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Mean-field theory for self-interacting relativistic Luttinger fermions
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We investigate a class of quantum field theories with relativistic Luttinger fermions and local self-
interaction in scalar channels. For an understanding of possible low-energy phases, we first classify the set
of mass terms arising from scalar fermion bilinears. For large flavor numbers, we show that each of our
models features a coupling branch in which the theory is asymptotically free. In order to address the long-
range behavior, we use mean-field theory which is exact in the limit of large flavor numbers. We identify
two models which undergo dimensional transmutation, interconnecting the asymptotically free high-
energy regime with an ordered low-energy phase sustaining a vacuum condensate. We also study the
analytic structure of the Luttinger-fermionic propagator in the various possible gapped phases.
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I. INTRODUCTION

Luttinger fermions are effective degrees of freedom of
nonrelativistic solid state physics [1,2] used to describe,
e.g., materials with quadratic band touching/crossing points
involving general spin-orbit couplings [3-5]. These sys-
tems can feature a rich set of quantum critical phenomena
[6-16]. Inspired by the diverse set of structures emerging
from such long-range degrees of freedom, the generaliza-
tion of Luttinger fermions to fundamental degrees of
freedom of relativistic quantum field theories has recently
been studied [17].

Since the resulting relativistic Luttinger operator is
quadratic, the mass dimension of the field agrees with that
of standard scalar fields which allows for the construction
of a large number of perturbatively renormalizable quantum
field theories in 3 + 1 dimensional spacetime. Specifically,
self-interacting theories of Luttinger fermions are renor-
malizable and can also be asymptotically free [17]. As a
consequence, such quantum field theories can serve as a
novel building block for high-energy complete theories for
particle physics.

Another unorthodox feature of these theories becomes
visible in the pole structure of the propagator where
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properties familiar from those of a higher-derivative theory
[18-21] can be found [17]. For a standard mass term, not
only the standard particle pole but also a tachyonic pole
appears. The latter comes with a negative residue, charac-
terizing a so-called ghost. Naively, this is often taken as an
indication of nonunitarity interpreted as a consequence
of Ostrogradsky’s theorem [22], even though many differ-
ent viewpoints on such ghost states exist in the literature,
see e.g., [19,21,23-34].

In the present work, we concentrate on a set of simple
example theories involving self-interacting relativistic
Luttinger fermions. More specifically, we concentrate on
massless classical actions with local scalar or pseudoscalar
interactions. In addition to an investigation of the high-
energy behavior characterized by the beta functions of the
couplings, we explore the long-range behavior of these
theories using the mean-field approximation as a simple
tool, being exact in the limit of large flavor number Ny.
We pay specific attention to the possible condensates and
the long-range phase diagrams. Specifically, we identify
two models that feature asymptotic freedom in the ultra-
violet (UV), undergo dimensional transmutation in the
sense of Coleman and Weinberg [35], and exhibit con-
densate formation in the long-range limit.

Since we expect the long-range phases to be charac-
terized by a massive spectrum we start our exploration
with a classification of possible mass terms for the
relativistic Luttinger fermions. As the relativistic
Abrikosov algebra needs to be spanned by a reducible
representation of the underlying Clifford algebra, there is
a larger set of possible mass terms. The latter is reminis-
cent to mass terms of relativistic 2 4+ 1 dimensional Dirac
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materials where several mass terms can describe different
patterns of gap formation [36-39].

Interestingly, the richer set of mass terms also goes along
with a more intricate analytic structure of the corresponding
propagators. We observe that the two asymptotically free
models with low-energy condensate formation at the mean-
field level do not feature tachyonic mass poles but a
complex pair of poles or a branch cut.

Our paper is organized as follows: We begin in Sec. II
with a short summary of relativistic Luttinger fermions
following [17]. In Sec. III, we present a set of different mass
terms for relativistic Luttinger fermions. Section IV intro-
duces the set of models discussed in the present work. Here,
we verify that each one features an asymptotically free
coupling branch by computing the perturbative one-loop
beta function. In Sec. V, we solve each model in a mean-
field approximation exploring their potential for condensate
formation. In Sec. VI, we study the analytic structure of the
gapped Luttinger propagators in the complex momentum
square plane. Conclusions are given in Sec. VII.

II. RELATIVISTIC LUTTINGER FERMIONS

We define field theories of relativistic Luttinger
fermions in terms of their classical action. Focusing on
four-dimensional spacetime, the action of the free theory
reads [17]

5= / [5G (i) (i . (1)

where y denotes a spinor with d, components.
Correspondingly, G, represents a set of d, x d, matrices
labeled by the Lorentz indices u,v =0,...,3. These
matrices satisfy the relativistic version of the Abrikosov
algebra [2,7,17]

2 4
{Gﬂw GK/I} = gg/wgld + g (gﬂkgyﬂ + gyﬂgyk)’ (2)

where the right-hand side involves the Minkowski metric
g = diag(+,—,—,—) and is also implicitly understood
to be proportional to the identity 1, in spinor space.
With respect to the Lorentz indices, the matrices G, are
symmetric, G,, = G,,, and traceless, G*, = ¢"G,, = 0,
implying that 9 linearly independent elements are needed
to span the Abrikosov algebra (2). With respect to the spin
indices, we can choose Gy; anti-hermitean whereas G, and
G;; can be chosen hermitean for all 7, j =1, 2, 3.

Finally, the conjugate spinor in Eq. (1) is defined by
= y'h involving the spin metric 4. Choosing 4 hermi-
tean A’ = h, the requirement that the classical action is real,
S eR, imposes the conditions

{h.Goi} =0,

h.Gy]=0.  [hG,]=0. (3)

where underscored indices are exempted from Einstein’s
sum convention.

Both sets of algebraic conditions (2) and (3) can be
spanned by a Euclidean Dirac algebra,

{YA’ 78} = 26,3, (4)

with d, hermitean elements, A,B = 1,2, ...,d,. Whereas
the irreducible representation of the Abrikosov algebra
would, in principle, require only d, =9, the additional
reality conditions (3) demands for d, = 11. The latter
implies that d, = 21%/2] = 32 characterizes the irreducible
representation of relativistic Luttinger fermions. An explicit
representation of the G, in terms of the Euclidean Dirac
matrices y4 is given in Appendix A. Setting, for instance,

Gy, =1 \/%yA:,-, all other G, are real linear combinations

9, and the spin metric can be chosen as

sy

h = y17273710- (5)

The free field equation for Luttinger fermions derived from
Eq. (1) reads

G,, 0"y = 0. (6)

Using the Abrikosov algebra, it follows straightforwardly
that the Luttinger operator squares to (the square of)
the Klein-Gordon operator, (G,,0"¢")* = (%), implying
that each of the 32 components of y satisfies a relativistic
wave equation.

III. MASS TERMS

In order to classify different possibilities of gap for-
mation potentially occurring in self-interacting models
studied below, let us first investigate the different mass
terms that can be constructed for Luttinger fermions. As
basic requirements, we are interested in Lorentz invariant
bilinear and real terms that we can add to the action.

For this, let us first recall that the Abrikosov algebra is
separately invariant under Lorentz transformations

G, — GMA"”A‘D, (7)

where A¥, is the transformation matrix of Lorentz tensors,
as well as spin-base transformations [40-43]

G, — SGWS‘l, SeSL(32,0). (8)
Analogous to the conventional way of defining Lorentz
transformations of, e.g., Dirac spinors (leaving the Dirac

matrices constant), we can identify the Lorentz trans-
formations Sy, of Luttinger spinors as the subgroup of
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the spin-base group SL(32,C) which rotates the Lorentz
transformed G,, matrices back to their original constant
forms. This implies the identity

SE&I‘GMDSLor = GK/lAKyAﬁv' (9)

Correspondingly, y — S and  — yS;. denote the
Lorentz transformation of Luttinger spinors.

Let us start now with the standard form of the mass term
~yy first discussed in [17], leading to a free Lagrangian of
the form

L =-yG,,0"dy —mipy. (10)
This mass term is invariant under spin-base and thus also
under Lorentz transformations and real as a consequence of
the spin metric being hermitean h = h'.

The corresponding equation of motion for the field y
reads in momentum space

(Gup'p* —m*)y = 0. (11)

Multiplying by (G.,p*p* + m?) from the left yields

(Gup p* + m?) (G p* p* — m*)y

= (p* =m )y = (p* =m*)(p* + m*)y = 0. (12)
In addition to the expected massive relativistic dispersion
relation p? = m?, this mass term also gives rise to
tachyonic solutions with p> = —m?. An explicit check
confirms that both types of solutions occur with multiplic-
ity 16 [44].

A second possible local fermionic bilinear is given by
Wy iow- In order to add such a term in a way that the action
stays real, it is instructive to verify the hermiticity proper-
ties of this bilinear. We observe that

(Wyow)' = WTJ’IOV_/T =ylyiohy = =y hy oy

= —Yrio¥, (13)
where we have used the unitarity of yo and & as well as
the explicit form of our choice for 4 in Eq. (5). Therefore,
reality of the action implies to choose a Lagrangian of
the form

L= —pG,,0' 0"y — imigyiop. (14)
The equation of motion in momentum space reads
(Gup"p* = imigyio)w = 0. (15)

Since all G,, anticommute with y;y, we multiply the
equation of motion by (G,,;p*p* — im3yyo) and find

(Gap*p* — imigr10)(Gup"p* — imigyio)y

= (p* = mip)y = (p* = miy)(p* + migy =0,

(16)
i.e., we again obtain solutions with both a regular massive
as well as a tachyonic dispersion relation; also the corre-
sponding multiplicities are 16 modes each, as for the
standard mass term above. In fact, this is not astonishing,
since both mass terms are connected by a discrete chiral/
axial transformation. For this we first note, that the kinetic
term (1) features a continuous U(1),, symmetry,

(17)

which is broken by each of the mass terms discussed above.
However, starting from the massive theory (10) and
performing a U(1),, transformation (17) with the choice

9 = 7, we obtain the Lagrangian (14) upon the identifica-
2

W = ei'gyl()l//’ l/_/ — l/_/ei'9}’1o,

tion m> — m?,. This also explains, why the solution spectra
and multiplicities match upon this identification.

The situation is somewhat analogous to conventional
Dirac theory, where mass terms of the form —myy and
—mipysy are connected by an analogous discrete axial
transformation.

Next, we can also use the eleventh Euclidean Dirac
matrix y; in order to form a bilinear mass term. Using the
fact that [A,y;,] = 0, we can verify the reality property

Wyuw)' =vwiynhy =w'hyyy =gynw.  (18)

The corresponding free Lagrangian now reads

L =—yG,, 0"y — miiyny, (19)
giving rise to the equation of motion
(Gup!'p” —miyyn)y =0. (20)

Since G, anticommutes with y;;, we multiply by
(G p*p* —m3,y11), yielding this time

(Gap*p* — my11)(Gup*p* — miyyi)w

= (p*+mi)w = 0. (21)
In contrast to the previous cases, the dispersion relation
is now solved by two complex zeros p? = +im?,. Both
types occur with multiplicity 16. Neither a standard
massive nor a tachyonic mode are present. It is interesting
to note that the Lagrangian (19) is invariant under U(1),
transformations (17) as well.

Finally, we can use a product of the matrices y,o and y;
to construct another independent bilinear, for which we also
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check its reality properties based on the identities used
above,

Wriornw)" =y ruriohy = —wyiorihy
=y hyoruw = yriornw. (22)

For convenience, let us introduce the hermitean product

Yoi = —iY10¥11> 7’81 =7o1» (23)

which satisfies

[GW}’Ol] =0, {hyo}={rioro}={ri-ya}=0. (24)

Correspondingly, the free real Lagrangian containing the
new bilinear can be written as

L= —l/_/lea”()Ul;/ - im%l‘l’?’OlW? (25)

yielding the equation of motion
(Gup” p* = imgyyo1 )y = 0. (26)

As G, commutes with yq;, we multiply by (G,;p*p*+
im3,701) and obtain

(G p*p* + imGy01) (G P! p* — imyy01 )y
= (p* +mrg)w = (p* + m)y =0, (27)

since y,; squares to one. As in the preceding case,
we observe complex conjugate zeros in the momentum
plane p?, implying solutions with a dispersion relation
p? = +im3,. Each type of solution has again multiplicity
16. Also, the Lagrangian (25) is invariant under the U(1),,
symmetry.

It is tempting to expect that each of the dispersion
relations found for the different free massive theories
corresponds to a generic analytic pole structure in the
complex p? plane. Whether or not this is the case is
discussed in Sec. VI

It is suggestive to introduce two further U(1l) trans-
formations, namely,

Ul)yy: w = ey, g — e, (28)

U)oz w — oy, — e (29)
We observe that the four mass terms can be connected via
discrete versions of these transformations: e.g., the myg
mass is connected to the m;, mass via a U(1),, trans-
formation with § = 7.

However, it is important to emphasize that the trans-
formations (28) and (29) do not represent symmetries of the
kinetic term and thus are no symmetries of the Lagrangians

if taken at face value. Some of these transformations may,
nevertheless, be uplifted to a symmetry, if combined with a
simultaneous transformation of the spin metric. E.g., we
observe that a discrete U(1),; transformation with 9 =%
transforms the kinetic term into an analogous kinetic term
with the spin metric being replaced by & — y,7,7371;- The
latter is also a valid choice for the spin metric satisfying all
necessary conditions of Eq. (3).

The existence of a set of different masslike terms is
similar to that for Dirac fermions in reducible representa-
tion, with the d = 3 case with d, = 4 being the most well-
studied case [36-39]. In contrast to this, the present case
of Luttinger fermions is not a reducible representation:
though the Abrikosov algebra (2) could be represented by
16-dimensional matrices in d = 4, the spin metric cannot
and thus requires a 32-dimensional representation. From a
technical viewpoint the properties of the spin metric are
also responsible for the fact that the transformations (28)
and (29) do not correspond to symmetries of the action.
Hence, there is also no extended flavor symmetry such as
U(2Ns) as in the case of d = 3 reducible Dirac fermions.

Let us finally remark that the existence of further mass
terms is conceivable; e.g, if the fermionic field satisfies
additional reality constraints, mass terms analogous to
Majorana masses in the Dirac case may be allowed.

IV. SELF-INTERACTING FERMIONIC MODELS

Let us introduce a set of massless theories of self-
interacting relativistic Luttinger fermions with interactions
defined in terms of the above-mentioned spinor bilinears.
For a first glance at the quantum theory, we perform a one-
loop analysis of their renormalization group (RG) flow
concentrating on the large-N; limit for simplicity.

In the present section, we work in the Euclidean domain
in order to use Wilsonian RG techniques. Note that the
definition of the following models in the Euclidean differs
by a minus sign in the interaction terms from the formu-
lation in Minkowskian spacetime, cf. Appendix B.

We start with the simplest interaction term which is
reminiscent to that of the standard Gross-Neveu [45]
model, cf. [17]

_ A,
S = /d“x [—V/Gﬂyd“(}”y/+2(wy/)2 . (30)

Flavor indices are suppressed for simplicity here and in the
following; all bilinears written in terms of parentheses are
assumed to be flavor singlets, i.e., () = w9, where
a = 1,...,Nf. This, as well as all subsequent models,
therefore features a global U(N;) symmetry which will
remain trivially present in all of the subsequent discussion.

The Luttinger-Gross-Neveu (LGN) model additionally
exhibits a discrete axial symmetry of the type of Eq. (17)
with the choice d = g Under such a transformation, the
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kinetic term is invariant. The scalar bilinear transforms
as (py) - —(py) which leaves the interaction term in
Eq. (30) invariant, but forbids the occurrence of a mass
term. In analogy to the standard Gross-Neveu model, it is
tempting to speculate that this discrete symmetry might be
broken depending on the sign and the strength of the initial
value for the coupling 4.

Another rather similar model is given by a scalar
interaction involving the y, matrix,

_ A,
S—/d4x|:_V/GyuaﬂaDW_§(W710W)2 . (31

Here and in the following, the sign in front of the coupling
is chosen such that the one-loop beta functions computed
below have the same form. Also, we use the same letter 1
for the coupling for simplicity, even though the couplings in
all the models considered here are unrelated. Also this y
model has the same discrete axial symmetry as the
Luttinger-Gross-Neveu model: under the transformation
(17) with the choice § =7, the Lagrangian in Eq. (31)
remains invariant, whereas a mass term of the m type as in
Eq. (14) would change sign and thus break the symmetry.

Next, we introduce the y;; model in terms of the action

_ A,
S = / d“X[—wGwa"@”w—i(Wuw)z - (32)

This y,; model is invariant under the full continuous U(1),,
symmetry (17). However, already the m;; mass term
in Eq. (19) is invariant under this symmetry, hence the
realization of this symmetry does not serve as an indicator
for gap formation. Instead, this role is played by a
combined discrete symmetry involving both a discrete
U(1),, transformation (28) with § = § and the replacement
v — —y and y — Y (treating y and W as independent
variables in the quantum theory). The y;; model (32) is
invariant under this discrete transformation while an m
mass term is not. This discrete symmetry is somewhat
similar to the discrete symmetry of the 3d Gross-Neveu
model with irreducible Dirac fermions [46].
As a fourth action, we consider the y,; model:

_ A,
S= / d*x [—wGﬂyd”a”erE(wmw)z . (33)

Also the y,5; model is invariant under the full continuous
U(1),, symmetry (17), as we observed already for the my,;
mass term in Eq. (25). Hence, the status of this symmetry is
not indicative for mass generation. In fact, none of the
transformations discussed in the previous sections is a
suitable ingredient for constructing an indicator symmetry
for mass gap formation as each of them acts similarly on the
kinetic and the mass term. Still, we have checked explicitly
that the interaction does not generate an m,; mass term at

one-loop order. This implies that either a mass-protecting
symmetry exists or an m,; mass term may be generated at
higher-loop order.

Finally, we note that the models can, of course, also be
combined such that continuous symmetries emerge. An
example is given by a Luttinger-fermionic analog of the
Nambu-Jona-Lasinio (NJL) model [47], which features a full
continuous U(1),, symmetry (17), as first discussed in [17],

s= [ #s{-pGuor oty lonr -]} (4

In this model, the U(1),, symmetry forbids corresponding
mass terms such that the status of the symmetry can be
expected to be indicative of gap formation.

For each of these theories, we compute the one-loop beta
function. While this can straightforwardly be done with
any conventional quantum field theory method, we use the
functional renormalization group here, as it can be gener-
alized straightforwardly to future nonperturbative studies.
Specifically for fermionic theories, the computational
techniques based on the Wetterich equation [48] are well
developed [49-51] and have found manifold nonperturba-
tive applications [46,52—-61]. Starting from the Wetterich
equation for the effective average action I'y,

1
0T\ =3 STrloR, T

+Re) 7' (35)
the regulator function R; implements the regularization
in the Euclidean momentum domain at a regularization
scale k; here 9, = kﬁ. Provided I}, is fixed in terms of the
bare microscopic action S for k — A as a UV boundary
condition, the full quantum effective action I" is approached
for k — 0 in the IR. Importantly, it can be chosen in such a
way that the symmetries of the kinetic term are respected by
the regularization procedure. Using this as well as standard
methods as detailed in [17], we project the Wetterich
equation for each of the models onto a theory space defined
by the ansatz

Fk = / [_Zwlilevaﬂaul// + 'Cint]v (36)

X

where L;,, denotes the interaction term of the correspond-
ing model including the scale-dependent coupling 4 and a
wave function renormalization Z,,. Introducing the renor-
malized coupling

A= (37)

A
7z’
we find for each of the five models the beta function

AN
0 = ———L 2
T

(38)
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in the large-N limit. [To one-loop order, the anomalous
dimension 7, = —0d,InZ, vanishes 7, =0, which
completes the flow in the theory space spanned by the
ansatz (36).] Equation (38) demonstrates that each of these
models is asymptotically free for positive 4 > 0, approach-
ing the Gaussian fixed point towards the ultraviolet as a
high-energy fixed point. Asymptotic freedom guarantees
that the models can be extended to arbitrarily high energy
scales. Towards low energies, the coupling 1 grows larger
and the true behavior of the models has to be analyzed by
nonperturbative means.

By contrast, the Gaussian fixed point is infrared attrac-
tive for negative couplings, 1 < 0. Correspondingly, the
couplings diverge to negative infinity towards high energies
(Landau poles); thus, a nonperturbative analysis is neces-
sary to search for a possible UV completion or to prove
triviality of the models in this coupling branch.

Of course, the present analysis can straightforwardly
be generalized to finite N; values. However, a consistent
treatment in this regime requires one to include a Fierz-
complete set of interaction channels. This has, e.g., been
done for the Luttinger-Gross-Neveu model in [17,62]
which required the inclusion of a tensor channel
~(l/'/GW1//)2. The property of coupling branches where
the theory is asymptotically safe then generalizes to higher
dimensional regions in the space of all couplings. We
expect similar properties to hold for each of the models
studied here.

V. MEAN-FIELD THEORY

In order to investigate the possible occurrence of gap
formation in the models defined in the previous section, we
use mean-field theory which becomes exact in the large-N¢
limit. For this, we bilinearize the fermionic actions given
above using auxiliary scalar fields with a Gaussian action
and a Yukawa coupling to the fermionic fields. In the large-
N limit, the auxiliary scalar field integral is dominated by
the classical configurations, i.e., the extrema of the action
which in turn is governed by the fermion determinant.
Since the true expansion parameter of the large-N; limit
also involves the dimensionality of the Clifford algebra

. . . l _ l . .
[56], the expansion is in powers of TN = N, which is

already a small parameter for Ny = 1.

In view of various forms of possible mass terms
discussed in Sec. III, we expect radiatively generated gaps
to occur in the complex momentum plane. Therefore, we
perform the mean-field analysis in Minkowski space, using
propertime methods for the regularization. Of course, for all
models, the sign change of the interaction term when
comparing the Euclidean description used in Sec. IV with
the present Minkowskian analysis has to be accounted for,
cf. Appendix B.

A. Luttinger-Gross-Neveu model

Let us start with the Luttinger-Gross-Neveu model, the
action of which in Minkowski spacetime reads

s= [da]-pou000-Jawr| o9

We bilinearize the interaction term using a Hubbard-
Stratonovich (HS) transformation introducing an auxiliary
real scalar field, such that the action reads

- 1
Sep = / d*x [—zwsz,waﬂa”w + hepiry -5 n‘ﬂﬂ . (40)

First, we note that the action (40) is manifestly real if the
coupling 7 is real, since both ¢ and yy are real. Also, the
sign of the scalar mass term is such that it corresponds to a
positive mass term and thus a stable potential in Minkowski
space. The discrete axial symmetry of the fermionic
description is also preserved by the action (40) if the scalar
field transforms as ¢ — —¢. The theories defined by
Eq. (39) and Eq. (40) are identical both on the classical
as well as on the quantum level, provided the coupling
constants satisfy a matching condition. The matching
condition can, e.g., be derived from the classical equation
of motion for the scalar field (corresponding to a Gaussian
integration on the quantum level) which reads

oS - _ _
gzhlpy/—mzqﬁ:O. (41)

Inserting the solution for ¢ into Eq. (40) leads us back to
Eq. (39) provided the matching condition

A=—-— (42)

is satisfied. Incidentally, the Yukawa coupling could be set
to a unit scale by rescaling the scalar field; we keep it for
reasons of generality. The minus sign in (42) implies that
the HS transformation can be meaningfully performed
in the standard fashion only for negative values of the
coupling 4. This confines the following analysis to the
nonasymptotically free branch 1 < 0 of the Luttinger-
Gross-Neveu model. While this corresponds to the branch
where the Gaussian fixed point is IR attractive, we are still
free to assume that the initial value of the coupling 1 is
sufficiently large to potentially introduce a nontrivial long-
range behavior.

For this, we investigate the effective action of the scalar
field upon integrating out the fermions. This functional
integral yields the one-loop contribution I'|, to the effective
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action in terms of the fermion determinant. We evaluate the
latter for a constant scalar field, ¢ = ¢, = constant:

[y, =—iln det[-G,,0"0" + hey)

:_Em det[—(*)? + (heo)?). (43)

where in the last step we have used the y;, hermiticity of the
kinetic term, 710G, 0"0"y,9 = —G,,0"0". Now, we employ
Indet = Trln and perform a trivial vacuum subtraction
such that T'j,[¢py = 0] = 0. Going to Fourier space and
evaluating the functional trace we arrive at

i d*p ([ p*— (hepy)?
Flf__ENfd}’Q/(zﬂ)“ln( p4
N,dQ [dt .
e / 91— e, (44)

For the last step, we have rotated the momentum integral to
the Euclidean and used the Schwinger propertime repre-
sentation of the logarithm. This representation is both
infrared and ultraviolet divergent. We can cure the UV
divergence with the introduction of a UV cutoff scale A,
i.e., introduce a lower bound of the integral at 1/A*. Of
course, the UV divergence is indicative for the renormal-
ization of the couplings.

The IR divergence signals the existence of tachyonic
modes. This is already obvious from the first line of
Eq. (44) where the argument of the logarithm becomes
negative for momenta with p* < (h¢,)?. We deal with the
IR divergence by studying the integral in the complex
(hepo)? plane where it exists for all Re(h¢,)* < 0; we then
continue the result analytically back to real values of ¢,. As
a result, the effective action picks up an imaginary part
indicating that the assumption of a finite scalar mean field
|po| > 0 would correspond to an unstable vacuum state.
Expanding the resulting expression in inverse powers of the

Nd,Q

UV cutoff A, we obtain
- ho)*\ .
fﬁﬂg (hepo)? [1 —y—ln<< Af) ) - m]

+ O((hgp)*/A*), (45)

ry,=-

where € denotes the spacetime volume. Following
Schwinger [63], the imaginary part of the effective action
is a measure for the decay rate of a state with finite ¢, with
exp(—2ImTI") quantifying the probability for the state to
persist. This tells us already that within our assumptions
only the ¢po = 0 state can be an equilibrium state.

In order to further study the stability of this state, we
consider the (real part of the) effective mean-field potential
including the classical scalar mass term but ignoring all
terms that vanish in the limit A — oo,

Nyd heo)*
Vet (o) :%‘r/’%{mz 25f thz{ ln<< 7\52) )]}

(46)

where y ~(0.5772... denotes the Euler-Mascheroni con-
stant. With A being the largest scale (to be sent to infinity),
we observe already in this unrenormalized expression that
the term dominating the effective potential at large fields is
positive, Vg (o) ~ —¢3 In[(hy)?/A*] > 0. Also, all other
terms are positive for finite ¢, and vanish only for ¢y = 0
in the validity regime of Eq. (46) with A% > (h¢y).
Therefore, the zero-field mean-field state ¢y =0 is the
minimum of the (real part of the) effective potential.

Of course, we can also introduce renormalized quantities
by defining a renormalized mass at some renormalization
scale y,

N;d Iy
2u) = m? =L LR Ik 47
() s= i =L I (47)

We emphasize that both terms on the right-hand side are
strictly positive, since u < A for a meaningful renormal-
ization scale well below the UV cutoff. The correspond-
ingly renormalized effective potential reads

2 d, hepo)?
V) =2 {200 + 34572 1 == P2

(48)

For small fields (h¢y)?> < u*, we again observe that the
term in curly brackets remains positive, hence ¢po = 0 is a
local minimum of the effective potential. On the other hand,
for large fields (h¢y)? > p*, it naively seems that the
effective potential is not bounded from below, since the
logarithm can become arbitrarily large. However, this is
an artifact of this representation. As discussed above, the
mean-field potential in the representation (46) stays pos-
itive for all > > 0, since A is the largest scale in the game
and eventually goes to infinity. Indeed, for m? > 0, m?(u)
grows logarithmically for decreasing ¢, which compensates

the logarithmic increase of ln(<h‘/’0> ),

keeping (48) positive.
A plot of the effective potent1a1 Vet 18 depicted in Fig. 1,
confirming that the trivial vacuum ¢, = 0 is the global
minimum in the validity range of the computation
(solid line).

The present discussion is very similar to that of mean-
field or Coleman-Weinberg-type effective potentials in
Dirac-Yukawa theories [64—66], where a naive look at
the renormalized form can be misleading if the ultimate
existence of a UV cutoff is ignored.

In summary, we conclude that ¢y = 0 is not only a local,
but the global minimum of Vg in the mean-field approxi-

mation for the 2 < 0 branch of the Luttinger-Gross-Neveu
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FIG. 1. Renormalized effective potential Vg of the Luttinger-
Gross-Neveu model for Ny = 1 and d, = 32. The plot is obtained
by setting the renormalization scale to a small value, namely
u = 0.5 and the ratio m?(u)/h? is set to 1. Moreover, since the
mean-field analysis is done for (possibly large) negative values of
the bare coupling 1, we set the bare mass parameter to its lower
bound, i.e. m = 0 (larger values would correspond to couplings
closer to zero). Choosing ¢, < 0.5A2 as an ad hoc criterion for
the validity regime of our analysis requiring, in principle,
|hgpy| < A2, the effective potential is depicted with a solid line

in the validity region, and with a dashed line where the
assumptions are violated.

model. At mean field level, the fermions develop neither a
mass nor a tachyonic mode in this branch of the model even
if the initial value of the bare coupling 1 < 0 has a large
absolute value at the UV scale A. Since the standard HS
transformation cannot be applied to the positive coupling
branch, we obtain no information about the status of the
model in the asymptotically free branch where the cou-
plings grows towards the IR.

As a consistency check, we can compute the # function
at mean-field level by introducing the scale-dependent
coupling A(u) = —h*/m?(u), which for d, = 32 results in

oAl = SR, (49)

Strictly speaking, we have derived this result for negative
values of A only. But it agrees with the result (49) of the
preceding section for all values of A, thereby reproducing
the one-loop RG flow in the large-N; limit including
asymptotic freedom in the positive coupling branch.

B. y;p model

Let us now study the second model discussed above,
with Minkowskian action

_ A,
S= / d*x [—wGﬂya"ﬁ”eri(wlow)z . (50)

As before, we aim at the mean-field potential in order to
explore the possibility of gap formation. This time, the HS
transformation leads us to

_ 1
SFB—/d4x [—J’Gmaﬂabl[/+ih¢11771ol//—§’”_’12¢2 . (51)

for the partially bosonized version of the model. The factor
of i in front of the Yukawa interaction guarantees that
the action is real, cf. Eq. (14). The discrete axial symmetry
of Eq. (50) again induces a Z, symmetry for the scalar
¢ = =

It turns out that the equivalence of the two actions
requires the same matching condition (42). Again, only the
negative coupling branch A < 0 can be studied in mean-
field theory.

It is also straightforward to verify that the mean-field
analysis leads to the same one-loop effective action
including the imaginary part for finite ¢, as well as the
same effective potential as in the Luttinger-Gross-Neveu
model (46), with a global minimum at ¢, = 0. Also in
this case, the Luttinger fermions remain ungapped and do
not exhibit a tachyonic mode in the negative coupling
branch. While we again cannot address the long-range
physics in the positive coupling branch, the mean-field
analysis yields the correct § function (49) for all values of
the coupling.

With hindsight, the fact that the two models behave
identically is not too surprising, since the discrete U(1),,
transformation with § = 7 discussed below Eq. (17) trans-
forms the Luttinger-Gross-Neveu model into the y;, model
at each stage of the analysis.

C. 711 model

Now, the y;; model turns out to behave rather differently.
We start with the corresponding action in Minkowski
spacetime

_ A,
S = / d'x |:_WGyuaﬂaD‘//+§(W711W)z]‘ (52)

This time, the HS transformation leads us to the partially
bosonized action

— T AT 1 7
S = / d*x [—WGﬂua”a”w + ey — §m2¢z] (53)

which is equivalent to (52), provided the matching
condition

i== (54)
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is satisfied. We observe that the HS transformation is now
tied to the positive asymptotically free 1 branch. Again, the
discrete symmetry of the fermionic formulation inhibiting a
bare mass term induces a Z, symmetry for the scalar
field such that Sgg is invariant under the combined trans-
formation. Choosing the scalar field to be constant
¢ = ¢y = const, the fermion determinant yielding the
one-loop contribution to the effective action reads

I, = —ilndet[-G,, 0" + heoy1i]

= —5Inde~(¢%)* - (o). (55)
In the last step, we have used the y;y-hermiticity of the
kinetic term, as well as the anticommutator properties
{G..711} = {71011} = 0. Evaluating the resulting trace
in Fourier space, performing the vacuum subtraction, and
using the propertime representation, we arrive at

i d* *+ (he)?
Iy = __Nfdyg/ (27:))4 1n<p (4 i )

N d Q [dt 7
= 2fG 5] /12 (1 — (o)1), (56)

In the first line, it is already obvious that a finite value of ¢,
does neither induce tachyonic modes nor an imaginary part
of the action. Consequently, the propertime representation
(second line) requires only a UV cutoff, implemented
by a 1/A* lower bound at the ¢ integral, whereas the
action is IR finite. Correspondingly, the unrenormalized
effective potential including the classical scalar mass term
can straightforwardly be computed. Ignoring the terms that

vanish in the large-A limit, we find
71\2
ln<(h¢o) )] }
A4

(57)

m?> N
Veir(¢o) = ¢5{7— 2({ thz{

In order to renormalize the effective potential, we first
introduce a renormalized mass parameter at some renorm-
alization scale p,

() = nhs. (58)
Note that m?(u) can take values with either sign in contrast
to the renormalized mass in the previously discussed
models, cf. Eq. (47). The effective potential can then be

written as

Ve =5 ¢0{ ()—%52{1‘“‘“(%)2)”'

(59)

The latter displays a nontrivial minimum satisfying
Ver(do = v) =0 at

_ 25,2 le(ﬂ)

(hv)? = pte 1% @ 7, (60)

Using Eq. (58), it is straightforward to verify that this
minimum is RG invariant,

,udiﬂvz =0. (61)

In terms of the minimum, the renormalized potential can
also be brought into an RG invariant form

Nid,
26 2

(hepo)*

Ve T 9
e e(hv)2

L (hep)* In (62)

where e denotes the Euler number.

The effective potential is plotted in Fig. 2; it is bounded
from below and exhibits the nontrivial minimum at ¢ = v.
In this quantum-induced ground state, the discrete Z,
symmetry is spontaneously broken, giving rise to a fer-
mionic m;; mass term. We can read off from Eq. (53) that

= ho. (63)

In fact, the product /v sets the scale for all dimensionful
quantities occurring in Egs. (62), (63). Since the original
theory, the y;; model, has no intrinsic scale on the classical
level, this is a textbook example for dimensional trans-
mutation. As discussed in Sec. 111, the quantity m?, gaps the
fermionic spectrum by a complex conjugate pair of offsets
from zero p* = +im7,.

0.08

0.06 -
0.04+
0.02+

Vest

0

—0.02}
—0.04}+

—0.06 1 1 1
0 .
heo

FIG. 2. Renormalized effective potential of the y;; model for
Ni = 1 and d, = 32. The position of the minimum has been set
to 1, namely /v =1, in units of the square of an arbitrary
dimensionful scale. The presence of a minimum at ¢y = v
indicates the formation of a mass gap in the fermionic spectrum.
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In principle, the mean-field analysis also gives access to
the curvature of the effective potential at the minimum.
From Eq. (62), we obtain
2Nf
n?

V(o =v) =—5 I, (64)
where the scale is set purely in terms of the (dimensionful)
Yukawa coupling. In the present setting, this result does not
acquire an independent meaning. In order to interpret
Eq. (64) as a mass of a scalar o-type excitation on top
of the condensate », we would also need the correspond-
ingly induced kinetic term for this excitation. For instance,
if the fluctuation induced kinetic term read S[o] =
f %Z 0,00"c with a wave function renormalization Z,,
_ 2N R
2z,
Finally, as a self-consistency check, we can derive
the § function for the scale-dependent coupling A(u) =
h?/m?(u) within mean-field theory using Eq. (58), yielding

the result for the scalar excitation would be m2

0 4N
== Mp) = =—L 2 (), (65)

ou 7
in agreement with previous results. For the y;; model, the
mean-field computation proceeds fully in the asymptoti-
cally free 4 > 0 branch of the model.

D. y¢; model

Let us now study the fourth model with a scalar self-
interaction channel on the mean-field level. The computa-
tion is interesting, since it requires slightly different
techniques. The action reads in the Minkowskian domain

yi
5= [ ax|-pGu00w =S @rwr|. @

Bilinearizing this action by an HS transformation, we
arrive at

- 1
SFB:/d4x [—ll_/G;wa”a”l//Jrih¢l/7701ll/—2’7l2¢2}, (67)

where the i in front of the Yukawa term renders the action
real as in Eq. (51), cf. also Eq. (25). The two actions are
equivalent if the matching condition (54) is satisfied. The
mean-field approximation thus gives us information about
the asymptotically free 4 > 0 branch.

As before, we write the mean-field quantum contribution
to the effective action in terms of the fermion determinant,

', = —ilndet[-G,,0"¢" + ihgyo]. (68)
We have not found a way to rewrite the determinant in

terms of scalar squares of the involved operators as no
obvious y4-hermiticity property for a suitable value of A

appears to be available. Hence, we keep the nontrivial spin
structure for the propertime representation of the In det.

Assuming ¢ = const, and using that (-G, 0"¢")" =
%, we can write the vacuum-subtracted expression as
}_l(ﬁ() (_Gﬂuaﬂay)
~7) (-)

Iy, =-iTrln (1] + i( ym), (69)

where In det = Tr In has been used. Having in mind that the
coordinate/momentum trace will ultimately be performed
in Euclidean momentum space, we note that the involved
operators possess simple hermiticity properties. The latter
imply that the eigenvalues of the total operator in paren-
theses in the Euclidean must be of the form 1 + ix with
x € R. Hence, we can use the standard propertime repre-
sentation of the logarithm such that we obtain in momen-
tum space

dt _ G »P“P
Ly = —iTr/Te_’<1] —e ymt) (70)

;wp 1)

Since (242 y,)> = 1, the last exponential in Eq. (70) can

be decomposed as

hr/’n GuypH p?
Yol

"
e R 7 —1co ¢0 G/u/p p

h
S—5-1—i Yol smit (71)
P’ P’

o . Gur'p’ . .
The contribution proportional to % vanishes, since the
functional trace, i.e., the momentum integral requires the
Lorentz tensor structure to be proportional to the metric
/ PP (p*) ~ ¢; however, the Lorentz trace of the G,
vanishes, G, = 0. The trace in spinor and flavor space
thus becomes trivial. Next, we can Wick rotate the
momentum-space variables to the Euclidean domain,
rescale the propertime ¢ — p?t, perform the momentum
integral, and arrive at

—Q/ dt — (1 = cos hgt), (72)
/A2 1 r

where we have introduced a UV cutoff at the lower
bound of the propertime integral. The integral can be
evaluated analytically in terms of cosine integral functions.
Expanding the result for large UV cutoff A and dropping
the terms that vanish in the limit of A — oo, we obtain for
the effective potential

Ve (o) = ¢O{ Z_ij 2 [3_2]/_111((71;{)2)2)”
:"30{mzw—;v;‘?ﬁz[3—27—‘“((@?)2)}}’

(73)
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where we have introduced the renormalized mass m(u)
using the same definition as in Eq. (58) for the y;; model.
As in this previous model, the effective potential features a
nontrivial minimum at

2
— _257t2m (I‘)+2_2y
s

(hv)? = pte Vi @ (74)

which is RG invariant, since y%v = 0. In terms of this
minimum, the effective potential for the present y,; model
can be written in the identical form of Eq. (62) as for the y;
model. Accordingly, its graph is identical to that shown
in Fig. 2. If the absence of the fermionic mass term is
protected by a suitable symmetry, it is broken by the ground
state ¢po = v at the mean-field quantum level, inducing a
fermion mass

m3, = hv. (75)
Similar to the y;; model, the model exhibits dimensional
transmutation and induces a gap in the fermion spectrum in
terms of a complex conjugate pair of offsets from zero
p? = +im3,, as below Eq. (27). Analogously, the model
allows for massive o-type scalar excitations on top of the
ground state as is indicated by the curvature of the effective
potential, cf. Eq. (64). Of course, the present mean-field
analysis also passes the self-consistency check in terms
of the f function for the scale-dependent coupling A(u) =
h?/m?(u) also yielding Eq. (65) as in all other cases.

E. LNJL model

Let us finally take a look at the mean-field result for the
Luttinger-fermionic version of the NJL model, featuring a
continuous axial U(1),, symmetry. The action in Minkoski
space reads

5= [ @ |20 G0y =) - o)
(76)

Both interaction channels can be bilinearized by an HS
transformation involving this time a complex massive
scalar field, yielding the partially bosonized version of
action

- 1-
SFB = / d4x [_ZV/Wnya”ayW + h¢l/_/ <¢) U4

2
+ g (—1 +2”°)w - nﬂ«ﬁ*qﬁ} . (77)

Here we allow for a complex Yukawa-like coupling / for
generality. Reality of the action (77) is again manifest, since

the two fermion-boson interaction terms are complex
conjugate to one another. The matching condition for the
two models to be identical now reads

_ 1A

. (79)

where the additional factor of two in the denominator, e.g.,
in comparison to Eq. (42), is a consequence of the complex-
field normalization. As for the LGN or the y;, model, the
HS transformation can be meaningfully performed only for
negative values of the coupling /. Incidentally, we observe
from Eq. (78) that & could have been chosen real from the
outset. Also, any complex phase of / can be compensated
by a global phase rotation of the field ¢.

For the choice of the ground state in a mean-field
computation, we also have a free phase parameter to
choose. Therefore, we assume /1 as well as ¢ = ¢y €R
as real without loss of generality, and compute the one-loop
contribution I'|, to the effective action for ¢y = const. In
fact, we again arrive at the same result as for the LGN
model in Eq. (43).

Also, all other conclusions such as the occurrence of an
imaginary part of the effective action for finite ¢, as a result
of the tachyonic quantum modes, and ¢, = O being the
only equilibrium state of the effective action are essentially
the same as for the LGN or the y;q model. For complete-
ness, we state the resulting renormalized effective potential
accounting for the factor of two difference of the field

normalization

(79)

Ned, - hepo|?
Var = o {200+ S5 1=y = o (20

where the renormalized mass m?(u) has been defined as in
Eq. (47). We also have written the effective potential such
that it is valid for any constant complex field value ¢, € C.
We conclude that the LNJL model does not exhibit a gap
formation on the negative A branch that is accessible by the
standard HS transformation.

We conclude this section by mentioning that the
mean-field computation also gives access to the running
of the renormalized LNJL coupling defined by A(u) =
—|h|?/(2m*(u)), yielding the large-N; beta function
Eq. (38) as expected.

F. Summary of mean-field results

Let us summarize our findings for all the scalar self-
interacting models at mean-field level in Table 1. All
models that we considered exhibit asymptotic freedom
for positive values of the coupling 4; in fact, the sign
conventions of the interaction terms have deliberately
been chosen such that the one-loop RG flows exhibit the
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TABLEI. Summary of mean-field level results for all fermionic
models studied in this work. While all models feature an
asymptotically free branch for 4 > 0, the matching condition
required by the standard Hubbard-Stratonovich transformation
gives access to the mean-field analysis only for a specific branch.
For the two models (y;; and yq;) for which we can analyze the
long-range behavior of the asymptotically free branch, we find
condensate and gap formation at mean-field level and a gap in the
complexified fermion spectrum.

Asymptotic Mean-field Gap formation Fermionic
Model freedom analysis  in mean field spectrum
LGN A>0 A<0 no massless
710 A>0 A<0 no massless
711 A>0 A>0 yes complex gap
Yo1 A>0 A>0 yes complex gap
LNIJL A>0 A<0 no massless

same sign. The mean-field analysis has been performed
with the aid of the Hubbard-Stratonovich transformation
in the positive (asymptotically free) branch of the cou-
pling 4 for the y;; and y,; models, and in the negative
(nonasymptotically free) branch for the LGN, y;, and
LNJL models.

In the mean-field approximation, only the y;; and y
models feature the formation of a nonzero condensate in the
effective potential and thereby gap formation in the fermion
spectrum on the coupling branch accessible by the HS
transformation. The corresponding gaps, however, do not
correspond to a conventional real mass term, but to a
complex pair of offsets in imaginary direction in the
complex p? plane.

The other models do not undergo gap formation in the
mean-field approximation, i.e. the fermions remain mass-
less and the effective potential exhibits a global minimum at
¢o = 0. While the HS transformation gives access only to
the branch which is not asymptotically free, condensation or
gap formation is not observed at all even for arbitrarily large
(negative) bare coupling values. In a sense, this result can be
interpreted as a self-consistent behavior of these models: if
gap formation had occurred, the fermionic spectrum would
have featured tachyonic modes. At the same time, the
effective action would have acquired imaginary parts indi-
cating the instability of such a ground state.

VI. ANALYTIC STRUCTURE OF GAPPED
PROPAGATORS

As discussed in Sec. 111, the classical equations of motion
of the free theory admits tachyonic solutions for the case of
the standard mass term and the m,, mass. In the interacting
cases of the LGN, the y;o, and the LNJL model, these
modes have the potential to trigger an instability associated
with an imaginary part of the effective action, if the ground
state developed a fermionic condensate. At mean-field level

and for the negative coupling branch, this, however, did not
happen, since the ground state remains trivial.

Nevertheless, the potential presence of an instability may
be viewed as a manifestation of Ostrogradsky’s theorem
stating that Hamiltonians of higher-derivative theories are
unbounded from below [22]. On the quantum level, higher-
derivative theories generically go along with ghosts, i.e.,
states manifesting as poles in the propagator with negative
spectral weight [18-21,67]. In the sense of the Lehmann-
Killen spectral representation, such states do not allow for
a probability interpretation potentially invalidating the
existence of an S matrix and thus the validity of such
theories as quantum field theories. Despite these serious
issues at least for a perturbative construction, many con-
crete proposals have been made to deal with ghosts in a
quantized fundamental theory [19,21,23-33]; moreover,
theories with ghosts can be meaningfully discussed within
effective field theory, e.g., in cases where the timescale of
the instability is large compared to other timescales of
interest; see [68—71] for applications in cosmology.

In order to study the possible occurrence of ghosts, let us
determine the analytic structure of the propagators of the
various free theories in the complex p?> momentum plane.
We start with the free theory with a standard mass term
Eq. (10). The Minkowski space propagator S(p) is related
to the inverse Hessian of the action by

. 1 1
=iS(p) :Gﬂ,,p”p”—mz :p4_

m* (Gm/pupv + m2)’ (80)

which is, of course, matrix valued in spinor space. Using,
for instance, the explicit representation of the Abrikosov

(a) (b)
3(p?)
R(p?)
(c) d)
3(p?) S(p?)
" we) T e
—im?, ( —im3,

FIG. 3. Analytic structure of the propagators for the free theory
with (a) a standard mass m, (b) an m;, mass, (c) an m;; mass,
(d) an mg, mass depicted in the complex p> momentum plane.
Black dots represent the position of simple poles in the eigen-
values of the propagator, and zigzag lines denote a branch cut.
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algebra given in Appendix A, we can determine the
eigenvalues of the propagator:

1
T ldeg.16]},
" eg ]}

eig(—iS(p)) :{ 5 : z[deg-lﬂ,pz_ mz[

p-—m
(81)

where we find that the two different eigenvalues occur with
a degree of degeneracy of 16 each. From Eq. (81), we can
read off that the propagator features 16 poles in the
complex p? plane that correspond to a standard massive
dispersion relation p?> = m?, and 16 poles corresponding to
tachyonic states with p?> = —m?, cf. Fig. 3(a). Moreover,
the latter are, in fact, ghost poles as their residue is negative.
Of course, causality requirements for the propagator may
be implemented by suitable ie prescriptions; however, the
details are not relevant for the present discussion.

We conclude that the free theory with a standard mass
term indeed exhibits the properties that are generically
expected from a higher-derivative theory: it features tachy-
ons and ghosts. For the present case, the tachyonic and the
ghost states are identical; these properties are not neces-
sarily linked, a counterexample is, e.g., given by certain
versions of quadratic gravity [20,72].

As a second example, let us consider the free theory
with a y;o mass term of Eq. (14). Here, the propagator is
given by

1
—iS(p) = .
(7) G P p* = imigrio
1 :
Zm(GﬂuP”P —imfgrio).  (82)
with eigenvalue spectrum
2(~i5(p) { 1 deg 16
eig(=iS(p)) = eg.16],
V(P = mip)(p* +mi,)
: (deg .16]
- eg.16] 5.
V(p? = miy)(p* + miy)
(83)

We observe that the propagator has square root singularities
at p> = +m3, instead of simple poles. This implies that
there is a branch cut in the complex p? plane. Choosing the
cut to lie at negative values of the radicand, the branch cut
extends from p? = —m?, to p? = m3; along the real axis,
see Fig. 3(b). Half of the modes come with a minus sign
such that we rediscover the ghost modes in the massless
limit m%o — 0 as expected. However, there is no straight-
forward Lehmann-Killen spectral representation of the
propagator for finite m?, and thus no immediate probability
interpretation in terms of asymptotic states.

Let us also study the propagator for the free theory
including a y;; mass term, cf. Eq. (19),

S(p) 1
—iS(p) = y
G/u/pﬂp _m%lyll
1
:m(Gﬂyp"P”—m%ﬂn)' (84)
11
Now, the eigenvalue spectrum reads
ie(~i(p)) 1 deg 1]
eig(—iS(p)) = _ . eg.16],
V(p? = imi)(p® + im,)
! [deg .16]
V(p? = im3,)(p* + imiy)
(85)

The propagator again supports a square-root type branch
cut in the complex p? plane, this time ranging from
p? =—im?, to p* =imj, along the imaginary p’ axis,
cf. Fig. 3(c). Also in this case, we observe the absence of a
conventional spectral representation thus losing the inter-
pretation of some of the modes as ghosts.

A fourth interesting example is given by the free theory

with a yy; mass, cf. Eq. (25) with the propagator

—iS(p) = (Gup!p* + imgyo1),  (86)

p* 4 my,

yielding a slightly more intricate eigenvalue spectrum

1
cg(-i5(p) = {2 leg 8.
pz—lm%1 pz—&—lm(%1
-1 -1
————|deg.8|,—5————|deg.8 } (87
Pz_’m(zn[ | P2+””31[ | )

[deg.8],

For this mass term, we observe the naively expected simple
poles on the imaginary axis at p?> = +im3,. Half of the
modes seems to have a ghost-type residue. However, since
the poles are off the real axis, there is no conventional
spectral representation and thus no straightforward prob-
ability interpretation.

At this point, we conclude that a naively expected link
between a higher-derivative theory, the occurrence of
ghosts, and an inferred breakdown of a consistent quan-
tum field theory does not hold in general in theories with
relativistic Luttinger fermions. While this link appears to
be present in the case of theories with a standard mass
term, where we do find tachyonic ghosts, all other mass
terms do not give rise to a spectral representation.
Therefore, we have no reason to infer that these theories
feature ghost states.
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Based on these observations read together with the
findings of the previous sections, our interpretation at
present is as follows:

(a) The tachyonic ghost states of relativistic Luttinger
fermions with a standard mass term inhibit a straight-
forward perturbative construction of observables
such as those derived from an § matrix. This is also
reflected in our mean-field approach for the LGN or
LNJL model by the potential occurrence of an imagi-
nary part of the effective action as a consequence of
tachyonic instabilites. Of course, this does not exclude
the possibility that a successful quantization may be
possible along the lines suggested for other higher-
derivative theories.

(b) While we cannot make a statement about the possible
(in-)existence of perturbative S-matrix based observ-
ables for Luttinger fermions with m?3, masses due to
the lack of a spectral representation, the occurrence of
tachyonic modes in the mean-field approach to the y,
model suggests that such degrees of freedom lead to
similar problems as those with the standard mass terms
and tachyonic ghosts.

(¢) For the models with m?, or m3, mass terms, we have
observed a perfectly stable and consistent mean-field
description for the corresponding y;; and y(; models
going along with the absence of tachyonic mass poles.
Also, we do not find ghost states in the sense of
conventional mass poles with negative residue. From
this perspective, we do not see any reason based on our
analysis why such theories should not be consistent.

On the other hand, our results suggest that relativistic
Luttinger fermions with m?, or m3, mass terms do not have a
conventional Lehmann-Kéllen spectral representation and
thus no conventional Lehmann-Symanzik-Zimmermann
(LSZ) construction of the S matrix. Our preliminary inter-
pretation of this finding is that such relativistic Luttinger
fermions do not exist in the sense of asymptotic states. In
fact, propagators with complex poles have been intensely
discussed in the literature of the strong interactions where the
fundamental variables of the QCD action, quarks and gluons,
are not expected to exist as asymptotic states [73-89].
Nevertheless, the long-range physics can be described by
asymptotic (bound) states such as hadrons in strong-
interaction physics or a composite o-type excitation in the
present case of the y; or y4; model.

VII. CONCLUSIONS

We have introduced and investigated a number of
self-interacting quantum field theories with relativistic
Luttinger fermions as fundamental degrees of freedom.
Concentrating on models with scalar interaction channels,
we find that each one features a coupling branch which is
asymptotically free in four-dimensional spacetime. While
we have worked at a large number of flavors where the
restriction to the single scalar interaction channels is

justified and quantitatively controlled, we expect our results
on asymptotic freedom to generalize to full Fierz-complete
local interaction bases, as has been shown in [17] for the
LGN model.

We provide large-N; exact results for the mean-field
effective potential for each model, identifying two models
that are high-energy complete and undergo dimensional
transmutation with a corresponding condensate and gap
formation at low energies. Both models, the y;; and y
model, do not exhibit any sign of instability at the present
level of investigation, as might naively be expected for a
higher-derivative theory. The reason for this lies in the fact
that the generated mass term does not induce a tachyonic
mass pole. This is corroborated by our study of the analytic
structure of the propagators for the various versions of the
massive theories.

It is interesting to observe that mass generation and gap
formation does not happen at mean-field level for those
theories where these masses would lead to tachyonic
instabilities. However, since the mean-field analysis is
confined to a specific coupling branch, other methods
are needed to analyze the more interesting asymptotically
free branch for those models. This should be possible with
suitable techniques that allow for the inclusion of a more
general bare potential of the scalar field such as the
functional RG, see [50,50,59-61,90], or methods based
on the gap equation.

These methods could also provide access to the spec-
trum of excitations above the nontrivial ground state in the
stable and high-energy complete models. In the present
cases of the y;; and y;; models, we expect the existence
of a light 6 mode. This would constitute an example of a
UV-complete model with only marginal couplings that
entails naturally light scalar long-range degrees of free-
dom in four-dimensional spacetime. Corresponding inves-
tigations are underway.
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APPENDIX A: RELATIVISTIC ABRIKOSOV
ALGEBRA

In order to make the paper self-contained, let us
summarize a few aspects of the relativistic version of the
Abrikosov algebra [2] in Eq. (2) as derived in [17].
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Whenever needed, we work with the explicit represen-
tation of the G, matrices in terms of elements of a
Euclidean Dirac algebra {y4,75} = 2543,

2
Goi = i\/iyAia i=123,
3
2 2 2
Guo=\/31s  Gu=\\/3rs.  Ga =1/
o R SR 2

1 22
Goo =17 G =5r7+—7s
3 3
G — 1 2 n 2
2 = 377 3 78 3}’9’
1 2 2
= — _—— - - . Al
Gs3 37’7 3 78 33’9 ( )

This representation can be viewed as an appropriate Wick
rotation of the one constructed for d =4 Euclidean
dimensions in [7]. It is straightforward to check that this
representation satisfies Eq. (2). Whereas 9 elements y; o
were sufficient to satisfy the relativistic Abrikosov algebra,
the reality conditions of the action demand for another
anticommuting element for the construction of a spin
metric h. This requires a d, = 32 dimensional representa-
tion for the Euclidean Dirac algebra (and correspondingly
of the Abrikosov algebra) and thus in total with d, = 11
anticommuting elements y,, with A =1, ..., 11.

While we use y;, for the construction of the spin metric,
cf. Eq. (5), both additional elements y;, and y;; can serve
for the construction of additional scalar bilinears and
interactions. Alternatively, we could choose a different
spin metric, e.g.,

h = yirar371n, (A2)
or, more generally, a linear combination &' = ah + ph
with o> + %> =1 and a,fER as the spin metric. This
would induce a corresponding rotation of the interaction
channels discussed in the main text, but the overall
structure of different mass terms, interaction channels,
and the existence of an axial symmetry of the kinetic term
would remain the same.

APPENDIX B: EUCLIDEAN CONVENTIONS

For the Wilsonian renormalization group analysis in
the main text, it is useful to have a manifestly Euclidean
formulation of the models studied in the present work. For
this, we need a Euclidean version of the Abrikosov algebra,

2 d
-—9 5ld T (5/4K6M + 5Miauk)7

{GMD’GMHE: d—1°mw d—1

(B1)

where Minkowski metric factors on the right-hand side are
replaced by Kronecker symbols. For generality, we work in
d-dimensional spacetime here. We also introduce 7 as
Euclidean time direction, related to the Minkowskian time
t by a Wick rotation 7 = it. The reality condition of the
Minkowskian action can then be rephrased for the
Euclidean Lagrangian in terms of Osterwalder-Schrader
(OS) reflection positivity [91],

Ly =Lp. (B2)

where ﬁE arises from Ly by replacing the coordinates
x = (r,X) with = (-7, X). In other words, in addition to
complex conjugating the operator building blocks, we also
need to flip the sign of the Euclidean time. Let us first check
OS reflection positivity for the simple mass term. We
extend the fields to the Euclidean domain y = y/(z, X) and
look at the complex conjugate of the spinor bilinear

(@) (x)]* = (y'hfw)(3). (B3)
A simple choice to implement reflection positivity here is to
define the Euclidean spin metric to be equivalent to the
hermitean Minkowskian one, hy = h = ht, also preserving
the definition y = y' .

Prior to looking at the kinetic term, let us establish the
connection between the Euclidean G, matrices, satisfying
Eq. (Bl), and their Minkowskian counterpart. From
the algebra (BI), all the G, p matrices can be chosen
hermitean in the Euclidean domain. Furthermore, by
comparing (2) and (B1), we can find the explicit relation
of the matrices in the Euclidean and Minkowskian domain.
For example, by looking at the anticommutator

{Goo- G} = 2 = {Goo- Goo } |- (B4)

we infer that the choice Gy r = Gy 1s a valid option.
Next, since

{GOO7GQ'}|M = 2/(d— 1) = —{Goo,Ggg}

(BS)

E’

we can take G;; p =
mutator is

—G;; - Another nontrivial anticom-

{Goi» Goi}|,, = —d/(d = 1) = —{Gp;. Gy}

(B6)

E’

from which we read off the
+iGy; p = Gy i Lastly, noticing that

two possibilities

{Gij, Giz}{M =d/(d-1) ={G;;,G;;} (B7)

E,
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we get +Gjj g = Gjj . The last two ambiguities can be
resolved by looking at the Luttinger kinetic operator
G,,0"0". For the 00 and ii components, we have

1 090
Gd° |y, = G00|E—(_i)za£ = =G|,
G, 0], = ~G,,| (-1?-2 2 =G, (BS)
1 M LIE oxt oxt W L E

Thus, for consistency with equation (BS8), the choice of
the minus sign also for the ij and 0i components fixes the
signs of the remaining G, matrices by G, p = iG; y and
G;jg = —Gjjy. Ultimately, we obtain for the Luttinger
kinetic term

G, idtidy|,, = -G, id"idy|,. (B9)
It is straightforward to check that the kinetic term (B9) is
OS reflection positive in the Euclidean domain. In order for

the weight functions of the functional integrals to undergo
the transition e» to eS¢, we observe that

Sy = i / & x(FG 0" iy + Lin)
— [ @l (FGui iy, + L) = =S:  (B10)

holds for any local nonderivative interaction (or mass) term
Lini- We conclude that the Euclidean and Minkowskian
actions differ by a minus sign with respect to the local
nonderivative terms L;,,

Sp = / d*x(WG,,i0"i0°y — Liy). (B11)
This sign change applies to all interacting models inves-
tigated in the present work, e.g., involving interaction
terms such as (pw)?, (@riow)®, (@ruw)® (@row)?
(G .o
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