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The search for variations of the fine-structure constant α by using atomic clocks has driven the development

of novel atomic clock technologies. Among these, the 229Th nuclear clock based on nuclear transition stands out

due to its high sensitivity. Previous studies on the α variation in atomic clocks have typically focused purely

either on a nuclear or electronic transition but not on the hyperfine electronic bridge (HEB) transitions, which

involve simultaneous changes in both nuclear and electronic structures. In this work, we propose to search for

the α variation by measuring the 3.14-eV HEB transition between the hyperfine levels [Ie, (4 f 12)Je = 4, Fe]

and [Ig, (4 f 12)Je = 2, Fg] of 229Th32+ ions, and the 2.39-eV HEB transition between [Ie, (4 f 4)Jg = 4, Fe] and

[Ig, (4 f 4)Je = 2, Fg] of 229Th40+ ions. These two HEB transitions exhibit remarkably large sensitivity factors Kα

of about −2.2 × 104 and −2.9 × 104, respectively. Compared to the nuclear-clock transition (Ie to Ig) in bare

ions, the sensitivity factors are significantly enhanced by factors of 2.7 and 3.5. Moreover, both the 3.14- and

2.39-eV HEB transitions are well supported by current high-precision laser technology, making our approach

promising for improving the precision of α variation detection.

DOI: 10.1103/64n6-9b44

I. INTRODUCTION

Since Dirac first questioned whether “fundamental con-

stants” are truly constant [1], the investigation of their

potential variations has received considerable experimental

and theoretical attention [2,3]. In particular, a time varia-

tion of the fine-structure constant α has been one of the

central focuses in the scientific community, with direct im-

pact upon theories beyond the Standard Model, including

higher-dimensional theories (see, e.g., Refs. [2,3] and the

references therein) and dark matter models [4–6]. Therefore,

detailed measurements on possible variations of α can provide

valuable insights in the search for new physics beyond the

Standard Model.

Various physical systems have been used to detect the

variation of α, including cosmological observations [7–11],

the Oklo natural nuclear reactor [12–16], and atomic clocks

[17–21]. Atomic clocks are valued for their high precision

and repeatability in laboratory measurements. However, most

(present) atomic clocks are not sensitive to the α variation

[22]. This limitation has stimulated the development of novel
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atomic clock technologies, such as highly charged ions clocks

[23–26] and nuclear clocks [27,28]. These novel clocks com-

bine robustness against external perturbations with enhanced

sensitivity to the α variation. Among these, the 8.36-eV iso-

meric transition in the 229Th nucleus [29–31] is particularly

sensitive to the α variation, with a sensitivity factor of about

−8.2 × 103 [32–36] [as illustrated in Fig. 1(a)]. This re-

markable property is attributed to its extremely low isomeric

transition energy. In contrast, isomeric transitions in other

nuclear systems typically exhibit much smaller sensitivity

factors, due to their higher transition energies [37].

Previous studies using atomic-clock concepts to detect α

variations typically treated nuclear and electronic transitions

as two independent processes [17–28,32–37], neglecting the

possibility that these two processes may affect each other.

Therefore, it is unclear how the performance of atomic clocks

is affected when the nuclear and electronic transitions become

correlated. We find that the hyperfine electronic bridge (HEB)

process introduced in our previous work [38] provides a natu-

ral framework to address this question. The HEB process has

been proposed as the basis of a quantum optical scheme for

the efficient and precise manipulation of the 229Th isomeric

state [38].

In this work, we propose an approach to detect the α

variation using HEB transitions. This is feasible because we

demonstrate that sensitivity factors of HEB transitions can be

significantly enhanced compared to that of the bare nuclear

transition. Specifically, we identify that the 3.14-eV HEB

transition between the hyperfine levels [Ie, (4 f 12)Je = 4, Fe]

and [Ig, (4 f 12)Je = 2, Fg] in 229Th32+ ions [see Figs. 1(b)
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FIG. 1. (a) The ground state and isomeric state in the bare
229Th nucleus (229Th90+). (b), (c) Partial electronic energy levels of
229Th32+ ions (b) and 229Th40+ ions (c). (d) 3.14-eV HEB transi-

tion between hyperfine levels (Ie, Je = 4, Fe) and (Ig, Je = 2, Fg) in
229Th32+ ions. (e) 2.39-eV HEB transition between hyperfine levels

(Ie, Jg = 4, Fe) and (Ig, Je = 2, Fg) in 229Th40+ ions. The hyperfine

splitting is calculated by using a magnetic dipole moment of 0.36 µN

(−0.37 µN ) and an electric quadrupole moment of 3.11 eb (1.74 eb)

for the bare nuclear ground (isomeric) state [39,40].

and 1(d)] as well as the 2.39-eV HEB transition between

[Ie, (4 f 4)Jg = 4, Fe] and [Ig, (4 f 4)Je = 2, Fg] in 229Th40+ ions

[see Figs. 1(c) and 1(e)] are highly sensitive to the α variation.

The corresponding sensitivity factors reach up to −2.2 × 104

and −2.9 × 104, respectively, representing enhancements by

factors of 2.7 and 3.5 compared to the bare nuclear transition.

Moreover, the 3.14- and 2.39-eV HEB transitions lie within

the visible spectral range, making them accessible to current

high-precision laser spectroscopic techniques. This approach

offers a promising method for enhancing the precision of the

α variation detection and can be extended to more nuclear

systems.

II. HEB TRANSITION

For an atomic system consisting of nucleus and electrons,

the Hamiltonian is written as

H = Hn + He + Hen, (1)

where Hn and He are the nuclear and electronic Hamiltonians,

respectively, and Hen is the hyperfine interaction [41]. In the

presence of the hyperfine interaction, the eigenstates of the

combined nucleus-electron system are the dressed hyperfine

states |[Iγ J]FM〉 [38], which generally refer to entangled

states between different nuclear and electronic states. They

are characterized by the total angular momentum F and its

projection M, and can be explicitly described as

|[Iγ J]FM〉 = a|Iγ J; FM〉 +
∑

t

bt |Itγt Jt ; FM〉, (2)

where |Iγ J; FM〉 and |Itγt Jt ; FM〉 are different hyperfine-

coupled bases [42], bt is the mixing coefficient, and a =
√

1 −
∑

t |bt |
2 is a normalized factor. Here, I is the nuclear

spin, J is the electronic angular momentum, and γ denotes all

other electronic quantum numbers. The summation involving

It in Eq. (2) can be typically limited to the nuclear ground spin

Ig and isomeric spin Ie if there are large energy gaps between

these two states and other nuclear states. For example, the

energy of the isomeric level (the first excited state) in the 229Th

nucleus is 8.36 eV, while the energy of its second excited state

is 29 keV [43].

The mixing coefficient bt can be calculated perturbatively

and expressed as [44]

bt =
∑

τK

(−1)I+Jt +F

E0 − Et

{

It Jt F

J I K

}

×〈It ||M
(τK )||I〉〈γt Jt ||T

(τK )||γ J〉, (3)

where M(τK ) and T (τK ) are the nuclear and electronic mul-

tipole operators of rank K associated with the hyperfine

interaction Hen, respectively. The specific expressions of oper-

ators M(τK ) and T (τK ) can be found, e.g., in Refs. [41,44]. E0

and Et represent the energies of the states of |Iγ J; FM〉 and

|Itγt Jt ; FM〉, respectively. τ = E or M is used to distinguish

whether the operators M(τK ) and T (τK ) are of electric or

magnetic type [38,44].

The HEB transition describes a transition between two

different hyperfine levels, e.g., (Ii, γiJi, Fi ) and (I f , γ f J f , Ff ),

where both the nuclear and electronic structures undergo a

transition. This means that the initial (leading) nuclear and

electronic levels (Ii, γiJi) both differ from the final levels

(I f , γ f J f ). If the initial and final nuclear levels differ while

the electronic levels remain unchanged, the process is referred

to as the hyperfine-induced nuclear transition [44,45]. The

minimal coupling of these two hyperfine levels due to the

interaction with the radiation field gives rise to a photon

emission. These two hyperfine levels are described by the

dressed hyperfine states |[IiγiJi]FiMi〉 and |[I f γ f J f ]Ff M f 〉.

The radiative rate of the type of order τL (L is an integer)

for this HEB transition follows a derivation similar to that of

the hyperfine-induced nuclear transition, and is given by

AHEB =
2[L][Ff ]

[L]!!2

(

ω

c

)[L]
L + 1

L

× |〈[I f γ f J f ]Ff ||O
(τL)||[IiγiJi]Fi〉|

2, (4)

where ω is the transition energy and O(τL) is the electronic

transition operator of rank L, with its specific form detailed in

Ref. [44]. The notation [L] denotes 2L + 1, and the reduced

matrix element of O(τL) is given by

〈[I f γ f J f ]Ff ||O
(τL)||[IiγiJi]Fi〉

≈
∑

t

[

aib
∗
f ,t

{

Jt Ji L

Fi Ff Ii

}

〈γt Jt ||O
(τL)||γiJi〉

+ a∗
f bi,t

{

J f Jt L

Fi Ff I f

}

〈γ f J f ||O
(τL)||γt Jt 〉

× (−1)Jt −Ji+I f −Ii

]

. (5)
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In the derivation above, only the leading-order terms in the

perturbation expansion are kept. Here, ai (a f ) and bi,t (b f ,t )

represent the normalized factor and mixing coefficient for the

initial (final) hyperfine levels (Ii, γiJi, Fi ) [(I f , γ f J f , Ff )]. The

nuclear spin It in the mixing coefficient bi,t (b f ,t ) takes the

value of I f (Ii). Unlike the formula for the hyperfine-induced

nuclear transition [44,45], there is no direct nuclear transi-

tion term (involving the nuclear transition operator M(τK )) in

Eq. (4) because the electronic levels in the initial and final

states are now different as well.

III. SENSITIVITY FACTOR FOR THE HEB

For the HEB transition between hyperfine levels

(Ii, γiJi, Fi ) and (I f , γ f J f , Ff ), the transition energy ω is

calculated to be

ω = 〈[IiγiJi]Fi||H ||[IiγiJi]Fi〉

− 〈[I f γ f J f ]Ff ||H ||[I f γ f J f ]Ff 〉 ≡ 〈〈H〉〉, (6)

where the notation 〈〈O〉〉 is introduced to represent the dif-

ference between the expectation values of a scalar operator

O for the initial and final states. By applying the Hellmann-

Feynman theorem, the relative temporal variation of the

transition frequency ω induced by the temporal variation of

α is given as [33]

ω̇

ω
= Kα

α̇

α
. (7)

Here, Kα = α〈〈∂H/∂α〉〉/ω is the (so-called) sensitivity factor

or enhancement factor (if larger than 1), which measures how

sensitive the system is to the variation of α. The larger the

absolute value of Kα is, the greater the sensitivity of the system

to the variation of α is.

The electronic Hamiltonian He consists of the electronic ki-

netic energy and the electronic Coulomb interaction VeC which

includes both the nucleus-electron and electron-electron po-

tentials. Only VeC depends on α in He. Following the method

in Refs. [13,33,34], we split the nuclear Hamiltonian Hn into

two parts: one consisting of the nuclear kinetic energy and

the strong interaction, and the other representing the nuclear

Coulomb interaction VnC. To a good approximation, only VnC

depends on α. Since the Coulomb interactions VeC and VnC

are linearly proportional to α, and the strength of VnC is

much stronger than those of both the electronic Coulomb

interaction VeC as well as the hyperfine interaction Hen, Kα is

simplified to

Kα =
〈〈VnC〉〉

ω
. (8)

The matrix elements of VnC are diagonal with respect to

the nuclear levels because VnC commutes with both the nu-

clear angular momentum operators I2 and Iz, i.e., [VnC, I2] =

[VnC, Iz] = 0. Therefore, by substituting the expansion ex-

pressions of the dressed hyperfine states |[IiγiJi]Fimi〉 and

|[I f γ f J f ]Ff m f 〉 [given in Eq. (3)] into Eq. (8), one obtains

Kα =
�EC

ω

[

1 −
∑

t

(|bi,t |
2 + |b f ,t |

2)

]

, (9)

where �EC = 〈Ii||VnC||Ii〉 − 〈I f ||VnC||I f 〉 is the nuclear

Coulomb energy difference between the initial and final

nuclear states. The above equation provides the general

expression for calculating the sensitivity factor Kα for HEB

transitions. For the bare nuclear transition, mixing coefficients

vanish and our expression in Eq. (9) reduces to that presented

in Refs. [33,34,37]. For a given nucleus, the Coulomb energy

difference �EC is fixed. Since the mixing is typically quite

weak, qualitatively speaking, the smaller the HEB transition

energy ω is, the larger the sensitivity factor Kα is.

IV. RESULTS FOR 229Th32+,40+

For the 229Th nucleus, the spin parities of its ground and

isomeric states are 5/2+ and 1/2+, respectively [as depicted

in Fig. 1(a)]. The allowed nuclear transition types include the

magnetic dipole (M1) and electric quadrupole (E2) transi-

tions. The nuclear reduced matrix element 〈Ig||M
(τK )||Ie〉 that

appears in mixing coefficients [see Eq. (3)] is determined by

the reduced nuclear transition probability B(τK, Ie → Ig) =

[K]|〈Ig||M
(τK )||Ie〉|

2
/(4π [Ie]). In the current work, the val-

ues of B(M1, Ie → Ig) and B(E2, Ie → Ig) are taken to be

0.022 [29] and 30 Weisskopf units [46], respectively. The
229Th isomer exhibits a long radiative half-life, estimated to

be about 1.7 × 103 s.

For the HEB transitions, the initial and final elec-

tronic levels are different, and thus at least one electronic

excited level must be involved. The lifetime of the electronic

excited level is typically much shorter than that of the 229Th

isomeric level. As a result, the precision of a clock based on

the HEB transition is mainly limited by the lifetime of the

electronic excited level. In this work, we focus on the 229Th32+

and 229Th40+ ions since they possess low-lying electronic

excited levels with relatively long lifetimes on the order of

several seconds.

The electronic ground state configuration of the 229Th32+

ion is [Kr]4d104 f 12 with an angular momentum Jg = 6. Its

partial electronic energy levels are calculated by using the

Jena Atomic Calculator (JAC) [47]. For 229Th32+, the first

and second excited electronic states have angular momenta

of Je = 4 and 2, with corresponding excitation energies of

1.58 and 6.80 eV, respectively, as shown in Fig. 1(b). These

states are relatively long lived, with half-lives of approxi-

mately 5.7 × 103 s for the first excited state and 8.3 s for the

second.

In 229Th32+ ions, the HEB transition between the hyperfine

levels [Ie, (4 f 12)Jg = 6, Fe] and [Ig, (4 f 12)Je = 2, Fg] exhibits

a larger sensitivity factor Kα than that between [Ie, (4 f 12)Je =

4, Fe] and [Ig, (4 f 12)Je = 2, Fg]. However, the transition

rate for [Ie, (4 f 12)Jg = 6, Fe] → [Ig, (4 f 12)Je = 2, Fg] is very

small, on the order of 10−16 s−1, making experimental detec-

tion very challenging. We therefore concentrate on the HEB

transition [Ie, (4 f 12)Je = 4, Fe] → [Ig, (4 f 12)Je = 2, Fg] with

a transition energy of about 3.14 eV. The calculated transition

rates are presented in Table I. For the sake of simplicity, the

transition from [Ie, (4 f 12)Je = 4, Fe = i] to [Ig, (4 f 12)Je =

2, Fg = j] is denoted as Fe = i → Fg = j in this table and

in the following discussions. The HEB transition rates are

dominated by the M1 transition and lie in the range of 10−8 to

10−10 s−1. These rates are comparable to that of the electronic

electric octupole (E3) transition (on the order of 10−9 s−1) in

the 171Yb+ optical clock [48,49]. These results are obtained
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TABLE I. The HEB transition rates for different channels in
229Th32+ ions.

Transition Type Rate (s−1)

Fe = 5/2 → Fg = 3/2 M1 1.3 × 10−9

Fe = 5/2 → Fg = 5/2 M1 9.8 × 10−9

Fe = 5/2 → Fg = 7/2 M1 4.4 × 10−9

Fe = 7/2 → Fg = 5/2 M1 1.5 × 10−9

Fe = 7/2 → Fg = 7/2 M1 3.7 × 10−8

Fe = 7/2 → Fg = 9/2 M1 8.8 × 10−9

Fe = 9/2 → Fg = 7/2 M1 1.2 × 10−10

Fe = 9/2 → Fg = 9/2 M1 6.5 × 10−8

Fe = 11/2 → Fg = 9/2 M1 2.0 × 10−8

using a newly developed module for HEB transitions imple-

mented within the JAC toolbox.

The absolute values of mixing coefficients for the dressed

hyperfine states |[Ie(4 f 12)Je = 4]FeMe〉 and |[Ig(4 f 12)Je =

2]FgMg〉 are less than 2 × 10−5 and the corresponding hyper-

fine splittings lie in the range of several to tens of µeV [as

depicted in Fig. 1(d)]. As a result, the sensitivity factor Kα

remains nearly constant for the HEB transition [Ie, (4 f 12)Je =

4, Fe] → [Ig, (4 f 12)Je = 2, Fg] across different values of Fe

and Fg. Compared to the bare nuclear transition [Kα = −8.2 ×

103, see Fig. 1(a)], the transition energy is reduced by a factor

of about 2.7, resulting in a proportional enhancement of Kα ,

which reaches −2.2 × 104. Furthermore, the intrinsic quality

factor Q (≡ ω/Ŵ with transition energy ω and linewidth Ŵ)

for this HEB transition is estimated to be about 5.7 × 1016,

exceeding that of the 40Ca+ optical clock (Q ≈ 3.0 × 1015)

[50,51] and comparable to that of the 27Al+ optical clock

(Q ≈ 1.5 × 1017) [52,53].

Similarly, the electronic ground state configuration of the
229Th40+ ion is [Kr]4d104 f 4 with an angular momentum of

Jg = 4. Its first excited electronic state with an angular mo-

mentum of Je = 2 lies at an energy of 5.98 eV, as illustrated

in Fig. 1(c). This state exhibits a long half-life of about 10.5 s.

Consider the HEB transition between the hyperfine levels

[Ie, (4 f 4)Jg = 4, Fe] and [Ig, (4 f 4)Je = 2, Fg], with a transi-

tion energy of about 2.39 eV. The corresponding transition

rates, listed in Table II, are dominated by M1 transition and lie

in the range of 10−9 to 10−10 s−1, comparable to the electronic

E3 transition rate in the 171Yb+ optical clock.

TABLE II. Same as Table I, but for 229Th40+ ions.

Transition Type Rate (s−1)

Fe = 5/2 → Fg = 3/2 M1 9.1 × 10−10

Fe = 5/2 → Fg = 5/2 M1 2.1 × 10−9

Fe = 5/2 → Fg = 7/2 M1 5.7 × 10−10

Fe = 7/2 → Fg = 5/2 M1 2.1 × 10−9

Fe = 7/2 → Fg = 7/2 M1 5.5 × 10−9

Fe = 7/2 → Fg = 9/2 M1 8.7 × 10−10

Fe = 9/2 → Fg = 7/2 M1 7.6 × 10−10

Fe = 9/2 → Fg = 9/2 M1 6.0 × 10−9

Fe = 11/2 → Fg = 9/2 M1 4.0 × 10−9

The absolute values of mixing coefficients in the dressed

hyperfine states |[Ie(4 f 4)Jg = 4]FeMe〉 and |[Ig(4 f 4)Je =

2]FgMg〉, as well as the associated hyperfine splittings [see

Fig. 1(e)], are of the same order of magnitude as those in

the 229Th32+ case. Therefore, the sensitivity factor Kα remains

again nearly constant for the HEB transition [Ie, (4 f 4)Jg =

4, Fe] → [Ig, (4 f 4)Je = 2, Fg] across different values of Fe

and Fg. Due to the reduction in the transition energy by a

factor of 3.5 compared to the bare nuclear transition, Kα

becomes −2.9 × 104. In addition, the intrinsic quality factor

Q is calculated to be 5.5 × 1016, close to that obtained for the
229Th32+ case.

V. FURTHER DISCUSSION

Our approach can be readily extended to other nuclear

systems, such as the 235U nucleus. This nucleus possesses an

isomeric state with an energy of about 76.74 eV [54], which is

the second-lowest nuclear excitation energy among all known

isomers. The isomer exhibits an extremely long radiative

half-life on the order of 1024 s, rendering its direct detection

via precision spectroscopic methods infeasible. In contrast,

the electronic bridge (EB) process offers a feasible way to

manipulate the transition of this isomer, thereby enabling its

potential application for establishing another nuclear-clock

transition [55]. In the Supplemental Material of Ref. [37], the

authors claimed that the EB process cannot enhance Kα of
235U but without any proof. By taking the hyperfine structure

into account, our present work clearly demonstrates that the

EB mechanism can significantly enhance the sensitivity to the

α variation, primarily due to the reduction of the transition

energy. It also indicates that the claim given in Ref. [37] is

incorrect.

In experiments, the α variation is constrained by measuring

the relative change in the frequency ratio of two atomic clocks.

Specifically, let the two clock frequencies be ω1 and ω2, and

define their ratio as R = ω1/ω2. The relative change of R is

given by

Ṙ

R
= (Kα,1 − Kα,2)

α̇

α
, (10)

where Kα,1 and Kα,2 are the sensitivity factors corresponding

to the two clocks. The difference (Kα,1 − Kα,2) determines

how sensitive a specific experimental system is to the α vari-

ation. Therefore, enhancing the sensitivity factor of one clock

and designing an appropriate comparison scheme can improve

the experimental precision in detecting the α variation. Sev-

eral experiments on optical clock frequency comparison have

been reported, including frequency comparisons between the
27Al+ optical clock and the 199Hg+ optical clock [17], as well

as the E2 and E3 transitions in the 171Yb+ optical clock [21].

VI. CONCLUSION

In summary, we have demonstrated that the 3.14-eV

HEB transition between the hyperfine levels [Ie, (4 f 12)Je =

4, Fe] and [Ig, (4 f 12)Je = 2, Fg] in 229Th32+ ions, as well

as 2.39-eV HEB transition between [Ie, (4 f 4)Jg = 4, Fe] and

[Ig, (4 f 4)Je = 2, Fg] in 229Th40+ ions, exhibit high sensitivity

to the variation of α. By developing the theory of the HEB
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transition, we calculate the sensitivity factors Kα of these two

HEB transitions to be −2.2 × 104 and −2.9 × 104, respec-

tively. Compared to the bare nuclear transition, these values

represent enhancements by factors of 2.7 and 3.5. Notably, the

3.14- and 2.39-eV HEB transitions are well within the current

laser-accessible range for precise measurement, making the

HEB transition-based approach promising for advancing the

precision of α variation detection. Finally, our approach can

be readily applied to other nuclear systems to further enhance

their sensitivity factors Kα .
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