001     358352
005     20250310164730.0
024 7 _ |a 10.18429/JACOW-IPAC2024-TUPS59
|2 doi
024 7 _ |a 10.15120/GSI-2025-00536
|2 datacite_doi
037 _ _ |a GSI-2025-00536
041 _ _ |a English
100 1 _ |a Appel, Sabrina
|0 P:(DE-Ds200)OR0031
|b 0
|e Corresponding author
|u gsi
111 2 _ |a 15th International Particle Accelerator Conference
|g IPAC2024
|c Nashville, Tennessee
|d 2024-05-19 - 2024-05-24
|w USA
245 _ _ |a Data-driven model predictive control for automated optimization of injection into the SIS18 synchrotron
260 _ _ |a Geneva, Switzerland
|c 2024
|b JACoW Publishing
300 _ _ |a 1800 - 1803
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1741075262_1280620
|2 PUB:(DE-HGF)
500 _ _ |a Published by JACoW Publishing under the terms of the Creative Commons Attribution 4.0 license.
520 _ _ |a In accelerator labs like GSI/FAIR, automating complex systems is key for maximizing physics experiment time. This study explores the application of a data-driven model predictive control (MPC) to refine the multi-turn injection (MTI) process into the SIS18 synchrotron, departing from conventional numerical optimization methods. MPC is distinguished by its reduced number of optimization steps and superior ability to control performance criteria, effectively addressing issues like delayed outcomes and safety concerns, including septum protection. The study focuses on a highly sample-efficient MPC approach based on Gaussian processes, which lies at the intersection of model-based reinforcement learning and control theory. This approach merges the strengths of both fields, offering a unified and optimized solution and yielding a safe and fast state-based optimization approach beyond classical reinforcement learning and Bayesian optimization. Our study lays the groundwork for enabling safe online training for the SS18 MTI issue, showing great potential for applying data-driven control in similar scenarios.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Accelerator Physics
|2 Other
650 _ 7 |a mc6-beam-instrumentation-controls-feedback-and-operational-aspects - MC6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
|2 Other
650 _ 7 |a MC6.D13 - MC6.D13 Machine Learning
|2 Other
693 _ _ |a theory
|e no experiment theory work (theory)
|1 EXP:(DE-Ds200)theory-20200803
|0 EXP:(DE-Ds200)no_experiment-20200803
|5 EXP:(DE-Ds200)no_experiment-20200803
|x 0
700 1 _ |a Hirlaender, Simon
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Madysa, Nico
|0 P:(DE-Ds200)OR12417
|b 2
|u gsi
700 1 _ |a Pilat, Fulvia
|0 P:(DE-HGF)0
|b 3
|e Editor
700 1 _ |a Fischer, Wolfram
|0 P:(DE-HGF)0
|b 4
|e Editor
700 1 _ |a Saethre, Robert
|0 P:(DE-HGF)0
|b 5
|e Editor
700 1 _ |a Anisimov, Petr
|0 P:(DE-HGF)0
|b 6
|e Editor
700 1 _ |a Andrian, Ivan
|0 P:(DE-HGF)0
|b 7
|e Editor
773 _ _ |a 10.18429/JACOW-IPAC2024-TUPS59
856 4 _ |y OpenAccess
|u https://repository.gsi.de/record/358352/files/TUPS59.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://repository.gsi.de/record/358352/files/TUPS59.pdf?subformat=pdfa
909 C O |o oai:repository.gsi.de:358352
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a GSI Helmholtzzentrum für Schwerionenforschung GmbH
|0 I:(DE-Ds200)20121206GSI
|k GSI
|b 0
|6 P:(DE-Ds200)OR0031
910 1 _ |a GSI Helmholtzzentrum für Schwerionenforschung GmbH
|0 I:(DE-Ds200)20121206GSI
|k GSI
|b 2
|6 P:(DE-Ds200)OR12417
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l no
920 1 _ |0 I:(DE-Ds200)APH-20060809OR090
|k APH
|l Accelerator Physics
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Ds200)APH-20060809OR090
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21