©=_d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2021). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

12th Int. Particle Acc. Conf.
ISBN: 978-3-95450-214-1

IPAC2021, Campinas, SP, Brazil
ISSN: 2673-5490

JACoW Publishing
doi:10.18429/JACoW-IPAC2021-THPAB190

OPTIMISING AND EXTENDING A SINGLE-PARTICLE TRACKING
LIBRARY FOR HIGH PARALLEL PERFORMANCE

M. Schwinzerl*!, R. De Maria, K. Paraschou, H. Bartosik, G. ladarola, CERN, Geneva, Switzerland
A. Oeftiger, GSI, Darmstadt, Germany
lalso at Institute of Mathematics and Scientific Computing, University of Graz, Austria

Abstract

SixTrackLib is a library for performing tracking simu-
lations on highly parallel systems such as shared memory
multi-core processors or graphical processing units (GPUs).
Its single-particle approach fits very well to parallel imple-
mentations with reasonable base-line performance, making
such a library an interesting building block for various use
cases, including simulations covering collective effects. We
describe the optimisations applied to SixTrackLib to im-
prove its performance on its main target platforms and the
associated performance gain. Furthermore we outline the
technical interfaces and extensions implemented to allow its
use in a wider range of applications and studies.

INTRODUCTION

SixTrackLib [1] is a clean-room re-implementation of
the tracking component of the SixTrack [2, 3] simulation
program in the form of a stand-alone library. It is suitable
for stand-alone use in simulations or as a building-block
in feature-rich tools and libraries. SixTrackLib is a single-
particle tracking code, the idealised constituent particles of
a beam only interacting with their environment via electro-
magnetic fields but not directly with other particles. Par-
ticles p are described in a 6D (i.e. 4D transversal and 2D
longitudinal) phase space in relation to the trajectory of
a reference particle (cf. Fig. 1). The accelerator through

(s)
i(s)
Particle .

Trajectory," T
Pt

R

{ Reference-Particld
s(t)(a\ Trajectory X
Figure 1: 6D representation of a particle p in a circular

accelerator (local bending radius p(s)). The coordinate
system X(s)—y(s)—2Z(s) co-moves with the reference particle.

p(zyyypmypyyca 5) A(ﬁ)(s) Py//yP
¥ AA A A h 4 E(s =
s 4D 2D Ng

Zz0 | z(s 's,§

Pa=Fe/Py (=B-(3/fo—c-1)
Py =PV/P0 §= (P—Po)/Po

Note : 8 =v/c, fo = w/c,
Py, Bo,vo . . . Ref. Particle

which p travels is represented by a lattice, i.e. a sequence
of idealised and discrete beam elements. These elements
represent the electro-magnetic (EM) field configurations en-
countered within the accelerator as a function of the spatial
position. Thus solving the equations of motion for p turns
into a problem of integrating each beam element’s influence
on p along it’s path. In addition to conveying EM fields, Six-
TrackLib’s implementation of beam element objects mark
particles outside of admissible bounds as los?.

* martin.schwinzerl @cern.ch

THPAB190
4146

IMPLEMENTATION
Tracking Algorithm, Parallelisation Strategy

Consider a lattice with N,,,, beam elements i..,
E; = (E) [i] and a particle p with initial conditions p (0).
Rather than performing the numerical integration explicitly,
SixTrackLib uses symplectic maps to sequentially update
the state of p consistent with the piece-wise solutions to the
Hamiltonian equations for each E;:

p) < E(pGi-1) i€[0,Nyem)- (1)

Applying (1) for all i and repeating the operation un-
til p has traversed until turn N in a circular accelerator
is an inherently sequential operation with only very few
opportunities for parallelisation'. While performing the
simulation for a single p is useful, most real-world sce-
narios require to simulate an ensemble of N, particles i.e.,

pj = (Q) []] s J € [O’Np)

Algorithm 1 Track all active particles in (Q) over a lattice
(E) until all particles are in turn N or they are lost.

1: procedure TRACK_UNTIL((Q), (E), N)

2: forj <« OtoN, - 1 do

3 r;= Q) [/]
. while not is_lost(p;) and do
get_at_turn(pj) <N

5 fori <« 0to N, — 1 do

6: E; = (E)[{]

7. pj < Ei(p;)

8: if is_lost(p;) then

9: break

10: if not is_lost(p;) then

11: increment_at_turn(p;)

Note that particles need at least some additional state to
keep track of the current turn and whether the particle has
been lost. For N,, > 1, the loop over all particles (line 2 in
Alg. 1) allows, due to the single-particle approach, a very
efficient parallelisation.

Baseline Parallel Implementation

Typical use-cases for Alg. 1 have N,, = 10° to 107 parti-
cles, N,jm = 10! to 103 elements in a lattice, and N = 10°
to > 107 turns. Given this wide range of scale, SixTrackLib

! Le., OpenMP-style loop parallelisation, or single-instruction, multiple-
data (SIMD) vectorisation, which both apply only to specific maps

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

12th Int. Particle Acc. Conf.
ISBN: 978-3-95450-214-1

supports sequential and multiple parallel computational back-
ends (single-threaded and vectorised code for CPUs, and
both OpenCL 1.2 [4] and CUDA [5], respectively). Source
code for implementing the physics is shared between all
three back-ends. A common implementation in particular
for OpenCL and CUDA is possible because both abstract the
target hardware in a similar way (i.e., “threads” organised
on hierarchical grid, “teams” of threads operate in lockstep,
segmented memory, etc.), and both support a similarly struc-
tured C99-like kernel language, allowing abstractions via
C pre-processor macros.

In addition to the principal six degrees of freedom and
the state variables to enable the “logistical” particle loss
operations in Alg. 1, SixTrackLib uses 11 additional double-
precision floating point and 2 additional integer attributes for
each particle to cache frequently required auxiliary results
and carry information about the reference particle. Ensem-
bles of particles (Q) are stored in struct-of-array arrange-
ment. Storing a complete set of of attributes for each p; in
this fashion increases the memory footprint but provides a
more flexible data model, eases SIMD-style vectorisation
across particles, and results in neighbouring GPU threads ac-
cessing neighbouring sections of device memory (coalesced
access, cf. sub-figure a) in Fig. 2). Caching intermediate
results is also beneficial for numerical reproducibility rea-
sons. Preparing a structure with pointer data-members on
the host-side and transferring it to device memory on a GPU
is non-trivial as the member pointers remain pointing to
their original location. In order to remain consistent, all
such pointers have to be “remapped” after any copy opera-
tion (cf. sub-figure b) of Fig. 2). To this end, SixTrackLib
uses cobjects [6], a self-developed container library for ex-
changing data between host and GPU devices. The buffers
provided by cobjects allow @ (1) lookup of stored elements
and zero-copy, zero-overhead read/write access on stored
items2. For the base-line implementation, both particles and
beam elements are stored using device global memory.

N, Stored
a) P b) [@oxol] oo [@0x02] @0x1a
z:0pm - O
, - 003 Ox1a|
Pp O - O > -/|: I | | I I
7= = = = = = I g
: k= Q
Py I:l:IIﬂ o 2 % = member pointers __: i
Ciom oSS 3 | [@oxal] Oxdlal @0xeal
§:ooom - o | N S z H
Pod food | | |~[1 |-
.o g T T
o - my e g
: OO0 R = N v % o @0xd1| (@0xda (@0xea
earn CGEEE - O [B £ =
el B B (T 0T
-7 o
Pj P+ L] [

Figure 2: a) Struct-of-arrays storage model for sets of parti-
cles. b) Schematic principle for storing structured objects
with member pointers in a cobjects buffer.

Feature Extensions & Interfaces

Using cobject buffers does not preclude direct manip-
ulation of pointers on the device side. SixTrackLib pro-

2 At the cost of increased complexity and reduced flexibility during the
creation / initial arrangment of items in a cobjects buffer

MCS5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

IPAC2021, Campinas, SP, Brazil
ISSN: 2673-5490

JACoW Publishing
doi:10.18429/JACoW-IPAC2021-THPAB190

OOEOOOECOOEDO -

Lattice
Y

Tricub Data For
Interpolation

Figure 3: Multiple items in a cobjects buffer sharing data.

vides tools to manipulate device-side pointers, so that shar-
ing slices of data across several beam elements is feasi-
ble. An example is the calculation of symplectic kicks
from electron cloud contributions via tri-cubic interpola-
tion of a potential [7], which requires data-tables with ap-
prox. 10% to 10° Bytes each. Replicating these tables at
each required lattice position would not be possible due to
the cumulative global memory requirements. However, by
allowing tables to be shared across all elements using the
same data (cf. Fig. 3), intensive simulations of this type have
successfully been performed using SixTrackLib. Similarly,
SixTrackLib implements a frozen space charge model which,
among others, features an interpolated line-charge density
profile, allowing the discretised line-profile data to be shared
among the beam elements [8]. It uses the same interfaces as
the previous example but the main aim here is to simplify
updates to the charge-density profile over the course of the
simulation.

Finally, by implementing tracking modes that traverse
only a subset of a turn in addition to Alg. 1 and exposing
the particle data stored in device memory, SixTrackLib al-
lows a seamless integration and hand-off of tracking duties
with other algorithms and libraries. This enables for exam-
ple seamless integration between PyHEADTAIL [9] and
SixTrackLib. Here, SixTrackLib handles the tracking of
sections that are suitable for efficient single-particle tracking
code and hands-off to PYHEADTAIL for sections of the ma-
chine representing collective effects. These extensions and
additional interfaces increase the versatility and usefulness
of SixTrackLib, but also put additional constraints on some
strategies to improve the numerical performance.

PERFORMANCE ANALYSIS &
OPTIMISATION

Baseline Performance

The implementation described in the previous section
corresponds to version 0.5 of SixTrackLib [1]. Using an
example lattice from CERN’s LHC with imperfections but
without beam-beam or space charge effects. Figure 4 shows
the normalised tracking time #;,.,.x = o1apsea/ (N - N) as a
function of N, for a representative set of target systems.

With increasing N, parallelisation overheads and laten-
cies should eventually be amortised, resulting in approx.
constant t,,,... All presented systems show this expected
behaviour. Even with grid dimensions adapted to preferable
warp/wave-front sizes, run-time performance can vary con-
siderably for similar N,,. Therefore, the median f,,.,. over
the range most interesting for GPUs i.e., N, = 10* to 106
(cf. detail in right half of Fig. 4) is used to calculate the

THPAB190
4147

©=22 Content from this work may be used under the terms of the CC BY 3.0 licence (© 2021). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

[©=22 Content from this work may be used under the terms of the CC BY 3.0 licence (© 2021). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

12th Int. Particle Acc. Conf.
ISBN: 978-3-95450-214-1

107

102

1
10 =t AMD Threadripper 2970wx CPU
=—d— AMD Threadripper 1350x CPU

NVIDIA GTX 1050Ti
AMD 1950x OpenCL (Intel)
AMD 2970wx OpenCL (POCL)
AMD Radeon VII
—#— AMD Radeon Instinct MI50
10° NVIDIA Titan V

Normalised Tracking Time [us]

IPAC2021, Campinas, SP, Brazil
ISSN: 2673-5490

Single Core / Single Thread

JACoW Publishing
doi:10.18429/JACoW-IPAC2021-THPAB190

103
=—t— AMD 2970wx CPU

<tIrack) [S] Spe edup
557.8e-6
=== AMD 1950x CPU 588.2e-6
NVIDIA GTX 1050Ti 29.1le-6 19.1
AMD 1950x {Intel) 16.6e-6 33.4
AMD 2970wx (POCL) || 11 .6e-6 48.0
10? AMD Radeon VIl 6.6e-6 84.2
=== AMD MI50 5.4e-6 104.0
NVIDIA Titan V 1.2e-6 476.8

CPU, Multithreaded

HPC GPUs

N 5

(t},,4)s] Median Normalised Tracking Time,
averaged over 10* — 10° particles

90 — perc.
o

Speedup® compared to fastest single-cpu Impl. 10 — perc)|

10° I

10° 10t 102 10° 10* 10°% 106

10% 10° 108

Numbers of Particles N,

Numbers of Particles N,

Figure 4: Normalised tracking time (i.e., elapsed wall-time per particle and turn, lower numbers are better) as a function of

N,
such that no particles are lost.

speed-ups. For the presented (quite representative) scenario,
even lower-end consumer GPUs with poor double precision
performance ratios (i.e., 1:32 for the GTX1050 Ti) yield
median speedups of > @ (10) compared to sequential track-
ing on the fastest tested CPU. Using more powerful GPUs
with a 1:2 double precision performance ratio, speedups
of > ©(100) are easily reachable. Using multi-threaded
OpenCL parallelisation on CPUs typically yields perfor-
mance in between consumer- and HPC-grade GPUs. For
these systems, optimal scaling (i.e. constant ¢,,,.;) sets in
at lower N,, = 10! ... 103, depending on the parallel run-
time and CPU). The sequential, single-core CPU back-end
of SixTrackLib also performs approx. > @ (10) better than
recent versions of MAD-X (< 10735 vs. ~ 0.01s for the
LHC [10])3, further demonstrating the competitiveness of
SixTrackLib.

Optimisation Strategy

In order to improve the run-time performance, the follow-
ing optimisation options have been implemented compared
to Alg. 1: a) create a private copy of p; for each thread (i.e.,
change line 3) and write back after finishing tracking, b)
eliminate the nested loop over all elements (cf. line 5) by in-
troducing a special lattice terminating beam element which
handles the roll-over into the next turn, thus simplifying the
logic and aiding the compilers in optimisation, and c) re-
duce the number of thread-local variables to reduce register
pressure and avoid spilling.

Selected Results

Applying optimisations a) to ¢) to the same configuration,
numerical experiments conducted at CERN and GSI reveal

3 Comparisons are only meaningful up to orders of magnitude due to
the significantly wider range of capabilities and the large number of
parameters influencing the performance of MAD-X.

THPAB190
4148

» on a selection of hardware targets for the CERN LHC lattice. (Pg - ¢) = 6.5 TeV, starting conditions have been chosen

performance gains across all studied GPU systems. Fig-
ure 5 shows the improvements for the AMD Radeon VII and
NVIDIA Titan-V cards, with typical improvement factors
around 2x (cf. [11]).

—_ =5
2 AMD Radeon VIl v0.5 ‘8 AMD Radeon VI
;' 102 AMD Radeon VIl optimised s NVIDIA Titan-v
§ NVIDIA Titan-V v0.5 ; 4
et NVIDIA Titan-V optimised o
2 >5
2 101 £
S 10 5
g &
- =2
°]
& £
T 100 21
£ 8
=) a
= | Eo |
104 10% 10 104 10% 108

Number of Particles Np Number of Particles Np

Figure 5: Same lattice and particle configuration as before
but with optimisations, run-time performance improves for
the presented GPU systems, typically by about a factor of 2.

CONCLUSIONS & OUTLOOK

Writing a tracking library with good parallel performance
across a large range of simulated particles N, and for a di-
verse set of hardware is feasible. The presented optimised
implementation provides satisfactory performance: sorted
by increasing speedup, simulations profit from parallelisa-
tion on consumer-grade GPUs, multi-core high-end CPUs
and finally high-end GPUs. Further investigations about
the contributing factors to the scaling behaviour are needed.
Of particular interest are lattices containing beam elements
contributing significantly to the register pressure. Scenar-
ios where the extended interfaces for sharing data are not
required could benefit from moving the lattice or parts of
the particle data to constant or shared device memory, war-
ranting further investigations. The presented optimisations
will be part of the upcoming version 1.0 of SixTrackLib.

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

12th Int. Particle Acc. Conf.
ISBN: 978-3-95450-214-1

(1]

(2]

(3]

(4]

(3]

[l

REFERENCES

SixTrackLib source code repository,
https://github.com/SixTrack/sixtracklib

R. De Maria et al., “SixTrack V and runtime environment”,
International Journal of Modern Physics A, vol. 34, no. 36,
p- 1942035, 2019.

doi:10.1142/S60217751X19420351

SixTrack source code repository,
https://github.com/SixTrack/sixtrack

J. E. Stone et al. “OpenCL: A Parallel Programming Stan-
dard for Heterogeneous Computing Systems”, Computing in
Science & Engineering, vol. 12, no. 3, p. 66-72, 2010.
doi:10.1109/mcse.2010.69

J. Nickolls et al., “Scalable Parallel Programming with
CUDA”, Queue, vol. 6, no. 2, p. 40 — 53, 2008.
doi:10.1145/1365490.1365500

CObjects source code repository,
https://github.com/SixTrack/cobjects

MCS5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

IPAC2021, Campinas, SP, Brazil
ISSN: 2673-5490

(71

(8]

(9]

(10]

(11]

JACoW Publishing
doi:10.18429/JACoW-IPAC2021-THPAB190

K. Paraschou and G. Iadarola, “Incoherent electron cloud
effects in the Large Hadron Collider”, CERN Yellow Rep.
Conf. Proc., vol. 9, pp. 249-255, Dec. 2020.
doi:10.23732/CYRCP-2020-009.249

A. Oeftiger et al., “Simulation study of the space charge limit
for the FAIR Heavy-ion Synchrotron SIS100”, 2021, to be
published.

PyHEADTAIL source code repository,
https://github.com/PyCOMPLETE/PyHEADTAIL

T. H. B. Persson, H. Burkhardt, L. Deniau, A. Latina, and P. K.

Skowronski, “MAD-X for Future Accelerators”, presented at
the 12th Int. Particle Accelerator Conf. (IPAC’21), Campinas,
Brazil, May 2021, paper WEPABO028.

ipac21_sixtracklib: Complementary repository containing
raw timing data and information about the presented
hardware systems,

https://github. com/martinschwinzerl/ipac21_
sixtracklib

THPAB190
4149

©=22 Content from this work may be used under the terms of the CC BY 3.0 licence (© 2021). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

