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Abstract

Background: Integrated mode proton imaging is a clinically accessible method
for proton radiographs (pRads), but its spatial resolution is limited by multiple
Coulomb scattering (MCS). As the amplitude of MCS decreases with increas-
ing particle charge, heavier ions such as carbon ions produce radiographs with
better resolution (cRads). Improving image resolution of pRads may thus be
achieved by transferring individual proton pencil beam images to the equivalent
carbon ion data using a trained image translation network. The approach can
be interpreted as applying a data-driven deconvolution operation with a spatially
variant point spread function.

Purpose: Propose a deep learning framework based on paired proton—carbon
data to increase the resolution of integrated mode pRads.

Methods: A conditional generative adversarial network, Proton2Carbon, was
developed to translate proton pencil beam images into synthetic carbon ion
beam images. The model was trained on 547 224 paired proton—carbon images
acquired with a scintillation detector at the Marburg lon Therapy Centre. Image
reconstruction was performed using a 2D lateral method, and the model was
evaluated on internal and external datasets for spatial resolution, using custom
3D-printed line pair modules.

Results: The Proton2Carbon model improved the spatial resolution of pRads
from 1.7 to 2.7 Ip/cm on internal data and to 2.3 Ip/cm on external data,
demonstrating generalizability. Water equivalent thickness accuracy remained
consistent with pRads and cRads. Evaluation on an anthropomorphic head
phantom showed enhanced structural clarity, though some increased noise was
observed.

Conclusions: This study demonstrates that deep learning can enhance pRad
image quality by leveraging paired proton—carbon data. Proton2Carbon can be
integrated into existing imaging workflows to improve clinical and research appli-
cations of proton radiography. To facilitate further research, the full dataset used
to train Proton2Carbon is publicly released and available at hitps://zenodo.org/
records/14945165.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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1 | INTRODUCTION

Integrated mode proton imaging, where signals are
acquired from individual pencil beams and analyzed
independently, is a clinically accessible mode for proton
radiographs (pRads).! However, it suffers from limited
spatial resolution compared to single-event imaging due
to multiple Coulomb scattering (MCS). The spatial res-
olution of integrated mode imaging can be improved
with advanced-physics-based models,? or via the devel-
opment of deconvolution kernels tailored to specific
detectors and ion beam shapes* In this study, a deep
learning framework based on an image translation task
to improve the image quality of pRads is proposed.

The amplitude of MCS in beams of various ion
species decreases with increasing particle mass, when
compared at a constant range across ion beams® This is
generally associated with improved image resolution for
heavier ion species, as demonstrated for single-event®
and integrated mode’ ion imaging. While machine learn-
ing methods have been proposed to improve the quality
of medical imaging for most modalities, there are no
available approaches yet in ion imaging due to the lack
of training data. However, for integrated mode imaging,
there are typically hundreds or thousands of individual
pencil information recorded for the generation of a sin-
gle radiograph. If ion radiographs of the same object
are acquired with different ion species, as achieved in
earlier work,”® a large dataset of paired pencil beam
data is accessible. In this context, this work proposes a
new method to improve resolution of integrated mode
pRads, which translates each integrated measurement
from an individual pencil beam acquired with proton
beams, suffering from high MCS, to the equivalent mea-
surement acquired with a carbon ion beam. This image
translation task is achieved using a trained deep learn-
ing framework. The approach is analogous to learning
a deconvolution operation with a spatially variant point
spread function.

This work introduces the Proton2Carbon model, a
generative adversarial network (GAN) that converts
images of individual proton beams to carbon ion beams
to improve the image quality of pRads. The images
are obtained using a detector combining a scintilla-
tor and CCD cameras and produces state-of-the-art
integrated mode ion radiographs, as described in previ-
ous studies.%° The performance of the Proton2Carbon
model is evaluated for spatial resolution improvement on
both internal and external datasets. Training was con-
ducted on a dataset of 547 224 paired proton—carbon
images, termed the Proton2Carbon dataset, which is

made publicly available to encourage further research
in machine learning for ion radiography enhancement.

2 | METHODS

We first introduce the dataset in Section 2.1, and the
Proton2Carbon model architecture and training are in
Section 2.2 and Figure 1. The methods used for radio-
graph reconstruction and evaluation are discussed in
Section 2.3.

2.1 | Data acquisition

The Proton2Carbon dataset consists of 547 224 pairs
of proton and carbon ion pencil beam images obtained
using a scintillation detector. Each image represents
a pencil beam passing through an object positioned
between the source and the detector at a specific loca-
tion within the imaging field of view. Examples are shown
in Figure 2, including pristine Bragg curves as well
as beams exhibiting range mixing effects due to het-
erogeneous geometries. A complete scan of an object
involves acquiring N pencil beam images that ade-
quately sample the object. For this study, each scan was
performed using a pencil beam scanning approach cov-
ering a 151 x 151 mm? field of view (FOV) with a beam
spacing of 1 mm,resulting in 22 801 pencil beam images
per camera view.

Each proton image is fully registered with its corre-
sponding carbon image. The dataset is a subset of a
series of experiments conducted on a Siemens syn-
chrotron at the Marburg lon Therapy Centre, designed to
compare the image quality and real-time tracking capa-
bilities of pRads and carbon ion radiographs (cRads)
using multiple phantoms.”8 It includes 12 scans of
different phantoms and geometries, detailed in Sec-
tion 1 of the supplementary material. The scanned
phantoms include a Gammex phantom, an anthropo-
morphic head phantom, custom 3D-printed line pair
modules, and custom 3D-printed low-contrast modules.
The dataset is publicly available at https://zenodo.org/
records/14945165 , with additional details on image
format and organization provided in Section 2 of the
supplementary material.

To assess the generalizability of the Proton2Carbon
model, an external test set was created by imaging
the 3D-printed line pair modules with the same detec-
tor setup at a different accelerator (Varian ProBeam
cyclotron at University College London Hospitals
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columns show the raw (1) proton and (2) carbon images, (3) the synthetic carbon image, (4) the difference between true and synthetic carbon,
and (5) the integrated pencil beam image over the lateral dimension to create 1D signals analogous to a Bragg curve, for true and synthetic

carbon images. The dynamic range in the first three columns is 0-1.

(UCLH)) using a 151 x 151 mm? FOV, a beam spacing
of 1 mm, and an energy of 200 MeV. The spot size
of the beam at 200 MeV is different at UCLH (~7-mm
FWHM compared to 9.4 mm at the Marburg lon Therapy
Centre).

2.2 | Model architecture and training

A conditional GAN was trained based on the pix2pix
architecture,'® which has demonstrated high perfor-
mance in image translation tasks, particularly in preserv-
ing the larger spatial frequencies of the target image.
The architecture of the Proton2Carbon network is illus-
trated in Figure 1. The network includes a generator
designed to create synthetic pencil beam carbon images
from proton pencil beam images. The generator is a

nested Unet++ network, proposed by Zhou et al.'’ The
discriminator follows the default patchGAN approach
proposed for pix2pix,'® providing a receptive field of
approximately 70 x 70 pixels 2. All training hyperpa-
rameters and details are provided in Section 3 of the
supplementary materials.

For any result shown on a given scanned object, it is
assumed that the model was trained without any data
from this scanned object. To achieve this, different mod-
els were trained while excluding specific scans from
each training set. For instance, to generate the results
in Figure 3 on the line pair modules, all five scans con-
taining spatial resolution modules were excluded and
left as a test set, while the remaining seven scans
were used for training and validation. The exact splits
for each model are detailed in Section 3.2 of the
supplementary material.
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FIGURE 4 Ion radiographs of the Gammex phantom and water equivalent thickness (WET) absolute error for each insert.
2.3 | Image reconstruction and approach to the set of synthetic carbon ion pencil beam

performance evaluation

To convert a dataset of N pencil beam images into
an ion radiograph, the 2D lateral approach introduced
by Simard et al? is used. In this framework, pRads
and cRads for each of the 12 scans can be recon-
structed from the proton and carbon pencil beam
images of the corresponding dataset introduced in
Section 2.1. Similarly, synthetic cRads can be gen-
erated by taking a set of N proton pencil beam
images, producing the corresponding N synthetic car-
bon ion pencil beam images using the Proton2Carbon
model, and then applying the 2D lateral reconstruction

images.

Figure 2 illustrates the performance of Pro-
ton2Carbon in generating synthetic carbon ion pencil
beam images. The image quality of synthetic cRads is
analyzed in Figures 3—6. For spatial resolution, Figures 3
and 6 present modulation transfer function (MTF) calcu-
lations for a range of custom 3D-printed line pair inserts,
following the methodology described by Simard et al’
The resolution is estimated as the spatial frequency at
which the MTF reaches 10%. Additionally, the quantita-
tive accuracy of the water equivalent thickness (WET)
is evaluated in Figure 4 using the Gammex phantom
by calculating the WET absolute error across all nine
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TABLE 1 Image quality metrics for proton radiographs, synthetic

carbon ion radiographs generated with the Proton2Carbon model,
and carbon ion radiographs. The data used to train the
Proton2Carbon model is scanned at the same institution as the
objects scanned to obtain the above quantitative metrics.

Image quality metric pRads Synthetic cRads cRads
Resolution (Ip/cm) 1.7 2.7 3.7
WET accuracy (mm) 1.0 0.8 1.0

material inserts. The WET absolute error is determined
by averaging the WET value within a circular region
covering 80% of each insert’s size. Finally,image quality
is also assessed using an anthropomorphic head phan-
tom (Figure 5). Image similarity was assessed visually
and quantitatively via the calculation of the structural
similarity index measure (SSIM). The average WET
difference per pixel is also reported between pRads and
cRads, as well as between synthetic cRads and cRads.

3 | RESULTS

Figure 2 presents the image translation capabilities
of the Proton2Carbon network for individual pencil
beam images.

Figure 3 illustrates relevant ion radiographs (pRads,
synthetic cRads from proton data using the Pro-
ton2Carbon model, and cRads) of six custom 3D-printed
line pair modules scanned at the Marburg lon Therapy
Centre,and the associated MTFs.Figure 4 presents sim-
ilar ion radiographs for the Gammex phantom, along with
the WET absolute error for each insert.

Quantitative metrics related to Figures 3 (spatial res-
olution) and 4 (WET quantitative accuracy) are reported
in Table 1, for pRads, synthetic cRads, and cRads.

The image quality of ion radiographs can be assessed
qualitatively in a realistic anthropomorphic head in
Figure 5.

For the anthropomorphic head phantom, synthetic
cRads are structurally highly similar to cRads, with a
structural similarity index of 0.97, as opposed to 0.92
between pRads and cRads. Furthermore, the mean
WET difference per pixel between synthetic cRads and

MEDICAL PHYSICS =27

cRads is 3.4 mm, compared to 6.5 mm for pRads
against cRads.

Finally, spatial resolution was assessed on data
scanned at a different institution (UCLH) from the train-
ing data. Proton and synthetic carbon ion radiographs
are presented in Figure 6, similarly to Figure 3. Spatial
resolution increased from 1.7 Ip/cm with pRads to
2.3 Ip/cm with synthetic cRads.

4 | DISCUSSION AND CONCLUSIONS

This work demonstrates that the image quality of inte-
grated mode proton radiographs can be improved with
the Proton2Carbon deep learning network, a GAN
trained to create synthetic carbon ion pencil beam
images from proton pencil beam images.

Based on Figure 2, the network is usually able to
reconstruct the 2D carbon pencil beam data from pro-
ton data with high fidelity. Most of the errors (fourth
column of Figure 2) are noise, as the smooth struc-
ture of Proton2Carbon images cannot reproduce the
noisy behavior of carbon images. However, it is observed
that some images create artificial structures leading to
a shift in the apparent range of the beam, such as the
last example in Figure 2. This is consistent with the fact
that the pix2pix architecture is found to introduce arti-
facts in regions where the input image is sparse,'® such
as towards the distal edge of a pencil beam. Artifacts
have been mitigated via the use of multiple regular-
ization techniques (Section 3, supplementary material),
but may benefit from further improvement. A possible
avenue to limit such artifacts may be to introduce further
regularization based on the expected task downstream
from the image translation task, that is, the localization
of one or multiple Bragg peaks in the 2D images. This
may be difficult to implement due to the nonconvexity of
the associated cost function, and we leave this avenue
to future work.

Generally, the image quality of synthetic cRads lies
between that of pRads and cRads. Table 1 shows that
the Proton2Carbon model improves spatial resolution
of pRads (from 1.7 to 2.7 Ip/cm), although it does not
fully reach the resolution of true cRads (3.7 Ip/cm).
These results are based on scans acquired at the same
institution where the Proton2Carbon training data were
collected. When considering data from another institu-
tion (Figure 6), the spatial resolution of pRads is also
found to increase (from 1.7 to 2.3 Ip/cm), which suggests
good generalization capabilities for Proton2Carbon. The
resolution achieved on the internal test set (2.7 Ip/cm)
exceeds that on the external test set (2.3 Ip/cm), despite
the use of the same detector. This suggests that the net-
work may have learned institution-specific features from
the MIT dataset, leading to a slight degradation in perfor-
mance when applied to data from a different institution.
We attribute this discrepancy primarily to differences in
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accelerator technology (cyclotron at UCLH against syn-
chrotron at MIT) and different beam sizes at 200 MeV,
as described in Section 2.1. In future work, incorpo-
rating training data from multiple institutions may help
mitigate this domain shift and improve generalization
across sites.

The improvements in spatial resolution come with-
out compromising WET quantitative accuracy. As shown
in Table 1, synthetic cRads achieve a similar WET
accuracy to both pRads and cRads on the Gam-
mex phantom. Experiments on the anthropomorphic
phantom show that synthetic cRads generally appear
sharper than pRads (Figure 5). The improved SSIM
and reduced mean WET difference per pixel suggest
that the Proton2Carbon network improves the struc-
tural and quantitative similarity of pRads with cRads.
Nonetheless, one drawback is that images generally
exhibit increased noise, which is the main limitation of
the proposed network. This may be explained, as pre-
viously discussed, by an imperfect image translation of
individual pencil beams, especially in the presence of
strong range mixing or scattering, which is noticeable in
the absolute difference images of Figure 2. While the
Proton2Carbon network appears successful at gener-
ating synthetic integral depth dose profiles, the spatial
localization of beams in the lateral dimension (i.e., peak
finding) can be erroneous, which can lead to noise in
reconstructed images when using reconstruction meth-
ods that harness the 2D information of the images such
as the one used in this work? To address the noise
issue, future work will focus on expanding the dataset to
include additional phantoms, institutions, energy levels,
and scattering conditions. Another limitation is that the
model is currently restricted to images acquired using a
scintillator and CCD cameras. However, the underlying
approach could be extended to other integrated-mode
ion imaging frameworks.

Finally, we note image quality artifacts at some
material interfaces in the carbon and synthetic carbon
images of Figure 4, where transitions between materials
appear speckled rather than smooth, unlike in the pro-
ton images. This effect arises from limitations in the 2D
reconstruction framework,? particularly when handling

narrow beams at interfaces with high WET gradients.
The reconstruction framework estimates WET indepen-
dently in the lateral and top views via a peakfinding
routine (e.g., fig. 2b,c in Simard et al?), which lacks
robustness for narrow beams such as those shown
in the third row of Figure 2. In some cases, each
view detects only the Bragg peak of a different mate-
rial. The final WET, computed as the average of both
views, is thus incorrect at the interface, resulting in the
observed artifacts. This effect is primarily observed with
carbon ion beams, due to their narrow lateral spread.
While the Proton2Carbon network slightly amplifies this
issue, it is expected that improvements to the peak-
finding routine, such as detecting and correcting large
identified WET between views, could mitigate these arti-
facts. Such refinements of edge cases are left to future
work.

This study serves as a proof of concept that pRad
image quality can be enhanced using a conditional
GAN trained on matched proton—carbon data. Training
the network at the raw data level (i.e., individual pencil
beam images) enables the creation of a large dataset,
facilitating the development of a model with robust gen-
eralization capabilities. The Proton2Carbon network can
be incorporated in any image acquisition/reconstruction
pipeline to augment the image quality of pRads.
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