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We measure the spin-density matrix elements (SDMEs) for the photoproduction of φ(1020) off of the proton
in its decay to K0

S K0
L , using 105 pb−1 of data collected with a linearly polarized photon beam using the GlueX

experiment. The SDMEs are measured in nine bins of the squared four-momentum transfer t in the range −t =
0.15 − 1.0 GeV2, providing the first measurement of their t dependence for photon beam energies of Eγ = 8.2 −
8.8 GeV. We confirm the dominance of Pomeron exchange in this region and put constraints on the contribution
of other Regge exchanges. We also find that helicity amplitudes where the helicity of the photon and φ(1020)
differ by two units are negligible.

DOI: 10.1103/2tdc-5by6

I. INTRODUCTION

The study of the bound states of quantum chromodynamics
provides valuable insight into the theory’s nonperturbative
regime and phenomena such as quark confinement. Hadrons
containing strange quarks are intriguing since their masses lie
between hadrons composed only of the light up and down
quarks and those containing heavy charm and bottom quarks.
The strange-quark hadrons can therefore shed light on the
transition from relativistic bound states made of light quarks
to nonrelativistic bound states containing heavy quarks. In
particular, the spectrum of ss̄ strangeonium mesons remains
less well understood than that of mesons composed primarily
of up and down quarks [1]. With the advent of high-precision
experiments targeting the spectroscopy of light- and strange-
quark mesons with masses up to 2.5 GeV, we anticipate
significant progress in this area. One less studied process for
the production of strangeonium is in photoproduction, which
is now accessible at the GlueX experiment. A natural starting
point for studying the photoproduction of strangeonium is the
lightest predominantly ss̄ meson, φ(1020).

For incident beam energies of Eγ = 8.2–8.8 GeV, me-
son production off of a proton target primarily proceeds
through diffractive production. The angular dependence of
vector-meson photoproduction can be described by relating
the spin-density matrices of the incoming photon ρ(γ ) and
the produced vector meson ρ(V ) through the production am-
plitude T [2]:

ρ(V ) = T ρ(γ )T †. (1)

Eleven of these spin-density matrix elements (SDMEs) can be
measured in photoproduction experiments, and nine SDMEs
can be measured using a linearly polarized photon beam [2].
At sufficiently large beam energies, only two of these nine

SDMEs are expected to be nonzero in the helicity frame, due
to s-channel helicity conservation (SCHC) [3–5]. Determining
the applicability of SCHC for φ(1020) photoproduction at
Eγ = 8.2–8.8 GeV will help in studying excited φ mesons in
photoproduction.

The Joint Physics Analysis Center (JPAC) recently devel-
oped a model that describes the diffractive photoproduction
of light vector mesons with a polarized photon beam using
Regge-theory amplitudes [6]. This model uses Regge the-
ory amplitudes fitted to pre-2020 measurements and predicts
φ(1020) photoproduction at Eγ = 8.5 GeV to proceed pri-
marily via Pomeron exchange with a small contribution from
π and η exchange. The Pomeron is a helicity-preserving
exchange particle with natural parity. The π and η are
unnatural-parity exchange particles. The JPAC model was
recently shown to describe GlueX measurements of ρ(770)
SDMEs well [7].

Most measurements of polarized φ(1020) photoproduction
have been at photon beam energies of Eγ < 3 GeV. The
LEPS Collaboration measured φ(1020) SDMEs and cross
sections for a linearly polarized photon beam with Eγ = 1.5–
2.9 GeV [8–10]. The CLAS Collaboration measured cross
sections and SDMEs with an unpolarized photon beam with
Eγ = 2.0–2.8 GeV [11] and with a linearly polarized photon
beam with Eγ = 1.5–2.1 GeV [12] in an unpublished Ph.D.
thesis. The general conclusion from these analyses is that
SCHC does not hold at these beam energies and that produc-
tion mechanisms beyond Pomeron exchange are required.

The few existing measurements of polarized φ(1020) pho-
toproduction with Eγ > 3 GeV have low statistical precision.
Measurements of vector-meson photoproduction were per-
formed at SLAC in 1973 using a linearly polarized photon
beam with Eγ = 2.8, 4.7, and 9.3 GeV [13]. While the total
and differential cross sections were measured at each of the
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three energies, due to the limited statistical precision of the
data, the lowest two energy bins were combined and only
the φ(1020) → K+K− decay mode was considered when
measuring the SDMEs, yielding 53 events for Eγ = 2.8 and
4.7 GeV and 61 events for Eγ = 9.3 GeV. Events corre-
sponding to φ(1020) → K0

S K0
L were also identified by this

measurement, but there were only about 5–10 events in each
energy bin, which was considered insufficient to measure
SDMEs. In 1985, the Omega Photon Collaboration measured
cross sections and SDMEs in the Eγ = 20–40 GeV range us-
ing 1135 φ(1020) → K+K− decays [14]. Both measurements
were consistent with SCHC with natural-parity exchange
within their large uncertainties. Our measurement of the
φ(1020) SDMEs has sufficient statistical precision to study
the production mechanisms at these higher energies in detail.

In this paper, we describe the measurement of φ(1020)
SDMEs using a linearly polarized beam of Eγ = 8.2–8.8 GeV
with the GlueX detector. We analyze the reaction

γ p → φ(1020)p, φ(1020) → K0
S K0

L , K0
S → π+π−,

(2)

where K0
L is not detected. The analyzed data correspond to

a total integrated luminosity of 105 pb−1. This large sample
of photoproduced φ(1020) allows us to measure the SDMEs
in nine bins of Mandelstam t in the range −t = 0.15–1.0
GeV2. In Sec. II, we describe the experimental setup used to
collect this data. In Sec. III, we describe how we select events
corresponding to the above reaction, while Sec. IV discusses
the model and fit procedure used to measure the SDMEs. The
analysis procedure closely follows that of our recent publi-
cation on ρ(770) SDMEs [7]. The results are presented and
discussed in Sec. V.

II. EXPERIMENTAL SETUP AND SIMULATIONS

The GlueX experiment consists of a tagged photon beam
and a large-acceptance spectrometer, and has been described
previously in detail [15–22]. The 12-GeV electron beam from
the CEBAF accelerator is delivered in bunches separated by
4 ns, and is converted into a linearly polarized photon beam
through coherent bremsstrahlung off of a 50-µm-thick dia-
mond radiator. The energy and time of the scattered electrons
are measured in a dipole spectrometer. The photon beam
travels 75 m to the main experimental hall, where it is col-
limated and its flux and polarization are measured, with an
average degree of linear polarization of Pγ ≈ 35% in the peak
photon flux region used in this analysis. The photon beam is
directed onto a 30-cm-long liquid hydrogen target positioned
in the middle of a 2-T superconducting solenoid. The target
is surrounded by a start counter, central and forward drift
chambers, and a barrel calorimeter. A forward calorimeter and
a time-of-flight wall downstream of the solenoid provide addi-
tional coverage in the forward direction. Charged and neutral
particles with polar angles from 1◦ to 150◦ are detected.

We use samples of Monte Carlo (MC)-simulated events to
study the detector response and to determine the experimen-
tal acceptance. The simulated γ p → φ(1020)p → K0

S K0
L p

events are generated with a t distribution proportional to e−bt

with a slope parameter of b = 4.4 GeV−2 and a M(KSKL )
distribution that follows a P-wave relativistic Breit-Wigner
with parameters M = 1020 MeV/c2 and � = 4.2 MeV. The
φ(1020) → K0

S K0
L decay angles are generated isotropically.

The simulated events are passed through a GEANT4-based
simulation [23] of the detector response and analyzed using
the same procedures as the experimental data.

III. DATA ANALYSIS

We reconstruct the reaction γ p → φ(1020)p with the de-
cay φ(1020) → K0

S K0
L by reconstructing K0

S decaying into
π+π− along with the recoil proton, and treating K0

L as a
missing particle. We select events with exactly three charged-
particle candidates, where we require π+, π−, and a proton
to be identified by loose selections on particle time-of-flight
and ionization energy deposited in the drift chambers. To
retain K0

S K0
L events that have extra calorimeter showers due to

effects such as splitoffs from hadronic interactions of charged
particles inside the calorimeters, we allow for up to two
calorimeter showers not matched to a charged-particle track.
These selections efficiently suppress K0

S K0
S events that are

kinematically similar to our K0
S K0

L events, where the second
K0

S decays to either π+π− or π0π0. The primary vertex is
defined by the position of closest approach of the proton
candidate to the beam axis and has a resolution of ≈3 mm
for the events analyzed in this paper. Events are selected only
if this vertex position lies inside the target region and is at least
two cm away from the upstream and downstream ends of the
target cell.

The energy of the beam photon candidates is required to
be in the range with a high degree of linear polarization, Eγ =
8.2–8.8 GeV. In addition, we require the measured times of the
beam photon candidates and final-state particles to be consis-
tent with coming from the same electron bunch. Due to ineffi-
ciencies in the photon tagger and the finite spectrometer reso-
lution, final-state particles can be matched with an incorrect
beam photon candidate. To subtract the contributions from
such combinatorial mismatches, we assign a weight of one
to all signal events, and we assign weights of −1/4 to combi-
nations of beam photons and final-state particles that are mis-
matched by two or three beam bunches. Events that are mis-
matched by one beam bunch are not included in the analysis.

Due to their long lifetime of cτ ≈ 15 m, most K0
L mesons

decay outside the spectrometer. Instead of detecting the K0
L

meson, we infer its existence by utilizing four-momentum
conservation and considering the missing mass in the event,
with all other particles detected. We define the missing four-
momentum of an event as

pmiss = pγ + ptarget − (pp + pπ+ + pπ− ), (3)

where pγ and ptarget are the four-momenta of the beam photon
candidate and the target proton, respectively, and pp, pπ+ , and
pπ− are the reconstructed four-momenta of the final-state par-
ticles. The distribution of the missing mass Mmiss =

√
p2

miss is
shown in Fig. 1(b) for events with M(K0

S K0
L ) < 1.1 GeV after

all other event selections are applied, where M(K0
S K0

L ) is cal-
culated with the reconstructed K0

S → π+π− four-momentum
and pmiss as the K0

L four-momentum. The missing mass dis-
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FIG. 1. Distributions for selected γ p → K0
S K0

L p events where K0
L

is reconstructed as a missing particle, as described in the text: (a) the
missing mass, showing a clear K0

L signal, and (b) the π+π− invariant
mass, showing a clear K0

S → π+π− signal. The distributions for
measured events (solid points) agree well with the simulated data
(open squares). The vertical lines show the regions selected for
further analysis.

tribution peaks near the nominal K0
L mass of 497.6 MeV [24]

and the resolution is found to be well modeled in simulations.
We select events with Mmiss = 0.3–0.7 GeV.

To improve the resolution in the reconstruction of the
K0

S → π+π− decays and to suppress events with additional
undetected particles beyond the K0

L meson, we perform a
kinematic fit on all events. In these fits, we constrain Mmiss to
the known K0

L mass [24] and constrain the π+π− candidates
to originate from a common secondary vertex which may be
displaced from the primary reaction vertex defined by the p
candidate. We select well-reconstructed events that satisfy this
hypothesis by requiring χ2/d.o. f . < 4. All event distributions
and fits described in this paper use the four-vectors resulting
from this kinematic fit.

Events that do not contain a K0
S → π+π− candidate are

suppressed by requiring the K0
S decay vertex to be displaced

from the primary vertex. The K0
S mesons in this measurement

are produced at small polar angles with momenta of several
GeV and therefore decay predominantly several centimeters
from the primary vertex. The charged pions from their decay
are reconstructed in the forward drift chambers, with a vertex
resolution of ≈1 cm, which leads to a good separation be-
tween primary and decay vertices. We calculate the K0

S flight
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FIG. 2. (a) The K0
S K0

L invariant mass distribution for se-
lected events, showing a clear φ(1020) → K0

S K0
L signal. (b) The

Mandelstam-t distribution for the events selected in panel (a). The
simulated events (blue squares) assume a constant exponential t
slope of 4.4 GeV−2 and agree with the measured data (black points)
up to −t ≈ 1 GeV2. The shaded regions indicate the events selected
for the SDME analysis. The legend shown in panel (a) applies to both
panels.

significance, i.e., the magnitude of the displacement between
the primary and decay vertices divided by the total uncertainty
on this quantity, which is calculated from the position uncer-
tainties of the primary and decay vertices. We select events
with K0

S flight significance >4σ , which is 74% efficient for
the K0

S → π+π− decays in this measurement. Since φ(1020)
is the dominant feature in this low K0

S K0
L mass region, the

χ2/d.o. f . and flight significance selections were chosen to
maximize both the measured φ(1020) yield and the sample
purity.

The π+π− invariant mass distribution after these event
selections is shown in Fig. 1(b). We observe a clear peak
due to K0

S → π+π− decays, with 98% purity. We select K0
S

candidates by requiring M(π+π−) = 0.48–0.52 GeV.
We show the K0

S K0
L invariant mass distribution after all

event selections are applied in Fig. 2(a), for the mass region
near the KK threshold. This spectrum is clearly dominated
by the φ(1020) meson. We select events with M(K0

S K0
L ) =

1.005–1.040 GeV for the spin-density matrix element anal-
ysis.

The distribution of the squared four-momentum transfer
t = (pp − ptarget )2 is shown in Fig. 2(b). As expected for a
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FIG. 3. Definition of the angles in the center-of-mass frame
for the decay φ(1020) → K0

S K0
L . The hadronic production plane is

shown in red and the φ(1020) decay plane is shown in blue. The po-
larization vector (green) has an angle � with respect to the hadronic
production plane.

diffractive process, the distribution follows an exponential
form and deviates from a single exponential slope only for

t � 1 GeV2, beyond the range considered in this paper. The
drop in the distribution below −t � 0.1 GeV2 reflects the
limited acceptance for the reconstruction of the recoil pro-
ton in this region. To avoid this region, we require −t >

0.15 GeV2.
After all event selections, the final sample contains approx-

imately 6.5 × 105 φ(1020) mesons, representing a dataset 4
orders of magnitude larger than previous measurements at this
beam energy.

IV. ANALYSIS METHOD

To extract the spin-density matrix elements, we use the
AMPTOOLS framework [25] to perform an unbinned extended-
maximum-likelihood fit of a reaction model to the measured
events. The formalism and method are described in detail in
Ref. [7].

Briefly, the number density n(ϑ, ϕ,�) of vector mesons
decaying into two spinless particles is proportional to the nor-
malized angular distribution W (ϑ, ϕ,�). Here, ϑ and ϕ are
the polar and azimuthal angles of the decay particles defined
in the helicity system of the vector meson, respectively, and �

is the azimuthal angle between the beam photon polarization
direction and the hadronic production plane in the center-of-
mass frame of the reaction (see Fig. 3). Defining the measured
degree of linear polarization Pγ , the angular distribution is
given by

W (ϑ, ϕ,�) = W 0(ϑ, ϕ) − Pγ cos(2�)W 1(ϑ, ϕ) − Pγ sin(2�)W 2(ϑ, ϕ), (4)

with

W 0(ϑ, ϕ) = 3

4π

(
1

2

(
1 − ρ0

00

) + 1

2

(
3ρ0

00 − 1
)

cos2 ϑ −
√

2 Reρ0
10 sin 2ϑ cos ϕ − ρ0

1−1 sin2 ϑ cos 2ϕ

)
,

W 1(ϑ, ϕ) = 3

4π

(
ρ1

11 sin2 ϑ + ρ1
00 cos2 ϑ −

√
2Re ρ1

10 sin 2ϑ cos ϕ − ρ1
1−1 sin2 ϑ cos 2 ϕ

)
,

W 2(ϑ, ϕ) = 3

4π

(√
2Imρ2

10 sin 2ϑ sin ϕ + Imρ2
1−1 sin2 ϑ sin 2 ϕ

)
.

Here, W 0 describes the unpolarized component of the angular distribution, while W 1 and W 2 describe the polarization-dependent
components. These components are expressed in terms of the SDMEs ρ i

jk , where i = 0, 1, and 2 and j, k = −1, 0, and 1.
To obtain the SDMEs that best describe our measured events, we maximize the logarithm of the extended likelihood

function:

L = e−(N̄+β )(N̄ + β )N

N!

(
N∏

i=1

n(ϑi, ϕi,�i )η(ϑi, ϕi,�i )

)/⎛
⎝ ÑB∏

i=1

n(ϑi, ϕi,�i )η(ϑi, ϕi,�i )

⎞
⎠

β

ÑB

, (5)

where N is the total number of events; N̄ is the expected num-
ber of signal events; β is the estimated number of background
events; η(ϑ, ϕ,�) is the experimental acceptance that is de-
termined using the samples of MC-simulated events described
previously, which reproduce the production kinematics but are
isotropic in the decay angles; and n(ϑi, ϕi,�i ) is the number
density described in the previous paragraph. The background
events in this case are due to incorrect matches between beam

photons and final-state particles, and a separate dataset with
ÑB number of independent events, as described in Sec. III,
is used to estimate the number of accidental events β in the
signal dataset.

We perform this fit independently in 9 bins of Mandelstam-
t in the range −t = 0.15–1 GeV2. The definitions of the bins
are given in Table I. We can then determine the t dependence
of the SDMEs from the results of these fits.
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FIG. 4. Comparison of measured angular distributions (black points) to accepted MC events weighted by the fit result (green) and the
background from events with mismatched beam photons (red) for the range −t = 0.150–0.185 GeV2: (a) the cosine of the helicity angle ϑ ,
(b) the helicity angle ϕ, (c) the azimuthal angle � of the beam photon polarization vector with respect to the production plane, and (d) the
difference between � and ϕ.

To evaluate the quality of each fit, we compare event dis-
tributions observed in the data to those from the accepted
phase-space MC events which are weighted by n(ϑ, ϕ,�)
using maximum-likelihood estimates of the SDMEs. As an
example, we show a comparison in Fig. 4 for the range −t =
0.150–0.185 GeV2 for cos ϑ , ϕ, �, and �-ϕ distributions. In
all four cases, the MC events weighted by the fit result show
good agreement with the data. A similar level of agreement is
found in all nine bins of −t .

V. RESULTS

Figure 5 shows the measured SDMEs as a function of
Mandelstam t . The data points are positioned at the mean t
values of all events within each bin, while the horizontal error
bars represent the standard deviation of the t distribution in
each bin. The vertical error bars represent the total uncertainty,
which is the quadrature sum of the statistical and systematic
uncertainties of each data point. The statistical uncertainties
of each data point are represented by the shaded boxes. These
statistical uncertainties are determined by the bootstrap tech-
nique [26] based on fits to 500 resampled datasets. Correlated
systematic uncertainties on the magnitude of the beam linear
polarization and a correction factor for ρ0

00, as described be-
low, are shown by the shaded bands and are negligible, except
for ρ1

1−1 and Im(ρ2
1−1) SDMEs. Predictions from s-channel

helicity conservation with natural-parity exchange (SCHC +
NPE) and from the JPAC model [6] are also shown. At low −t ,
the measured SDMEs agree with the SCHC + NPE expecta-
tion, where only ρ1

1−1 and Im(ρ2
1−1) are nonzero, with values

of 0.5 and −0.5, respectively. At higher −t , the measured
SDMEs deviate from SCHC + NPE, in line with the JPAC

model predictions that attribute this to π and η exchange. Our
data suggest a smaller contribution from this process than the
model currently assumes.

Several sources of systematic uncertainties in these SDME
measurements were investigated. The largest systematic
uncertainty on the polarized SDMEs comes from the mea-
surement of the degree of linear beam polarization by a triplet
polarimeter [18]. A total polarization uncertainty of 2.1% is
taken as a systematic uncertainty on the overall normaliza-
tion of the polarized SDMEs ρ1

i j and ρ2
i j . The orientations

of the linear beam polarization in the laboratory frame are
fixed parameters in our fits. However, a high-precision anal-
ysis of the decay asymmetry of γ p → ρ0(770)p events with
ρ0(770) → π+π− has revealed deviations from the nominal
beam orientations by a few degrees. In our fits, we fix the
beam-polarization angles to the values estimated from the
ρ0(770)-decay asymmetry analysis and determine the system-
atic uncertainty due to this choice by performing fits in which
these angles were varied by ±1σ of their total uncertainty. We
take the largest of the deviations from the nominal from these
two fits as the systematic uncertainty from this source for a
given SDME. The observed shifts of the SDME values were
found to be small, but significant in many cases, particularly
for ρ1

i j .
To verify the analysis and fit procedure, we performed

Monte Carlo studies using a sample of 2 × 107 φ(1020) →
K0

S K0
L events that were generated assuming SCHC and

natural-parity exchange and that were analyzed in the same
manner as the data. All of the fitted SDMEs were found to be
consistent with their generated values, except for ρ0

00, whose
fitted values were found to be consistent with a t-independent
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FIG. 5. Spin-density matrix elements for φ(1020) mesons produced by a linearly polarized photon beam in the helicity frame. Our
measured values are represented by the black points, with shaded gray boxes indicating the statistical uncertainties, and the error bars
represent the total uncertainties. The correlated systematic uncertainties described in the text are shown as violet error bands. The mea-
surements by Ballam et al. [13] (SLAC) are given by the green data points. The horizontal solid lines show the expectation for s-channel
helicity conservation with natural-parity exchange (SCHC + NPE), and the blue dashed lines show the Regge-theory-based predictions of
Ref. [6].

offset of 0.0075 ± 0.0005. This offset was attributed to a bias
in the measured direction of the K0

S four-momentum aris-
ing from the separation between the primary vertex and the
secondary K0

S → π+π− vertex. To correct for this bias, we
corrected the measured ρ0

00 values by 0.0075 and assigned a
common systematic uncertainty of ±0.0005.

To investigate the impact of a small isotropic background
underneath the φ(1020) meson peak, which could be due
to an S-wave component of the reaction amplitude or some
different incoherent source, we performed the SDME fits
where we included a background term that was distributed
isotropically in angular space and added incoherently to the
model of Eq. (4). The intensity of this background term varies
from approximately 2% to 5% from the smallest to largest
−t bin. Only ρ0

00, ρ1
1−1, and Im(ρ2

1−1) were affected by this
change, and the deviation from the nominal fit was taken as
an additional systematic uncertainty due to the fit model for
each point. For ρ1

1−1 and Im(ρ2
1−1), the relative uncertainty

associated with this systematic effect reaches 7%. For ρ0
00, it

is the dominant source of uncertainty.
No systematic effect due to the event selection criteria was

found to significantly affect the measured SDMEs.

A. Parity-exchange components

To better understand the contribution of natural- and
unnatural-parity exchanges to the studied process, we sep-

arate the spin-density matrix into components ρN
i j and ρU

i j

that correspond to natural-parity exchanges [P = (−1)J ] or
unnatural-parity exchanges [P = −(−1)J ] in the t channel,
respectively. There are eight ρN,U

i j components, which are
given by [2]

ρN,U
i j = 1

2

[
ρ0

i j ∓ (−1)− jρ1
i− j

]
, (6)

where the ρk
i j’s are either measured from the fit to Eq. (4) or

determined from the SDME relations given in Ref. [2], e.g.,
ρ0

11 = 0.5 (1 − ρ0
00). Our measurements of ρU

i j , shown in the
upper row of Fig. 6, are consistent with 0 across the analyzed t
range. While the JPAC model predicts an unnatural-exchange
contribution for −t � 0.7 GeV2 larger than is consistent with
our measurements of ρU

00, a small unnatural-exchange contri-
bution consistent with experimental uncertainties cannot be
ruled out. Our measurements of ρN

i j , shown in the lower row
of Fig. 6, show that ρN

11 is flat in −t , is consistent with 0.5 as
expected from Pomeron exchange, and is also consistent with
the JPAC model for −t � 0.7 GeV2. The trend away from 0
for −t � 0.7 GeV2 in ρN

10 and ρN
1−1 suggests a small additional

contribution, such as Pomeron couplings that do not conserve
helicity.

To leading order, the asymmetry between natural- and
unnatural-parity exchange contributions can be expressed in
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FIG. 6. Spin-density matrix elements for φ(1020) mesons produced by a linearly polarized photon beam for (top row) unnatural-parity
exchange and (bottom row) natural-parity exchange. The symbols are the same as those described in Fig. 5.

terms of the parity asymmetry Pσ [2],

Pσ = σ N − σU

σ N + σU
= 2ρ1

1−1 − ρ1
00, (7)

where σ N and σU are the photoproduction cross sections for
natural- and unnatural-parity exchanges, respectively. The
parity asymmetry is a quantity normalized between −1 and
1 which quantifies the asymmetry of natural- and unnatural-
parity exchanges. A parity asymmetry close to 1 indicates that
natural-parity exchange dominates.

The measured parity asymmetry shown in Fig. 7 is in-
dependent of t and consistent with natural-parity exchange,
although systematically less than +1 across the analyzed t
range. These measurements can be compared to the measure-
ment at SLAC of 0.80 ± 0.32 at Eγ = 9.3 GeV [13] and to
that by the Omega Photon Collaboration of Pσ = 0.94 ± 0.34
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1.3σ
P GlueX
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FIG. 7. Parity asymmetry for photoproduced φ(1020). The sym-
bols are the same as those described in Fig. 5.

at Eγ = 20–40 GeV [14], indicating the dominance of natural-
parity exchange over a large range of photon energies.

Our measurement of the parity asymmetry is consistent
with the JPAC model for −t � 0.7 GeV2 where Pomeron
exchange is dominant. The −t dependence of the parity
asymmetry in the JPAC model occurs because the strength
of the natural-parity Pomeron exchange is suppressed as −t
increases, and therefore, the contributions of the π and η

exchanges become more important, though they are poorly
constrained by previous measurements. The small systematic
deviations of Pσ from pure natural-parity exchange suggest
either a small, nearly constant contribution from unnatu-
ral exchanges or a small background component underneath
the φ(1020) meson. We note that including an isotropic
background in our fits results in decreases of Pσ of ≈0.02–
0.04, which are smaller than the statistical uncertainties of
these measurements but are suggestive of the background
hypothesis.

B. Relation between SDMEs and helicity amplitudes

As shown in Ref. [7], neglecting helicity double-flip
photoproduction amplitudes that connect the photon and
vector-meson helicities which differ by 2 units leads to the
following relations:

ρ1
1−1 = −Im

(
ρ2

1−1

)
, (8)

Re
(
ρ1

10

) = −Im
(
ρ2

10

)
, (9)

Re
(
ρ0

10

) = ±Re
(
ρ1

10

)
. (10)

If these relations hold, i.e., if the difference between both
SDMEs is 0, helicity double-flip amplitudes are negligible.
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FIG. 8. Spin-density matrix element differences, as discussed in
the text. The symbols are the same as those described in Fig. 5.

Figure 8 shows each SDME difference as a function of −t .
All are consistent with 0 across the analyzed t range, indi-
cating that contributions from helicity double-flip amplitudes
are negligible. This indicates that φ(1020) photoproduction is
dominated by a single process or by several processes whose
amplitudes share the same sign, and is consistent with the
expectations of the JPAC model [6]. Concerning Eq. (10),
we find that Re(ρ0

10) = −Re(ρ1
10), which is also the case for

ρ(770) photoproduction [7].

VI. CONCLUSIONS

We have measured the spin-density matrix elements of
φ(1020) mesons produced in the scattering of a linearly po-
larized photon beam with energy Eγ = 8.2–8.8 GeV on a
proton target using the decay φ(1020) → K0

S K0
L . These data

allow for the first study of the momentum transfer dependence
of the SDMEs at these energies and confirm the dominance
of Pomeron exchange in the Regge-theory description of
this reaction up to −t = 1.0 GeV2. We also find that the

contributions from unnatural-parity exchanges are small and
that contributions from helicity-double flip amplitudes are
negligibly small. The precision of our measurements can be
improved by including data from the φ(1020) → K+K− de-
cay and using the data collected during the second GlueX
data-collection campaign, which is expected to provide a fac-
tor of three more data. SDMEs may also be measured at larger
values of −t , although the JPAC model is not expected to
describe this reaction beyond −t ≈ 1.0 GeV2. Further studies
of the reaction γ p → K0

S K0
L p at larger K0

S K0
L invariant mass

can be expected to provide more insights into excited vector
mesons.
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APPENDIX: NUMERICAL RESULTS

Table I lists the numerical results for the SDMEs and
their statistical and systematic uncertainties. The systematic
uncertainties for the polarized SDMEs ρ1,2 contain an overall
normalization uncertainty of 2.1% which is correlated for all
bins. A bias on our measurement of ρ0

00 was accounted for by
subtracting 0.0075 from the ρ0

00 values in all t bins, with an
associated systematic uncertainty of 0.0005 assigned to this
correction.
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TABLE I. Spin-density matrix elements of φ(1020) mesons produced by a linearly polarized photon beam in the helicity system. For each
bin of −t , the limits of the bin range are given, along with the average −t̄ and the root-mean-square deviation −tRMS of all events that fall
within the bin. Each ρk

i j is shown in units of ×10−3.

−tmin −tmax −t̄ −tRMS ρ0
00 ρ0

10 ρ0
1−1 ρ1

11 ρ1
00 ρ1

10 ρ1
1−1 ρ2

10 ρ2
1−1

(GeV2) (GeV2) (GeV2) (GeV2) ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3

0.150 0.185 0.167 0.010 4.9 −7.8 9.4 16.3 −11.0 6.8 491.6 −21.4 −487.1
±2.1 ±1.8 ±3.0 ±10.6 ±8.2 ±7.5 ±13.1 ±7.2 ±13.7
±0.4 ±11.4 ±14.6 ±0.3 ±0.4 ±0.8 ±9.6 ±1.1 ±10.3

0.185 0.229 0.206 0.013 6.5 −3.6 7.6 −10.8 19.6 4.3 467.2 0.5 −469.8
±2.1 ±1.8 ±3.1 ±9.5 ±7.8 ±7.1 ±12.5 ±7.1 ±12.3
±3.0 ±0.7 ±14.0 ±0.7 ±2.5 ±1.4 ±14.0 ±0.1 ±14.5

0.229 0.282 0.254 0.015 3.0 −1.6 10.8 2.0 −9.8 5.5 454.0 −11.6 −474.2
±2.1 ±1.7 ±3.1 ±9.3 ±8.3 ±7.1 ±12.3 ±7.2 ±12.4
±8.0 ±5.9 ±14.1 ±5.8 ±14.5 ±0.2 ±22.1 ±0.9 ±21.7

0.282 0.349 0.314 0.019 4.0 0.4 16.4 12.3 −0.1 −7.6 473.9 2.1 −486.1
±2.0 ±1.7 ±3.1 ±10.1 ±9.0 ±7.2 ±13.1 ±6.8 ±12.0
±0.7 ±15.8 ±14.4 ±1.5 ±0.3 ±0.1 ±11.0 ±0.2 ±12.8

0.349 0.430 0.387 0.024 4.6 7.3 8.1 −8.9 −0.5 −30.0 461.7 −4.5 −459.0
±2.1 ±1.8 ±3.1 ±10.4 ±8.5 ±7.9 ±13.4 ±8.0 ±13.1

±14.9 ±8.5 ±15.3 ±8.7 ±19.1 ±8.9 ±27.7 ±4.4 ±27.5
0.430 0.531 0.477 0.029 7.1 11.7 11.3 −0.3 −6.6 −28.9 490.9 15.2 −472.0

±2.6 ±2.1 ±3.9 ±11.0 ±10.3 ±8.3 ±14.7 ±8.2 ±15.3
±6.8 ±8.1 ±16.6 ±0.8 ±0.3 ±1.2 ±21.6 ±0.3 ±21.4

0.531 0.656 0.588 0.036 7.4 21.1 −6.6 −12.9 −13.0 −7.5 451.0 23.8 −478.7
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