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Abstract

In accelerator labs such as GSI / FAIR, automating com-
plex systems is the key to maximize the time spent on physics
experiments. This study explores the application of a data-
driven model predictive control (MPC) to refine the multi-
turn injection (MTTI) process into the SIS18 synchrotron, de-
parting from conventional numerical optimization methods.
MPC is distinguished by its reduced number of optimiza-
tion steps and its superior ability to control performance
criteria, addressing issues like delayed outcomes and safety
concerns — in this case septum protection. The study focuses
on a highly sample-efficient MPC approach based on Gaus-
sian processes, which lies at the intersection of model-based
reinforcement learning and control theory. This approach
merges the strengths of both fields, offering a unified and
optimized solution and yielding a safe and fast state-based
optimization approach beyond classical reinforcement learn-
ing and Bayesian optimization. Our study lays the ground-
work for enabling safe online training for the SIS18 MTI
issue, showing great potential to apply data-driven control
in similar scenarios.

INTRODUCTION

Data-driven control theory and reinforcement learning
(RL) hold significant potential for addressing control prob-
lems beyond the reach of classical control theory. These
methods learn through direct interaction with the systems
they control. However, RL faces challenges in accelerator
control applications, including the need for large data sets
for reliable performance and the trade-off between training
stability and data efficiency. Enhancing reliability in particle
accelerator control is crucial, particularly with the advent
of new diagnostic tools and increasingly complex variable
schedules. Standard algorithms often fall short, necessitat-
ing new strategies. This paper demonstrates the potential of
data-driven model predictive control on the highly non-linear
SIS18 injection simulation, achieving reliable performance
within a feasible number of interactions suitable for real-
world deployment.

Data-Driven Model Predictive Control

Model-Based Reinforcement Learning (MBRL) uses en-
vironment models to predict future states and rewards, sig-
nificantly reducing the required amount of interaction with
the real accelerator compared to model-free methods [1-4].
The accuracy and uncertainty of the model are crucial for
the performance of MBRL algorithms.
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Probabilistic models, specifically Gaussian processes
(GPs), capture the uncertainty in the environment’s dynam-
ics and provide a measure of uncertainty in their predictions,
which is essential for safe and efficient exploration. MPC is
a control strategy that optimizes control inputs by solving a
finite-horizon optimization problem at each time step based
on predicted future states and rewards, considering system
dynamics and constraints. GP-MPC [5] uses uncertainty
information from the GP to make more informed decisions
and to balance exploration and exploitation. This results
in Probabilistic Model Predictive Control (P-MPC). This
approach helps ensure safety and improve performance by
avoiding regions with high uncertainty. The method requires
fewer interactions with the environment to learn an effective
policy, which is advantageous in scenarios where collecting
data is expensive or time-consuming. It is applicable to a
wide range of RL problems, especially those where data
efficiency is critical. Examples beyond accelerator controls
include robotics and autonomous driving. We propose a
unified and optimized solution that yields safe and fast state-
based optimization, situated at the intersection of MBRL and
control theory. It demonstrates superior ability to control
performance criteria and the ability to effectively address
issues like delayed outcomes and safety concerns.

PROBLEM DEFINITION AND
FORMULATION

FAIR, the Facility for Antiproton and Ion Research, will
provide antiproton and ion beams of unprecedented intensity
and quality, to drive the forefront of research on heavy-ion
and antimatter [6]. Multi-turn injection (MTI) into SIS18 is
one of the main bottlenecks to reach the FAIR intensity goals.
An important limiting factor for intermediate charge-state
ions is loss-induced vacuum degradation [7, 8]. Injection
losses must be minimized to avoid a reduction in synchrotron
performance due to loss-induced vacuum degradation [9].

As MTI must fulfill Liouville’s theorem, four bumper
magnets create a closed orbit bump with a time variable so
that the injection septum deflects the next incoming beamlet
into an available horizontal phase space close to the formerly
injected beamlets. During injection, loss can occur both
on the septum and on the acceptance. If 5 characterizes
the relationship between the lost and injected particles, the
multiplication factor (i.e, the accumulated beamlets) follows

m=n(l-n). (1)

n is the ratio between injection and revolution time. For
loss-free injection, 7 is zero and the multiplication factor
m is equal to the number of injected turns n. The center
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Figure 1: Snapshot of a MTI simulation. The red line indi-
cates the septum, and the dashed line indicates acceptance.
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Figure 2: Nominal beam current (black) and the ideal current
(red) during the injection process. The two integral values
measure, in addition to the loss at the septum and the reward,
the state.

of the beam of the incoming beamlet x should be placed
approximately so that the edge of the incoming beamlet
touches the outside septum. The incoming beamlets will
have a linear x and an angular x” displacement with respect to
the closed orbit (x, x/.) and will therefore undergo betatron
oscillations determined due to the horizontal tune Q,. After
one turn, the injected beamlets pass the injection point again
without hitting the septum. If the orbit is not sufficiently fast,
the beamlets will hit the inner side of the septum after the n,
revolution turns, depending on the betatron oscillation tune,
and get lost. Additionally, the beamlets can also be lost at
the beam pipe if the curvature of the incoming beamlet does
not adapt to the ring acceptance curvature, depending on the
mismatch between transfer line and SIS18.

Figure 1 shows a snapshot of a MTI simulation. The loss
areas, inside and outside the septum, as well as the accep-
tance, are visible. Inner beamlets lost particles in the septum
earlier during the injection process and therefore did not
overlap. The SIS18 MTI model has been implemented in
the XSuite particle tracking code and was carefully validated
against experiments [10—12]. For an ideal injection process
without loss, the injected beam current will accumulate and
will not be lost later, as shown by the red curve in Fig. 2.
For poorly adjusted injection, during accumulation, particles
will be lost and the accumulated beam current function diffs

TUPS: Tuesday Poster Session: TUPS
MC6.D13 Machine Learning

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2024-TUPS59

(black curve). The square of the root mean measures these
differences and has been chosen for reward. The description
of the state is given by the total loss after 50 turns, the loss
at the septum, and the integral of the accumulated beam
current divided by the point in time when no new particles
are injected (see Figs. 1 and 2). The actions are small A val-
ues for the six injection parameters [x,, x.., X, x’, mismatch,
Areduction] .

The Markov Decision Process (MDP)

The formulation of the problem as an episodic Markov
decision process (MDP) for the injection problem is given
as:

* State = [Reward, LosSgepum, Integral |, Integral, |

¢ Reward :f(Lossfree current(¢) —SIS18 current(z)) dt

e Action = [Ax,, Ax., Ax, Ax’, Amismatch, A q,cion]

* Episodic design:

— Episodes are initialized with initial values of the
absolute actions uniformly sampled at random.
— Only if a specific threshold is surpassed, the
episode is reset (better reward than —1.9).
— certain limits of the actions are exceeded to emu-
late hardware restrictions
— if a specific step count of 25 termination has been
reached the episode is truncated and reset.
The goal is that the agent learns to identify actions that
swiftly move the state towards a reward within the specified
threshold, thereby optimizing injection efficiency.

Simulation Results

Figure 3 and Fig. 4 display the results of the highly-
nonlinear injection problem. The experiment was simplified
for this study due to the reward being concentrated in a small
domain of the action space. The initial state was intention-
ally set close to the global optimum to enhance the likelihood
of achieving non-constant, higher rewards.

Figure 4 shows the trajectories and actions for each
episode within the environment. The top plot illustrates
the state trajectories, with each colored line representing a
different state and how it evolves over time. The bottom plot
displays the action values taken at each step, with each ac-
tion dimension represented by a different color. The x-axis
represents cumulative steps, while the y-axis shows state
and action values, respectively, with legends indicating the
different states and actions for easy identification.

Due to the complex nature of the problem, the policy be-
gins near the optimum but initially overestimates the reward
at the upper confidence bound, leading to oscillations around
the solution. Once enough data is gathered, the episodes
consistently conclude successfully after approximately 300
interactions. Figure 3 (lower plot) distinctly illustrates the
decease in the uncertainty in the expected reward (orange-
shaded) during the training and the true reward (black).

Model-Free Deep RL Algorithms

Model-free off-the-shelf RL algorithms were also eval-
uated. Soft Actor-Critic (SAC) [13] and Proximal Policy
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Figure 3: A training approach for the data-driven MPC in-
volves resetting the episodes, which appear as jumps in the

graphs.

Optimization [14] were successfully tested but required a
considerable number of interactions with the system, mak-
ing experiments on the real machine infeasible without prior
tuning on a simulation. Figure 5 shows an experiment em-
ploying the SAC algorithm. The training shown, achieves
rewards not as high as an good value found by numerical op-
timization using BOBYQA within 5000 interactions. Addi-
tional numerical optimization techniques, such as BOBYQA
optimization, have been successfully implemented but typ-
ically lack state information and do not develop a model
incrementally [15, 16]. Despite their ease of use, these meth-
ods are likely to be replaced by more adaptive solutions over
time, as demonstrated in this study.

SUMMARY AND OUTLOOK

This paper discusses the application of data-driven MPC
integrated with GPs to enhance the MTI process at the SIS18
synchrotron within the GSI facility. This approach has
demonstrated the ability to reduce the optimization steps
required and improve the efficiency of the MTI process.
Additionally, we evaluated the limitations of traditional rein-
forcement learning methods in terms of their high demand
for interactions, which complicates their application without
extensive prior simulation adjustments. Looking forward,
the study paves the way for further development of data-
driven control strategies in particle accelerator operations
and similar complex systems. The next step is to facili-
tate real-time applications in the operational environment in
several additional scenarios such as incorporating the prior
knowledge from the simulation. The integration of advanced
machine learning methods with traditional control systems
holds significant promise for revolutionizing the operational
capabilities of research facilities like GSI/FAIR, moving
towards fully automated, highly efficient systems.
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Figure 4: An experiment showing several episodes during
the learning process.
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Figure 5: Training with Soft Actor Critic (SAC). The red
line indicates the best result with the BOBYQA algorithms.
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