008
https://doi.org/10.1103/PhysRevD.89.085008
https://doi.org/10.1103/PhysRevD.89.061703
https://doi.org/10.5506/APhysPolBSupp.8.321
https://doi.org/10.5506/APhysPolBSupp.8.321
https://doi.org/10.1103/PhysRevD.93.085033
https://doi.org/10.1103/PhysRevD.93.085033
https://doi.org/10.1103/PhysRevD.94.054005
https://doi.org/10.1103/PhysRevD.94.054005
https://doi.org/10.21468/SciPostPhys.5.6.066
https://doi.org/10.21468/SciPostPhys.5.6.066
https://doi.org/10.1103/PhysRevD.99.094010
https://doi.org/10.1103/PhysRevD.99.094010
https://doi.org/10.1103/PhysRevD.101.114009
https://doi.org/10.1103/PhysRevD.101.114009
https://doi.org/10.31349/SuplRevMexFis.3.0308112
https://doi.org/10.31349/SuplRevMexFis.3.0308112
https://doi.org/10.1103/PhysRevD.106.114039
https://doi.org/10.1016/j.physletb.2016.08.065
https://doi.org/10.1103/PhysRevD.94.074502
https://doi.org/10.1103/PhysRevD.95.114503
https://doi.org/10.1103/PhysRevD.95.114503
https://doi.org/10.1103/PhysRevD.99.034501
https://doi.org/10.1103/PhysRevD.99.034501
https://doi.org/10.1140/epjc/s10052-020-7741-0
https://doi.org/10.1016/j.physletb.2021.136352
https://doi.org/10.1016/j.physletb.2021.136352
https://doi.org/10.22323/1.396.0467
https://doi.org/10.1103/PhysRevLett.79.3591
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1016/j.aop.2009.07.009
https://doi.org/10.1103/PhysRevD.104.054028
https://doi.org/10.1103/PhysRevD.104.054028
https://doi.org/10.22323/1.042.0297
https://doi.org/10.1103/PhysRevLett.100.241601
https://doi.org/10.22323/1.042.0290
https://doi.org/10.22323/1.042.0290
https://doi.org/10.1016/j.physletb.2009.04.076
https://doi.org/10.1016/j.physletb.2009.04.076
https://doi.org/10.22323/1.091.0226
https://doi.org/10.22323/1.091.0226
https://doi.org/10.1088/0954-3899/38/4/045003
https://doi.org/10.1088/0954-3899/38/4/045003
https://doi.org/10.1103/PhysRevD.81.016005
https://doi.org/10.1103/PhysRevD.81.016005
https://doi.org/10.1103/PhysRevD.98.114515
https://doi.org/10.1103/PhysRevD.98.114515
https://doi.org/10.1103/PhysRevD.86.074512
https://doi.org/10.1103/PhysRevD.86.074512
https://doi.org/10.1103/PhysRevD.95.114009
https://doi.org/10.1103/PhysRevD.99.094506
https://doi.org/10.1103/PhysRevD.99.094506
https://doi.org/10.1016/0550-3213(71)90297-5
https://doi.org/10.1016/0550-3213(71)90297-5
https://doi.org/10.1007/BF01090719
https://doi.org/10.1007/BF01090719
https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1016/j.physletb.2021.136584
https://doi.org/10.1016/j.physletb.2021.136584
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1103/PhysRevD.20.1420
https://doi.org/10.1016/0370-2693(80)90118-5
https://doi.org/10.1016/0370-2693(80)90118-5
https://doi.org/10.1103/PhysRevD.24.1369
https://doi.org/10.1103/PhysRevD.24.1369
https://doi.org/10.1140/epjc/s10052-023-12103-8
https://doi.org/10.1140/epjc/s10052-023-12103-8
https://doi.org/10.1145/210232.210234
https://doi.org/10.1007/JHEP04(2013)149
https://doi.org/10.1016/j.nuclphysbps.2005.08.008
https://doi.org/10.1016/j.nuclphysbps.2005.08.008
https://doi.org/10.1140/epjc/s10052-024-12970-9
https://doi.org/10.1140/epjc/s10052-024-12970-9
http://arxiv.org/abs/2408.06135

	Infrared properties of the quark-gluon vertex in general kinematics
	Abstract 
	1 Introduction
	2 Notation and main ingredients
	3 SDE of the quark-gluon vertex
	3.1 General structure
	3.2 Renormalization

	4 Numerical setup and inputs
	4.1 Simplifications
	4.2 Euclidean space
	4.3 Inputs

	5 Results
	5.1 Classical (tree-level) form factor
	5.2 Non-classical form factors
	5.3 The quark-gluon effective couplings
	5.4 Varying the inputs
	5.5 Comparison with the lattice

	6 Verifying multiplicative renormalizability
	7 Conclusions
	Acknowledgements
	Appendix A: Transformation rules from Minkowski to Euclidean space
	References




