001     362179
005     20250930223333.0
024 7 _ |a 10.1016/j.zemedi.2023.06.002
|2 doi
024 7 _ |a 0939-3889
|2 ISSN
024 7 _ |a 1876-4436
|2 ISSN
024 7 _ |a 10.15120/GSI-2025-01078
|2 datacite_doi
037 _ _ |a GSI-2025-01078
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Sheng, Yinxiangzi
|0 P:(DE-Ds200)OR10699
|b 0
|e First author
245 _ _ |a Evaluation of proton and carbon ion beam models in TReatment Planning for Particles 4D (TRiP4D) referring to a commercial treatment planning system
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759225014_3171741
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
520 _ _ |a To investigate the accuracy of the treatment planning system (TPS) TRiP4D in reproducing doses computed by the clinically used TPS SyngoRT.Proton and carbon ion beam models in TRiP4D were converted from SyngoRT. Cubic plans with different depths in a water-tank phantom (WP) and previously treated and experimentally verified patient plans from SyngoRT were recalculated in TRiP4D. The target mean dose deviation (ΔDmean,T) and global gamma index (2%-2 mm for the absorbed dose and 3%-3mm for the RBE-weighted dose with 10% threshold) were evaluated.The carbon and proton absorbed dose gamma passing rates (γ-PRs) were ≥99.93% and ΔDmean,T smaller than -0.22%. On average, the RBE-weighted dose Dmean,T was -1.26% lower for TRiP4D than SyngoRT for cubic plans. In TRiP4D, the faster analytical 'low dose approximation' (Krämer, 2006) was used, while SyngoRT used a stochastic implementation (Krämer, 2000). The average ΔDmean, T could be reduced to -0.59% when applying the same biological effect calculation algorithm. However, the dose recalculation time increased by a factor of 79-477. ΔDmean,T variation up to -2.27% and -2.79% was observed for carbon absorbed and RBE-weighted doses in patient plans. The γ-PRs were ≥93.92% and ≥91.83% for patient plans, except for one proton beam with a range shifter (γ-PR of 64.19%).The absorbed dose between TRiP4D and SyngoRT were identical for both proton and carbon ion plans in the WP. Compared to SyngoRT, TRiP4D underestimated the target RBE-weighted dose; however more efficient in RBE-weighted dose calculation. Large variation for proton beam with range shifter was observed. TRiP4D will be used to evaluate doses delivered to moving targets. Uncertainties inherent to the 4D-dose reconstruction calculation are expected to be significantly larger than the dose errors reported here. For this reason, the residual differences between TRiP4D and SyngoRT observed in this study are considered acceptable. The study was approved by the Institutional Research Board of Shanghai Proton and Heavy Ion Center (approval number SPHIC-MP-2020-04, RS).
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a HITRIplus - Heavy Ion Therapy Research Integration plus (101008548)
|0 G:(EU-Grant)101008548
|c 101008548
|f H2020-INFRAIA-2020-1
|x 1
536 _ _ |a SUC-GSI-Darmstadt - Strategic university cooperation GSI-TU Darmstadt (SUC-GSI-DA)
|0 G:(DE-Ds200)SUC-GSI-DA
|c SUC-GSI-DA
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: repository.gsi.de
650 _ 7 |a dosimetric comparison
|2 Other
650 _ 7 |a particle radiotherapy
|2 Other
650 _ 7 |a treatment planning
|2 Other
650 _ 7 |a Carbon
|0 7440-44-0
|2 NLM Chemicals
650 _ 2 |a Radiotherapy Planning, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Proton Therapy: methods
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Radiotherapy Dosage
|2 MeSH
650 _ 2 |a Heavy Ion Radiotherapy: methods
|2 MeSH
650 _ 2 |a Phantoms, Imaging
|2 MeSH
650 _ 2 |a Carbon
|2 MeSH
693 _ _ |a theory
|e no experiment theory work (theory)
|1 EXP:(DE-Ds200)theory-20200803
|0 EXP:(DE-Ds200)no_experiment-20200803
|5 EXP:(DE-Ds200)no_experiment-20200803
|x 0
700 1 _ |a Volz, Lennart
|0 P:(DE-Ds200)OR6911
|b 1
|u gsi
700 1 _ |a Wang, Weiwei
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Durante, Marco
|0 P:(DE-Ds200)OR2413
|b 3
|u gsi
700 1 _ |a Graeff, Christian
|0 P:(DE-Ds200)OR5177
|b 4
|e Corresponding author
|u gsi
773 _ _ |a 10.1016/j.zemedi.2023.06.002
|g Vol. 35, no. 2, p. 218 - 226
|0 PERI:(DE-600)2231492-1
|n 2
|p 218 - 226
|t Zeitschrift für medizinische Physik
|v 35
|y 2025
|x 0939-3889
856 4 _ |y OpenAccess
|u https://repository.gsi.de/record/362179/files/1-s2.0-S093938892300079X-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://repository.gsi.de/record/362179/files/1-s2.0-S093938892300079X-main.pdf?subformat=pdfa
909 C O |o oai:repository.gsi.de:362179
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a GSI Helmholtzzentrum für Schwerionenforschung GmbH
|0 I:(DE-Ds200)20121206GSI
|k GSI
|b 0
|6 P:(DE-Ds200)OR10699
910 1 _ |a GSI Helmholtzzentrum für Schwerionenforschung GmbH
|0 I:(DE-Ds200)20121206GSI
|k GSI
|b 1
|6 P:(DE-Ds200)OR6911
910 1 _ |a GSI Helmholtzzentrum für Schwerionenforschung GmbH
|0 I:(DE-Ds200)20121206GSI
|k GSI
|b 3
|6 P:(DE-Ds200)OR2413
910 1 _ |a GSI Helmholtzzentrum für Schwerionenforschung GmbH
|0 I:(DE-Ds200)20121206GSI
|k GSI
|b 4
|6 P:(DE-Ds200)OR5177
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z MED PHYS : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-08-22T12:30:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-08-22T12:30:28Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-08-22T12:30:28Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Ds200)BIO-20160831OR354
|k BIO
|l Biophysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Ds200)BIO-20160831OR354
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21