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The nuclear charge radius of 13C

Patrick Müller 1,5 , Matthias Heinz 1,2,3,6, Phillip Imgram 1,7,

Kristian König 1,4, Bernhard Maass 1,8, Takayuki Miyagi 1,2,3,9,

Wilfried Nörtershäuser 1,4 , Robert Roth 1,4 & Achim Schwenk 1,2,3

The size is a key property of a nucleus. Accurate nuclear radii are extracted

from elastic electron scattering, laser spectroscopy, and muonic atom spec-

troscopy. The results are not always compatible, as the proton-radius puzzle

has shownmost dramatically. Beyond helium, precision data frommuonic and

electronic sources are scarce in the light-mass region. The stable isotopes of

carbon are an exception.Wepresent a laser spectroscopicmeasurement of the

root-mean-square (rms) charge radius of 13C and compare this with ab initio

nuclear structure calculations. Measuring all hyperfine components of the

2 3S ! 2 3P fine-structure triplet in 13C4+ ions referenced to a frequency comb

allows us to determine its center-of-gravity with accuracy better than 2 MHz

although second-order hyperfine-structure effects shift individual lines by

severalGHz.We improved the uncertainty ofRc(
13C)determinedwith electrons

by a factor of 6 and found a 3σ discrepancy with the muonic atom result of

similar accuracy.

The main sources for absolute nuclear charge radii of stable isotopes

are elastic electron scattering1 and muonic atom spectroscopy2,3, i.e.,

the energy determination of X-rays emitted in Kα transitions inmuonic

atoms. The combination of both is considered to deliver the most

accurate values, which serve as anchor points for the determination of

charge radii along an isotopic chain using isotope-shift measurements

in rare and short-lived species4,5. For the proton’s size, electronic

measurements, i.e., laser spectroscopy of hydrogen6 and elastic elec-

tron scattering7 on one side, and laser spectroscopy of muonic

hydrogen on the other side8, led to a surprising 7σ discrepancy of the

proton’s charge radius, which became famously known as the “proton

radius puzzle”. Even though laser and microwave spectroscopy of

ordinary hydrogen become increasingly consistent with the smaller

radius from muonic hydrogen9–11, there are still measurements

reporting larger radii12,13. Similarly, the source of the discrepancy in

electron scattering is still under debate14–16 and is a motivation for the

MUSE experiment at PSI17 with the goal to perform muon-proton

scattering to test lepton universality in the electromagnetic

interaction. Contrary, in 3,4He, electron scattering and muonic atom

laser spectroscopy are in good agreement18,19, while the resulting dif-

ference in mean-square (ms) charge radius is in tension with several

results from laser spectroscopy of ordinary helium20. These are, how-

ever, affected by a long-standing disagreement—depending on the

transition and the applied technique, they scatter by several σ21. Very

recently, these tensions in charge radii differences of 3He and 4He are

partially resolved by taking into account second-order hyperfine

corrections22,23. For the next elements, Li, Be, and B, nuclear charge

radii are about two orders of magnitude less precise than in hydrogen

orHe and forN,O, and F, it is only slightly better5,24. Second-generation

muonic X-ray experiments are in preparation that will apply magnetic

calorimeters and use improved theoretical calculations to extract

absolute nuclear radii of stable isotopes from beryllium to neon24.

The only exception in the second row of the periodic table is

carbon. The charge radius of 12C was determined with exceptional 2

and 1 per mille accuracy by electron scattering25 and muonic atom

X-ray spectroscopy26, respectively, but a small 2σ discrepancy between
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the two values is observed. For 13C, the second stable isotope, results

from both methods agree within the comparably large uncertainty of

the electron-scattering result. Thus, there is a demand formoreprecise

knowledge of the charge radius of 13C from the electronic sector.

Moreover, radii of light nuclei are also particularly interesting for

nuclear structure theory as they are accessible to different ab initio

methods and show substantial structural changes between neighbor-

ing isotopes27. A reason for this is the tendencyof the nucleons to form

α clusters, which in light nuclei constitute a large portion of the

nucleus28–35. To reproduce the size of the firmly bound p3/2 subshell-

closed nucleus of 12C with ab initio nuclear structure calculations, a

significant admixture of a 3α-cluster configuration is required that is

governed by the 0+
2 Hoyle state36–40. This characteristic structure is

essential in the 3α-nucleosynthesis process in stars and

supernovae41–43. In 13C, the additional neutronmay be thought to act as

a covalent bond inside the 3α structure32, explaining the smaller radius

of 13C compared with 12C as it was determined consistently by elastic

electron scattering and muonic atom spectroscopy. The experimental

accuracy of the 13C radius solely based on electronic measurements

can be improved by combining the accurate 12C electron scattering

result with a precise determination of the differentialms charge radius

δhr2i12, 13 extracted from an isotope-shift measurement.

So far, there is no laser-spectroscopic nuclear structure informa-

tion for the elements beyond Be44,45 up to neon46. This holds for the

stable and short-lived isotopes except for a measurement of the iso-

tope shift in stable 10,11B35. Efforts in the laser-spectroscopic determi-

nation of charge radii in this region have to face threemain challenges:

Firstly, the electronic level schemes of the elements above boron are

complicated, and excitation from the ground state of atoms or singly

charged ions is not feasible with currently available high-precision

lasers. Secondly, high-accuracymass-shift calculations for the systems

beyondboron,which are required to extract the nuclear charge radius,

are unavailable. Finally, due to their chemical reactivity, most of these

elements can only be extracted in the form of molecules at online

isotope separator facilities, while at in-flight facilities, the stopping of

such light products requires large stopping cells and the yields are

comparably low. Here, we demonstrate an approach that opens up

prospects for such measurements by simultaneously overcoming all

three hurdles.

Our experimental method is based on generating He-like ions—in

this case, C4+ ions—in the excited metastable 1s2s 3S1 state. From here,

laser excitation into the 1s2p 3PJ manifold is possible with ultraviolet

light. This transition has been previously studied in 12C4+ to perform a

test of non-relativistic quantum electrodynamics (NRQED) calculations

and to demonstrate that an “all-optical” nuclear charge radius extrac-

tion with high accuracy is potentially possible47,48. While the charge

radius of 12C can, in principle, be extracted directly from the transition

frequency, theory is not yet sufficiently advanced to make this “all-

optical” approach competitive with the alternative methods47. In this

work, we present a measurement of the charge radius of 13C based on

an optical isotope-shift measurement and NRQED mass-shift calcula-

tions with accuracy that already exceeds the available electron-scat-

tering data on 13C. Since the isotope shift, i.e., the difference in

transition frequencybetween two isotopeswithmass numbersA andA0

δνA,A
0
= νA

0
� ν

A = δνA,A
0

M + F δhr2iA,A
0

, ð1Þ

it thus follows that the change in the ms nuclear charge radius can be

extracted according to

δhr2iA,A
0

=
δνA,A

0 � δνA,A
0

M

F
ð2Þ

in a nuclear-model independent way, provided that themass-shift δνM
and the field-shift factor F can be reliably calculated.

This approach is currently only possible for up to five-electron

systems35. Hence, spectroscopy on neutral carbon atoms is not an

option, but mass-shift calculations for the He-like system C4+ are

readily available, and the field-shift factor of −211.5(1)MHz/fm2 in the

laser-accessible 1s2s 3S1 ! 1s2p 3P0,1,2 transition provides a high sensi-

tivity to the charge radius.Ourmeasurement of the charge radius of 13C

makes the 12,13C pair the nuclei with the currently best-known nuclear

charge radii besides the stable isotopes of hydrogen and helium, for

which laser spectroscopy was performed on muonic atoms18,19,49. We

finally note that this has been achieveddespite strongperturbations by

hyperfine-induced fine-structure mixing and required high-precision

measurements of all nine hyperfine components in the three fine-

structure lines.

Results
We performed the measurements at the COllinear Apparatus for Laser

Spectroscopy andApplied Sciences (COALA) at the Institute forNuclear

Physics at TUDarmstadt. The setup and the recent extensions for highly

charged ions aredescribed in refs. 48,50, andweonly briefly summarize

the most relevant aspects for our work. A sketch of COALA and the

measurement principle is depicted in Fig. 1. A continuous beam of 13C4+

ions with a beam current of approximately 1.5 nA and an energy of

50 keV is produced in our electron-beam ion source (EBIS-A, DREEBIT

GmbH). We feed 13C-enriched methane gas (13CH4) at a pressure of

6 ⋅ 10−8mbar into the EBIS. Themolecules are cracked and charge states

up to fully stripped C6+ ions are reached through subsequent collisions

of the ions with the electron beam. The ions are confined by the elec-

trostatic potentials of the trap electrodes and the electronbeam’s space

charge in axial and radial directions, respectively. The starting point for

laser spectroscopy is the metastable 1s2s 3S1 state in He-like 13C4+ with a

lifetime of 21ms51. It is dominantly populated through electron-capture

processes ofC5+ 48. The electrodegenerating the axial trappingpotential

at the trap exit is only 200Vabove the central trap potential (≈+12.5 kV).

Thus, a small fraction of the trapped ions continuously leaks out of the

trap and is accelerated toward ground potential. A velocity filter (Wien

filter) formedby crossedmagnetic and electric fields is used to separate

the 13C4+ ions from other charge states and ion species. Behind the

source region, an electrostatic 60º-bender, followed by xy-steerers and

a quadrupole doublet, is used to superimpose the ion-beam with the

laser beams and to shape the ion beam, respectively. The fluorescence

detection region (FDR) isfloatedona scanvoltageUscan to adjust the ion

velocity and thereby scan the laser frequency in the rest-frame of the

ions (Doppler tuning).

Two continuous-wave Ti:sapphire lasers produce light between 906

and 914nm that is twice frequency doubled to create the range from

226.5 to 228.5 nm required to perform collinear and anticollinear laser

spectroscopy on the 13C4+ ions in fast alternation. We note that the lines

are shifted by ±0.6nm due to the Doppler shift. The exact frequency

depends on the ion velocity, but this dependency is eliminated if the

resonance frequencies in both collinear νc and anticollinear νa direction

are determined. The geometric average ν0 =
ffiffiffiffiffiffiffiffiffiffi

νaνc
p

of the observed

resonance frequencies in the laboratory frame is the transition frequency

in the rest frame of the ion. Both Ti:sapphire lasers are simultaneously

locked to a frequency comb to obtain νa and νc with high accuracy.

A schematic of the hyperfine structure in the 1s2s 3S1! 1s2p 3P0,1,2
multiplet is shown in Fig. 2a, and the observed spectrum is depicted in

(b). The HFS is well resolved in all transitions and spans 60 to 90GHz.

The relative peak heights vary based on their dipole transition

strengths, with the peak of the weakest transition being ten times

smaller than that of the strongest. Due to the large hyperfine splitting

and the narrow full width at half maximum of 150 MHz, the individual

transitions are compressed to a line in the overview plot. Therefore,

the fits are shown in the inset for the smallest (left) and the strongest

(right) hyperfine components to indicate the typical statistical sig-

nificance. Resonances are fitted with a pure Gaussian lineshape since

Article https://doi.org/10.1038/s41467-025-60280-9

Nature Communications |         (2025) 16:6234 2



the natural linewidth of 9MHz51 and possible homogeneous broad-

eningmechanisms arenegligible compared to thewidth of the velocity

distribution of the ions. The total statistical uncertainty of the reso-

nance center is in all cases ≲ 1 MHz and therefore significantly smaller

than potential systematic shifts.

The largest systematic uncertainty originates from the imperfect

alignment of the two laser beams. If the collinear and the anticollinear

laser beams are slightly offset in the detection region, they address

different ion velocities and the Doppler shift is not fully canceled in the

geometric average. Experimental verification of this effect provided

a conservative limit of 1.7MHz under the given experimental

conditions48. This is the dominant contribution to the systematic

uncertainty. Adding all systematics in square (beam alignment, Zeeman

effect, uncorrected photon recoils) yields a total systematic uncertainty

of 1.8MHz. Due to the linear dependence of the frequency shift on the

statistical misalignment of the laser beams and the daily realignment of

the ion and laser beams,weexpect thedominant systematic uncertainty

to fluctuate centered around the atomic transition frequency. Thus, the

statistical and systematic uncertainties are added in square toobtain the

total uncertainties. For details, see Methods.

The transition frequencies of all hyperfine-structure lines are

compiled in Table 1. The individual transition frequencies of 12C4+ from

ref. 47 and the center-of-gravity (cg) frequency of the fine-structure

multiplet are also included. For each fine-structure component of 13C,

12.5 kV

e−

13CH4

Ekin = qU

e−

e−

e−

Ionization Capture

UScan

3S1

Collinear

Laser

Anticollinear
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60°

FDR

OBL OBBTi:sapphireNd:YVO4

OBL OBBNd:YVO4 Ti:sapphire

Wavemeter
& Frequency

comb
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Fig. 1 | Experimental setup. Sketch of the measurement principle including the

electron-beam ion source (EBIS), the electrostatic switchyard, the beam alignment

irises, the laser system, and the fluorescence detection region (FDR). The laser

system consists of twoMillennia pump lasers (Nd:YVO4) that drive two Ti:Sapphire

lasers, each followed by two frequency doublers, one operated with lithium-

triborate (LBO) and second one with barium betaborate (BBO). The lasers are

locked to awavemeter and a frequency comb.The 227-nm light is then transported

through air to the COALA beamline. The two charge-breeding processes, electron-

impact ionization and electron capture, are shown in the inset above the EBIS

potential.
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Fig. 2 | Atomic spectroscopy data of 12,13C4+. a Level scheme of 12,13C4+ and the

electric dipole transitions that are addressed by the laser. b Hyperfine-structure

(HFS) spectrum of the 1s2s 3S1! 1s2p 3P0,1,2 transitions in
13C4+ simulated with the

experimentally determined frequencies and linewidths. The x-axis represents the

laser frequency in the rest-frame of the ion ν relative to the center-of-gravity

frequency of the respective fine-structure transition. The peak heights were set to

the theoretical transition strengths used in Eq. (7). The two insets show measured

spectra of the marked transitions. Next to the resonances, the contributing quan-

tum numbers F ! F 0 of the lower and upper states are shown, respectively.
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the hyperfine cg was first obtained assuming the usual first-order

hyperfine structure splitting (fordetails, seeMethods) and is listed in the

table indicated as 1 ! ~J. A look at the individual isotope shifts relative to

the corresponding fine-structure transition in 12C shows that these vary

over 2.4GHz even though they are expected to be equal. Second-order

effects cause this discrepancy, i.e., the mixing of hyperfine states with

the samequantumnumber Fbelonging todifferentfine-structure levels.

Including second-order HFS explicitly, using the theoretical magnetic

dipolematrix elements tabulated in ref. 52 (seeMethods), we obtain the

cg as provided in the table indicated by 1! J. In this case, the isotope

shift of all three fine-structure components agree to ≲ 30MHz,

demonstrating that the calculated magnetic properties capture the

shifts induced by state mixing well. We attribute the remaining differ-

ence to the “splitting isotope shift” that provides an important bench-

mark for NRQED calculations53. The comparison between the values

obtainedwith andwithout hyperfinemixing reveals that the shifts of the
3P0,1 levels aremuch larger than the shift of themore separated 3P2 level.

The isotope shifts of the 3S1 ! 3PJ fine-structure centroid deter-

mined by the two approaches differ by only 500 kHz. This difference is

ascribed to the small contribution of the well-separated 1P1 level. The

excellent agreement, much smaller than our uncertainty, demon-

strates that measuring all hyperfine components is a reliable way to

circumvent the impact of hyperfine mixing and to extract the charge

radius with high accuracy, which is particularly important for

upcoming measurements on B3+.

The differential ms nuclear charge radius δhr2i12, 13 is determined

from the isotope shift of the cg frequency of the entire fine structure

using Eq. (2) and (7). The required NRQED atomic structure calcula-

tions of the mass-shift contribution δνM = 51 719.29(25)MHz and the

field-shift constant F = −211.5(1)MHz/fm2 were carried out by Yerokhin

et al. up to the order of mα6 54. The finite-nuclear-size effect in the

isotope shift is the difference between our experimental value and the

calculated mass-shift contribution. It amounts to only 26.3(1.4)MHz,

which is a 2 × 10−8 fraction of the transition frequency. From the results

described above, we derive a differential nuclear charge radius of

δhr2i12, 13 = � 0:1245ð66Þ fm2 ð3Þ

δR12, 13
c = � 0:0253ð14Þ fm: ð4Þ

Our results for the rms charge radii of 13C and the change in rms charge

radii are plotted in Fig. 3 and compared to results from electron

scattering andmuonic atomX-ray spectroscopy. The numerical values

are included in Table 2. For 12C, the most accurate muonic measure-

ment by Ruckstuhl et al.26 disagrees with the weighted average of all

electron-scattering results by about 2.4σ of the combined uncertainty.

Combining the e−-scattering charge radius of 12C with the 12,13C4+

isotope-shift measurement provides a charge radius for 13C that is in

excellent agreement with the result of the 13C e−-scattering55 but has 6

times reduced uncertainty, which is now similar to the uncertainty of

the muonic atom result56. The discrepancy in terms of the combined

uncertainty is even slightly larger than in 12C (2.8σ compared to 2.4σ).

δhr2i12, 13 obtained from the difference in the muonic radii is smaller

and has three times larger uncertainty than the laser-spectroscopic

result, and just agreeswithin the combineduncertainty. Thus, we finda

systematic offset in radii based on electromagnetic interaction with

electrons versus thosewithmuons. This is a different situation as in the

α-helion discrepancy, since the charge radius difference measured in

ordinary ions agrees with that observed in muonic atoms, but the

absolute charge radius from electron scattering does not. In the past,
12C was always considered an excellent reference for charge radii

measurements due to the high accuracy of the e−-scattering result. This

calls for verifying the e−-scattering and the muonic atom results.

Discussion
From a theoretical point of view, the carbon isotopes, especially 12C,

due to their pronounced cluster structure, have long been theoreti-

cally interesting and challenging to describe via ab initio methods.

Early explorations within the framework of fermionic molecular

dynamics provided a quantitative description of various structures of
12C, including the Hoyle state, albeit with necessary phenomenological

tuning of the interaction to a broad range of nuclear structure

properties57–59. More recent lattice simulations based on nuclear

interactions from chiral effective field theory (EFT) predicted the

structure of the ground and Hoyle state of 12C without adjustment

based on the natural description of α-clustering in such

simulations38,60,61. Over the past 15 years, ab initio calculations of nuclei

as heavy as 208Pb have been performed using systematically impro-

vable many-body methods62–64 like the in-medium similarity renor-

malization group (IMSRG)65. Early IMSRG studies that included

calculations of 12C found atypically large differences in ground-state

energies predicted by different approaches, indicating that the many-

body description of 12C is challenging66–68. New experimental mea-

surements and theoretical predictions of 12C and 13C provide an inter-

esting avenue to study not only the changing structure of carbon

isotopes, but also how it emerges from nuclear forces and many-body

methods.

We predict the properties of 12,13C using ab initio valence-space

IMSRG (VS-IMSRG)67 and in-medium no-core shell-model (IM-NCSM)68

nuclear structure calculations, which solve the many-body Schrö-

dinger equation for a given input nuclear Hamiltonian in an approx-

imate, but systematically improvable manner. We employ

Hamiltonians with nucleon-nucleon and three-nucleon interactions

from chiral EFT, using seven Hamiltonians that differ in their con-

struction and how they arefitted to data to give insight into interaction

uncertainties. VS-IMSRG(2) calculations were performed using 1.8/

Table 1 | Electronic transition frequencies ν13 and isotope shifts

δν
12,13 of the 1s2s3SðJ,FÞ,F ! 1s2p3PðJ0,F0Þ transitions in 13C4+

ðJ, FÞ ! ðJ0,F0Þ ν
13
ðJ, FÞ!ðJ0 , F0Þ δν12, 13

J!J
0

(1, 1/2)! (0, 1/2) 1 316 147 920.6 (1.9) —

(1, 3/2) ! (0, 1/2) 1 316084566.3 (1.8) —

1 ! ~0 1 316 105 684.4 (1.4) 53465.1 (2.3)

1 ! 0 1 316 103946.9 (1.3) 51 727.6 (2.3)

1 ! 0, 12C4+ 47 1 316052219.3 (1.9) —

(1, 1/2)! (1, 1/2) 1 315 749 143.7 (1.9) —

(1, 1/2)! (1, 3/2) 1 315 781 189.1 (2.0) —

(1, 3/2) ! (1, 1/2) 1 315685 791.2 (2.0) —

(1, 3/2) ! (1, 3/2) 1 315 717 838.5 (1.8) —

1 ! ~1 1 315 728 273.3 (1.1) 51 080.5 (2.0)

1 ! 1 1 315 728925.4 (1.0) 51 732.6 (2.0)

1 ! 1, 12C4+ 47 1 315677 192.8 (1.7) —

(1, 1/2)! (2, 3/2) 1 319813468.4 (1.8) —

(1, 3/2) ! (2, 3/2) 1 319 750 116.8 (1.8) —

(1, 3/2) ! (2, 5/2) 1 319 798680.5 (1.8) —

1 ! ~2 1 319800372.2 (1.2) 51 800.8 (2.1)

1 ! 2 1 319800329.2 (1.2) 51 757.8 (2.1)

1 ! 2, 12C4+ 47 1 319 748571.4 (1.7) —

S ! ~P 1 318032 485.0 (0.8) 51 745.6 (1.4)

S ! P 1 318032 485.5 (0.8) 51 746.1 (1.4)

S ! P, 12C4+ 1 317 980 739.4 (1.1) —

The center-of-gravity (cg) frequencies below the individual resonance frequencies are calcu-

latedusingEqs. (7) and (8),with andwithout hyperfine-inducedmixingconsidered, respectively.

The isotope shifts in the third column are the differences between the absolute transition fre-

quencies in this table and the results in 12C4+ 47. All values are given in MHz.
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2.0(EM), 2.0/2.0(EM), 2.2/2.0(EM)69, N2LOsat
70, andΔN2LOGO

71, while for

IM-NCSM calculations a family of non-local interactions up to N4LO0

was employed72. We confirm the consistency of the two approaches by

comparing VS-IMSRG(2) and IM-NCSM calculations with the 1.8/

2.0(EM) Hamiltonian. More details on the Hamiltonians, methods and

charge radii calculations are provided in Table 2 and Methods. Here,

we concentrate on the results for the charge radii difference between

the isotopes, which are shown in the right part of Fig. 3 and are com-

pared with the experimental results. A plot of the absolute nuclear

charge radii is shown in Fig. 4.

The experimentally observed size reduction of 0.0253(14) fm is

overestimated by up to a factor of 2 in our calculations. The closest

results areobtainedwith the VS-IMSRGusingN2LOsat and the IM-NCSM

calculations with the N4LO0ð500Þ interactions. We note that the VS-

IMSRG(2) calculations have uncertainties that are estimated solely

from themodel-space convergence. The uncertainties of the IM-NCSM

calculations additionally include the Hamiltonian uncertainty and the

convergence of the many-body expansion, with the exception of the

1.8/2.0(EM) Hamiltonian where only the many-body uncertainty is

quantified. Thus, the scatter of the VS-IMSRG results beyond uncer-

tainties is not unexpected. The VS-IMSRG(2) calculations under-

estimate the absolute charge radii for all Hamiltonians, suggesting a

systematic underprediction due to the VS-IMSRG(2) approximation.

VS-IMSRG(3) calculations were performed with the 1.8/2.0(EM) inter-

action to investigate the many-body uncertainty73. This brings the

absolute radii in better agreement with the experiment, but further

increases the discrepancy from the observed δR12, 13
c by almost a fac-

tor of 2.

The IM-NCSM calculations in Table 2 show interesting depen-

dencies of the charge radii, increasingwith chiral order and decreasing

with higher cutoff scale. For 550 MeV/c we find good agreement with

the muonic atom experiment for the charge radii of both isotopes at

Table 2 | Absolute anddifferential nuclear charge radii of 12,13C
determined with different ab initio nuclear structure calcu-
lations and experiments

Method R
12
c R

13
c R

13
c � R

12
c

NLEFT [N3LO]61 2.490(12) 2.521(41) 0.027(43)

VS-IMSRG(2)

[1.8/2.0(EM)]

2.416(1) 2.361(1) −0.056(1)

VS-IMSRG(2)

[2.0/2.0(EM)]

2.421(1) 2.370(1) −0.051(2)

VS-IMSRG(2)

[2.2/2.0(EM)]

2.423(1) 2.377(1) −0.046(2)

VS-IMSRG(2) [N2LOsat] 2.405(1) 2.366(6) −0.039(6)

VS-IMSRG(2)

[ΔN2LOGO]

2.396(3) 2.354(2) −0.042(5)

IM-NCSM [1.8/2.0(EM)] 2.421(16) 2.363(12) −0.058(5)

IM-NCSM [NLO, 500] 2.348(249) 2.302(248) −0.046(7)

IM-NCSM [N2LO, 500] 2.521(103) 2.464(101) −0.057(16)

IM-NCSM [N3LO, 500] 2.532(38) 2.479(27) −0.052(14)

IM-NCSM [N4LO0, 500] 2.550(13) 2.513(20) −0.036(13)

IM-NCSM [NLO, 550] 2.471(239) 2.413(229) −0.058(11)

IM-NCSM [N2LO, 550] 2.426(63) 2.364(62) −0.063(5)

IM-NCSM [N3LO, 550] 2.457(31) 2.397(30) −0.060(4)

IM-NCSM [N4LO0, 550] 2.482(23) 2.423(20) −0.059(6)

e−-scattering25,55,90–92 2.4717(42) 2.440(25) −0.023(10)

μ-atom93 2.472(16) 2.480(20) 0.008(26)

μ-atom26,56 2.4829(19) 2.4628(39) −0.0201(43)

CLS [this work] — 2.4464(45) −0.0253(14)

The maximum employed many-body orders or interactions of the theory results are given in

square brackets. Radii are given in fm.
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Fig. 3 | Absolute and differential nuclear charge radii of 12,13C. Experimentally

determined absolute R12
c , R13

c and nuclear charge radius difference δR12, 13
c =R13

c �
R12
c of 12,13C determined with elastic electron scattering (blue), muonic atom spec-

troscopy (μ-atoms, purple) and collinear laser spectroscopy (CLS, black). Results

fromCLS and e−-scatteringwere combined to obtain an improvedR13
c (black&blue)

purely from electronic measurements. The differential rms nuclear charge radii

frome−-scattering and μ-atoms are differences of absolute radiiwhile theCLS result

is determined directly from the isotope shift and ab initio atomic structure calcu-

lations using Eq. (2). δR12, 13
c is also compared to ab initio valence-space in-medium

similarity renormalization group (VS-IMSRG, red) and in-medium no-core shell-

model (IM-NSCM, orange) calculations. The lower-order IM-NSCM results are

plotted with open symbols. Results from nuclear-lattice effective field theory

(NLEFT, brown) were published by Elhatisari et al.61. The numerical values of this

plot are listed in Table 2.
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N4LO0, but for the radius difference, the situation is reversed, provid-

ing a value compatible with experiment for cutoff 500MeV/c. At N2LO

and N3LO, however, both cutoffs provide a similar radius difference,

pointing more towards the overestimated value.

We highlight that the theoretical prediction of the charge radius

difference δR12, 13
c benefits from the cancellation of correlated sys-

tematic uncertainties in the predictions of the absolute charge radii R12
c

and R13
c . This is clearly visible in the uncertainties of our IM-NCSM cal-

culations, where Hamiltonian and many-body convergence uncertain-

ties are quantified. To quantify these uncertainties for δR12, 13
c , we apply a

Bayesian uncertainty quantification protocol (based on ref. 74 and

described inMethods) directly to the charge radius difference, implicitly

accounting for the cancellation of correlated uncertainties. As a result,

the charge radius difference uncertainty is typically smaller than that of

the absolute charge radii and also smaller than the resulting uncertainty

if the uncertainties on R12
c and R13

c were uncorrelated.

All our ab initio calculations consistently predict a negative charge

radius difference. The underprediction by both methods for all

Hamiltonians, however, suggests that some relevant many-body cor-

relations necessary for the precise prediction of this small difference

are missing, requiring the development of improved many-body

approximations to resolve.

The systematic discrepancy between the charge radii obtained in
12,13C using electron or muon interactions, uncovered by our measure-

ments, must be consolidated or resolved by improved measurements

on muonic atoms that are currently prepared by the QUARTET

collaboration24. Laser spectroscopy of 14C is currently ongoing at

COALA and will provide the nuclear charge radius of this isotope with

comparable precision as obtained here for 13C and thus improve it by

more thananorderofmagnitudecompared topreviousmeasurements.

Methods
Determination of the isotope shift
The absolute transition frequencies νi used in Eq. (7) are determined

using frequency comb-referencedquasi-simultaneous collinear (c) and

anticollinear (a) laser spectroscopy. Fluorescence spectra are typically

taken with 61 steps across a span of 800 MHz. All recorded spectra

were fitted using the least-square algorithm optimize.leastsq

provided by the scipy Python package75. A pure Gaussian model

gðν, νc=a, σ,a,bÞ=a+b exp �
ðν � νc=aÞ2

2σ2

" #

ð5Þ

was used to fit the data, since the natural linewidths of 9MHz51 of the

transitions are negligible compared with the width of the velocity

distribution of the ions. The typical full width at half maximum of a

resonance is 150MHz. The resonance centers νa and νc obtained from

the corresponding anticollinear and collinear spectra, respectively, are

combined to calculate the rest-frame frequency

ν0 =
ffiffiffiffiffiffiffiffiffiffi

νcνa

p � hνcνa
2mc2

: ð6Þ

The small second term, which amounts to 0.3 MHz for 13C4+, takes care

of thephoton-recoil contribution that is transferred into kinetic energy

of the ion during absorption. At least 28 anticollinear-collinear (ac) or

collinear-anticollinear (ca) measurement pairs were taken for each

hyperfine transition to minimize statistical fluctuations, and in all

cases, the standard deviation of the mean was ≲ 1MHz.

There is some freedom in the choice of the isotope shift δνA,A
0
as it

can be defined as any difference of linear combinations of transition

frequencies sensitive to the nuclear charge radius. To get the smallest

possible uncertainty, we calculate the weighted mean of all (hyper)

fine-structure transition frequencies νi∈ 1s2s 3S1! 1s2p 3P0,1,2 for
12,13C.

The weights are the theoretical transition strengths assuming no

hyperfine-induced mixing. The cg frequency of the 3S1 ! 3PJ multiplet

for each isotope is calculated as

ν
A =

X

i

νi

ð2F + 1Þð2F 0 + 1Þð2J0 + 1Þ
3ð2I + 1Þð2J + 1Þ

J0 J 1

F F 0 I

� �2

, ð7Þ

where J, J0 and F , F 0 are the electronic and total angular momentum

quantum numbers of lower and upper state, respectively, and I is the

nuclear spin. This weighted mean is insensitive to hyperfine-induced

mixing between the 1s2p 3P0,1,2 states and gives the same result as

fitting the standard formula for HFS splittings to the resonance

frequencies. In a second analysis, we have considered hyperfine-

induced mixing explicitly, applying the theoretical magnetic dipole

matrix elements hγ0J0jjT ð1Þjjγ00J00i tabulated in ref. 52. By fitting

νð J, FÞ!ðγ0~J, F 0Þ = νJ!ðγ0~J, F 0Þ �
AJ

2
½FðF + 1Þ � Jð J + 1Þ � IðI + 1Þ� ð8Þ

to the resonance frequencies, where νJ!ðγ0~J, F 0Þ are the eigenvalues of

the matrices with the entries52

Ω
F 0

ðγ0 J0Þðγ00 J00Þ = νJ!ðγ0 J0Þδðγ0J0Þðγ00 J00Þ

+ ð�1ÞI + J
0 + F 0 I J0 F 0

J00 I 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2I + 1ÞðI + 1Þ
I

r

μI γ0J0jjT ð1Þjjγ00J00
D E

,

ð9Þ

hypothetical cg frequencies νJ!ðγ0J0Þ can be extracted that would result

from Eq. (7) if there was nomixing between different J0 states. Here~J is

a label for the experimentally accessible mixed-J states, AJ is the HFS

constant of the magnetic dipole contribution to the energy of the 3S1
state, δðγ0 J0Þðγ00J00Þ is the Kronecker delta, { : : : } is the Wigner-6j symbol,

μI =0.702 369 (4) μN
76 is the magnetic dipole moment of the nucleus

and γ0 = 2S0 + 1 is the spinmultiplicity of the state γ0PJ0 . In thefit of Eq. (8)

to the resonance frequencies, AJ, νJ!ðγ0J0Þ and the diagonal elements
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Elhatisari etal. (2024)

VS-IMSRG(2) [1.8/2.0(EM)]
VS-IMSRG(2) [2.0/2.0(EM)]
VS-IMSRG(2) [2.2/2.0(EM)]

VS-IMSRG(2) [N
2
LOsat]

VS-IMSRG(2) [ΔN
2
LOGO]

IM-NCSM[1.8/2.0(EM)]

IM-NCSM[NLO−N
4
LO',500]

IM-NCSM[NLO−N
4
LO',550]

12
C

13
C

e
−

sc.

e
−

sc. + CLS

NLEFT

VS-IMSRG

IM-NCSM

Fig. 4 | Theoretical absolute nuclear charge radii of 12,13C. The radii R12, 13
c have

been determined from ab initio valence-space in-medium similarity renormaliza-

tion group (VS-IMSRG, red) and in-mediumno-core shellmodel (IM-NSCM, orange)

calculations. The lower-order IM-NSCM results are plotted with open symbols.

Results from nuclear-lattice effective field theory (NLEFT, brown) were published

by Elhatisari et al.61. The numerical values of this plot are listed in Table 2.
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h3J0jjT ð1Þjj3J0i are taken as free parameters. Mixing with the 1s2p 1P1
state was taken into account using a fixed ν1!11 and 〈11∣∣T(1)∣∣11〉. This

procedure relies on the calculated off-diagonal matrix elements

hγJ0jjT ð1ÞjjγJ00i, for which no uncertainty is specified in ref. 52. Assuming

a relative uncertainty of 10−4 for the matrix elements of T(1), which are

specified to five significant digits, yields shifts of the cg frequencies of

≲ 0.5MHz, and are, thus, considerably smaller than the experimental

uncertainty. The combined cg frequency of all 3S1 ! 3P0,1,2 transitions

is additionally affected by mixing with the 1s2p 1P1 level. This

contribution is expected to be small due to its large distance in energy

from the 3P levels. It can be estimated from the difference between

including and excluding the 1P1 state in the diagonalization and

amounts to only 0.4MHz, completely resolving the difference to the

standard cg from Eq. (7). We note that the finite magnetic-moment

distribution, included in the Zemach radius of a nucleus, will change

the size of the hyperfine constant A but does not affect the center of

gravity of the transition.

Systematic uncertainties
In our experiment, the ion velocity and, hence, the laser frequencies in

the rest frame of the ions were scanned by changing the voltage

potential in the fluorescence detection region (Doppler tuning). The

frequencies of the lasers for collinear and anticollinear excitation were

stabilized at frequencies that ensure resonant excitation at nearly the

same ion velocity and, thus, the same Doppler tuning voltage. The

uncertainties of the laser frequencies itself are determined from the

statistics of the continuously measured beat signals of the frequency

comb and directly considered in the Gaussian error propagation of Eq.

(6). Systematic drifts of the laser frequencies are avoided by ensuring a

sufficiently high beat signal used for stabilization to the atomic clock

reference. Remaining differences δU of the resonance positions were

always below 0.5 V. The exact δU is determined from the peak position

parameter of the Gaussian lineshape model, which is fitted separately

to both the collinear and anticollinear resonance signals. All other

parameters of the lineshape model, such as the Gaussian linewidth σ,

can also differ between collinear and anticollinearmeasurements, e.g.,

due to differences in frequency stability, laser power or laser-beam

vibrations. The Gaussian width might differ, even for exact beam

overlap, because of slightly different beam sizes and, therefore, addi-

tional velocity classes that are addressed by the larger beam. These

parameters are, however, uncorrelated with the peak position para-

meter. To resolve both signals and to get the best signal-to-noise ratio,

collinear and anticollinear measurements are recorded only quasi-

simultaneously, meaning in quick succession. This has the dis-

advantage that a drifting high-voltage potential in the ion source is

directly visible in δU. The main contribution to the drift is a changing

electron-beam current in the EBIS. To compensate for this effect,

measurements were always taken in the order ac-ca, which eliminates

this error entirely as long as the voltage drift is linear. Additionally, the

applied acceleration voltage was stabilized with a simple proportional

regulator77. As a result, no systematic frequency shift due to uncom-

pensated nonlinear voltage drifts was observed.

The largest systematic uncertainty originates from the imperfect

alignment of the two laser beams. To make sure both laser beams are

interacting with the same ion velocities, the profiles of the laser beams

were adjusted to be roughly of the same size in the fluorescence

detection region with a radius of 0.7mm and superposed outside of

the beamline at two points in the beam paths, 14m apart from each

other. Themaximumdisplacement of 0.5mmcorresponds to an angle

of ≲0.07mrad. During a single day of measurements, drifts of the

laser-beam positions at the points of alignment, originating e.g., from

angular drifts of the Nd:YVO4 pump lasers or thermal drifts inside the

Ti-sapphire cavity, remained below the estimated maximum dis-

placement and were regularly checked and corrected once or twice

per day. The ion beam was aligned with the collinear laser using a

combination of multi-channel plates (MCPs) and phosphor screens in

the two beam diagnostic stations, which are 2.6m apart. Here, a

maximum misalignment of 0.62mrad was estimated. While Doppler-

induced frequency shifts due to the angular deviation are suppressed

and amount to ≲ 0.1MHz, the concomitant spatial separation at the

detection region can lead to larger effects due to the horizontal velo-

city dispersion in the ion beam caused by the 60°-bender at the

entrance of the collinear beamline. The frequency shift associatedwith

this effect is directly proportional to the horizontal positional differ-

ence of the two laser beams at the points of alignment, including a

change in sign at perfect alignment, and was simulated and measured

to appear as an additional statistical fluctuation centered around the

atomic transition frequencywith a standarddeviation of 1.72MHz.Due

to the daily realignment of the ion and laser beams over the course of

the three-month measurement period, the symmetric distribution of

laser alignment configurations was adequately sampled. Additional

uncertainties due to the Zeeman effect, photon recoils beyond the

considered correction in Eq. (6) and the residual Doppler shift caused

by the angular misalignment of the ion- and laser beams are listed in

Table 3 and are added in square to yield a total systematic uncertainty

of 1.8MHz. For further details, see47,48,78. Due to the statistical nature of

the systematic uncertainties, the total uncertainties of νi provided in

Table 1 are the systematic and statistical uncertainties added in square.

Nuclear Hamiltonians
We employ Hamiltonians with nucleon-nucleon and three-nucleon

interactions from chiral effective field theory (EFT), where the full

intrinsic Hamiltonian has the form H = T − Tcm +VNN +V3N with the

total kinetic energy T, the center-of-mass kinetic energy of the A-body

nucleus Tcm, the nucleon-nucleon (NN) potential VNN, and the three-

nucleon (3N) potential V3N. Chiral EFT Hamiltonians are truncated at a

finite order in the EFT expansion, making nuclear Hamiltonians

intrinsically uncertain. We employ several Hamiltonians that differ in

their construction and fit to data to probe this uncertainty. The 1.8/

2.0(EM), 2.0/2.0(EM), and 2.2/2.0(EM) Hamiltonians are constructed

from theN3LONNpotential developedbyEntemandMachleidt (EM) in

ref. 79 unitarily transformed to the resolution scales λ = 1.8, 2.0, and

2.2 ħfm−1, respectively, via the similarity renormalization group80 and

3N potentials at N2LO with a regulator cutoff of 2.0 ħfm−1 69. The NN

potential is fitted to NN scattering data and the deuteron binding

energy, and the 3N potentials are fitted to reproduce the binding

energy of 3H and the point-proton radius of 4He for each of the

transformed NN potentials. The names of these Hamiltonians are

constructed from the NN resolution scale λ and the 3N cutoff Λ,

“λ/Λ(EM)”, with the “(EM)” indicating the starting NN potential79. The

N2LOsat Hamiltonian is constructed from N2LO NN and 3N potentials

with a regulator cutoff of Λ = 450MeV/c and is fitted to NN scattering

data, deuteron properties, ground-state energies and charge radii of

few-body systems with A ≤ 4, and selected ground-state energies and

charge radii for 14C and 16,22,24,25O70, where the fit tomedium-mass nuclei

helps to improve nuclear matter saturation properties of the

Table 3 | Summary of all systematic uncertainties of the
transition frequency measurements in 13C4+

Contribution Symbol Uncertainty (MHz)

Spatial velocity distribution Δνspatial 1.72

Laser-/Ion-beam alignment Δνangle 0.09

Photon recoils Δνrec 0.41

Laser polarization Δνpol 0.24

Absolute voltage ΔνU 0.00

Amplification factor ΔνδU 0.00

Total systematic uncertainty Δν 1.79

The total systematic uncertainty is given by the geometric sum of all individual uncertainties.
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interaction. The ΔN2LOGO Hamiltonian, developed by the Gothenburg

and Oak Ridge groups (GO), is constructed from N2LO NN and 3N

potentials with a cutoff of Λ = 2.0ħfm−1 with the explicit inclusion of Δ

isobars in the EFT71. It is fitted to NN scattering data, properties of few-

body systems with A ≤ 4, and nuclear matter properties, and addi-

tionally optimized to reproduce bulk properties of medium-mass

nuclei. The family of non-local interactions up to N4LO072 used in the

IM-NCSM are constructed using the NN potentials from ref. 81 up to

N4LO and 3N interactions at N2LO and N3LO82with non-local regulators

of Λ = 500 and 550MeV/c, where N4LO0 indicates a hybrid interaction

with NN at N4LO and 3N at N3LO. The NN and 3N interactions are

consistently unitarily transformed using the similarity renormalization

group to a resolution scale of α = 0.08 fm4 (corresponding to

λ = 1.88 ħfm−1). TheNN interactions are fitted to NN scattering data and

deuteron properties, and the 3N interactions are fitted to the ground-

state energies of 3H and 16O.

Nuclear structure calculations
Both the VS-IMSRG and the IM-NCSM are variants of the IMSRG65,83,

which produces a unitary transformation of the Hamiltonian to solve

the Schrödinger equation. This transformation, generally para-

metrized as U = expðΩÞ, is normal ordered with respect to a reference

state jΦ0i, allowing it in practice to be truncated at thenormal-ordered

two-body level. All other operators, in particular charge radius

operators, are consistently transformed using the same transforma-

tion, allowing for the computation of ground-state expectation values.

In this work, nuclear charge radii Rc are determined with84

Rc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hR2
pi+ hr2pi+

N

Z
hr2ni+

3_2

4m2
pc

2
+ hr2iso

s

, ð10Þ

with the point-proton squared charge radius hR2
pi, the proton and

neutron squared charge radii hr2pi= ð0:8409 fmÞ2 and

hr2ni= � 0:1155 fm285, the relativistic Darwin-Foldy correction

3_2=4m2
pc

2 =0:0332 fm
2
, and the spin-orbit correction hr2iso. Our IM-

NCSM calculations neglect spin-orbit charge radius corrections, which

contribute 0.0023−0.0033 fm2 for 12C, 0.015−0.025 fm2 for 13C, and

0.0027−0.0045 fm for δR12, 13
c depending on the interaction, well

within the assessed uncertainties. We note that in the optimization of

the N2LOsat Hamiltonian, a larger proton radius has been used, while

here we employ the most recent value reported by the particle data

group. Thismight lead to slightly smaller absolute radii, but will largely

cancel in δR12, 13
c . All theoretical nuclear charge radii are compiled in

Table 2. The differential and absolute radii are plotted in Figs. 3 and 4,

respectively.

The VS-IMSRG67,86 transforms the Hamiltonian such that a

nucleus-specific valence-space Hamiltonian is decoupled, which can

then be diagonalized using standard shell-model techniques. Our VS-

IMSRG calculations start from a Hartree-Fock (HF) reference state. In

particular, we employ Hartree-Fock single-particle states for states

occupied in our reference state. For the remaining states, we employ

the perturbatively improved natural orbital (NAT) basis87, orthogona-

lizing the NAT basis with respect to the occupied HF states.We use the

VS-IMSRG truncated at the normal-ordered two-body level, the VS-

IMSRG(2), todecoupleap-shell valence space. Afinal diagonalization is

performed with KSHELL
88. Recent developments have made the VS-

IMSRG calculations truncated at the normal-ordered three-body level

available73, and we explore the effect of the normal-ordered two-body

truncation in our calculations by performing VS-IMSRG(3)-N7 calcula-

tions. This captures induced three-body terms, leading to a more

accurate solutionof themany-body Schrödinger equation. For thefinal

shell-model diagonalization, we truncate the residual three-body

terms of all operators and perform the diagonalization with up to

two-body operators.

The IM-NCSM68 starts out with a standard NCSM calculation in a

small reference space Nmax =2, using a natural orbital basis89. In a

second step, this reference space is decoupled from higher-lying

many-body states using the Magnus version of the multi-reference

IMSRG truncated at the normal-ordered two-body level. The result-

ing Hamiltonian and consistently transformed operators are then

used in a final NCSM calculation Nmax =4 to obtain the relevant

observables. The uncertainties due to many-body truncations are

probed by an explicit variation of the reference space and the final

model-space truncation, as well as a variation of the IMSRG flow

parameter. The chiral truncation uncertainties are extracted from the

order-by-order variation of the observables through a Bayesian

model74. For this, we use IM-NCSM calculations for all chiral orders

starting at NLO for the aforementioned family of non-local interac-

tions. Note that we apply this uncertainty quantification protocol

directly to the radius differences as well, thus exploiting correlations

of the radii in the two isotopes.

Data availability
Thedata sets generated in the experiment and analyzed for the current

study arepublicly available at https://doi.org/10.48328/tudatalib-1500.
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