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The analysis of experimental results with Python often requires writing many code scripts which all need access 
to the same set of functions. In a common field of research, this set will be nearly the same for many users. The
qspec Python package was developed to provide functions for physical formulas, simulations and data analysis 
routines widely used in laser spectroscopy and related fields. Most functions are compatible with numpy arrays, 
enabling fast calculations with large samples of data. A multidimensional linear regression algorithm enables 
a King plot analyses over multiple atomic transitions. A modular framework for constructing lineshape models 
can be used to fit large sets of spectroscopy data. A simulation module within the package provides user-friendly 
methods to simulate the coherent time-evolution of atoms in electromagnetic fields without the need to explicitly 
derive a Hamiltonian.

1. Introduction

Laser spectroscopy is in general concerned with the manipulation of 
the inner and outer degrees of freedom of atoms or ions using laser light. 
The subject of the interaction reaches from individual ions or atoms 
captured in a trap, over hot thermal ensembles in a neutral or charged 
plasma up to beams at high and even relativistic speed. The goal of 
the laser interaction can also be divers, e.g., transferring atoms into a 
specific (excited) state, generating fluorescence photons for detection, 
change the ions motional degree by momentum transfer (laser cooling), 
or to produce nuclear or atomic polarization or alignment. The qspec
package presented here is intended to provide a fundamental physics 
and data processing framework for experiments based on laser-atom in-
teractions, where atoms are understood as electrons bound to a moving 
unresolved nucleus. While parts of qspec are made for general data 
processing and physics calculations, being based in laser spectroscopy 
experiments, the generic experiment benefiting the most from qspec

produces data by reading out the response of atoms after manipulating 
them with lasers. Ultimately, these are experiments whose means are the 
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determination of high-precision transition frequencies for a wide variety 
of possible goals, which range from collinear laser spectroscopy (CLS) to 
probe atomic or nuclear structure theory [1–6], over searches for new 
physics [7,8], to the development of atomic clocks [9–11] or quantum 
computing with atom or ion traps [12–14]. During the planning or the 
analysis phase, most of these experiments require simulations of the time 
evolution of atoms in laser fields, nonlinear fits to spectroscopy data, 
error propagation or simple calculations of laser frequencies, power, 
polarization as well as energies, velocities, Doppler, hyperfine-structure 
(hfs), or Zeeman shifts etc.
The goal of the qspec package is to make calculations of such observ-
ables and simulations easily accessible in any analysis script without the 
need to copy source code into every new project. While this is already 
useful for the most basic functions, it is even more practical for more 
extensive calculations, as long as they can still be defined in sufficiently 
general terms. In this sense, the package has been widely used and tested 
in simulating and analyzing laser spectroscopy results in collinear laser 
spectroscopy at COALA [15], COLLAPS/ISOLDE [16], and spectroscopy 
at storage rings [17], but can be easily used for laser spectroscopy on 
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thermal beams or in ion or atom traps as well. 
qspec expands on the concept of assisting the planning and analy-
sis of experiments by also providing general mathematical, statistical 
and optimization methods, building on the foundation of the numpy

and scipy packages. Additionally, object-oriented frameworks to cre-
ate fit models in a modular way (qspec.models) and to time-evolve 
coherent laser-atom interactions (qspec.simulate) are implemented. 
These two frameworks and the derivation of a maximum-likelihood fit of 
a straight line to �-dimensional uncertain data points constitute the main 
body of this article. In the following section, a brief introduction into 
atomic hyperfine structure and fluorescence spectra is given, as these 
constitute the core of the implemented theory of light-matter interac-
tions. In Sec. 3, a technical summary and an overview over the qspec
package is given, including a short tutorial on how to get started.

2. Theory

In atomic physics, the required theory and calculations are often 
well understood and developed such that the user of a physics code li-
brary can quickly relate a name of a method to the theory and asses the 
underlying physical assumptions and approximations. Hence, for intro-
ductions to the general physical concepts and the standard approaches 
to laser spectroscopy and the underlying atomic physics of the qspec
package, standard textbook resources can be consulted [18–20]. How-
ever, in high-precision experiments, also small effects such as hyperfine-
induced mixing [21] or quantum interference in the photon scattering 
rate [22,23] can significantly influence an experiment. Since these ef-
fects go beyond the standard frameworks, but are also within the scope 
of qspec, they shall be briefly introduced in the following paragraphs. 
In the field of laser spectroscopy, usually transition frequencies between 
fine-structure states are addressed, e.g., for determining isotope shifts, or 
are specified in literature, while hyperfine-structure splittings, emerging 
in isotopes with nonzero nuclear spin, often need to be calculated. The 
hyperfine structure Hamiltonian, describing the higher-order multipole 
terms of the electromagnetic interaction between the electrons and the 
nucleus beyond the Coulomb interaction, can be written as [18,24]
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where � (�) and � (�) are irreducible tensor operators of rank and mul-
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where ℎ is the Planck constant, �

 ′ , ���′ are Kronecker-deltas, (∶∶∶)
and {∶∶∶} are the Wigner-3j and -6j symbols and reduced matrix ele-
ments are denoted by ⟨⋅|| ⋅ ||⋅⟩. The quantum numbers � , � ′ represent 
the nuclear spin, � , � ′ the total electron angular momentum, 
 the com-
bined total angular momentum and 
, � encapsulate additional quantum 
numbers such as particle spins. If the off-diagonal elements, linking dif-
ferent � and � , vanish, this expression can be simplified to the textbook 
hyperfine structure formula [18,24]
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with the hyperfine structure constants �, � and � in frequency units for 
the magnetic dipole, electric quadrupole and magnetic octupole term, 
respectively. Off-diagonal elements with respect to � are often neglected 
due to the large energy gaps between nuclear states, but will be of 
interest in very rare cases like 229Th, which has a particularly low-
lying isomeric state that leads to hyperfine-induced nuclear-level mixing 
with dramatic consequences for the lifetime of the nuclear state [25]. 
Off-diagonal terms in � are much more common and can give rise to 
hyperfine-induced fine-structure mixing, as for example in 3He [26] or 
11B3+ [27]. If this is the case, the full Hamiltonian has to be diagonalized 
block-wise for each 
 to extract individual fine-structure frequencies 	� , 
i.e., the matrices

�

(�� )(�′� ′)

= 	� �(�� )(�′� ′) + 	

(�� )(�′� ′)

(9)

need to be diagonalized. The qspec package enables fitting to spec-
tra with mixed � through numerical diagonalization. However, this 
requires additional input from theory or experiment. The nuclear mo-
ments, as well as the off-diagonal matrix elements ⟨�� ||� (�)||� ′� ′⟩ need 
to be provided. Nuclear magnetic dipole moments (� = 1) can be found 
in [28], electronic magnetic dipole matrix elements for He-like systems 
are listed, e.g., in [21]. The implementation in qspec is currently lim-
ited to � = 1, but the extension is straightforward and may follow in a 
future update. 
Fluorescence spectra are generated from detected photons resonantly 
scattered from an atom. Resonance peaks appear where the frequency 
of the incident photon matches that of an atomic transition. If excited 
quantum states are energetically close, a fluorescence spectrum cannot 
be simply described as a sum of resonance peaks anymore, but the su-
perposition of the excited states has to be considered. This is particularly 
relevant for unresolved hyperfine structure spectra [3], but can also 
become relevant in high-precision measurements were peaks are hun-
dreds of linewidths separated [23]. This “quantum interference” (QI) 
effect depends on the solid angle of detection of the emitted fluores-
cence light and leads in general to asymmetric lineshapes, which leads 
to shifts in the determined transition frequencies if simply fitted with a 
sum-of-peaks model. In qspec, the QI scattering rate derived in [22] is 
implemented as a fit model of the form
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where �(�sc,�) can be used as a fit parameter, takes values in [−0.5,1]
and depends on the polarization of incident and the directions of de-
tectable scattered photons. �0 is the saturation intensity, ℏ the re-
duced Planck constant, � the vacuum speed of light, Δ
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 ′ −�
 , 
� ∶= 2�	 and Γ is the natural linewidth of the electronic transition. The 
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 ′



, �
 ′



and �
 ′
 ′′



only depend on angular momentum 



P. Müller and W. Nörtershäuser 

algebra and are derived in [22]. For simulations, as part of qspec.sim-
ulate, the scattering rate was extended to address individual magnetic 
substates, allowing the use of a magnetic field. If the perturbative scat-
tering rate is not sufficient, the qspec.simulate module can be used 
to coherently evolve an atom in a laser field using a master-equation ap-
proach. The resulting density matrix can be used to calculate the expec-
tation value of a detection operator that gives the full non-perturbative 
solution and converges to the perturbative result for low laser powers 
and closed transitions in the equilibrium state. This is described in more 
detail in Sec. 6.

3. Structure

The qspec package provides functions for physical calculations and 
simulations such as the aforementioned examples in a user-friendly 
and efficient way. Whenever useful, functions are compatible with the
ndarray class of numpy [29]. This enables fast calculations with large 
samples of data. In addition to numpy, a small number of established 
scientific Python packages are required with scipy [30], sympy [31] 
and matplotlib [32]. Parts of qspec are written in C++ and are cur-
rently only compiled for Windows systems in a Dynamic Link Library 
(DLL). A detailed overview of qspec with installation instructions, tu-
torials, the API documentation and links to the Python Package Index 
(PyPI), the GitHub repository and this publication can be found on the 
official website [33]. Supplemental details are also given in [34]. 
The content of the qspec package is distributed over seven largely in-
dependent modules/categories. These are named analyze, algebra,
models, physics, simulate, stats, and tools. However, all but 
the models and the simulate modules can be accessed by simply 
importing qspec. This is demonstrated in the following short code ex-
ample, often required in collinear laser spectroscopy. In this technique, 
a fast beam of ions or atoms is superimposed with a copropagating or 
counterpropagating laser beam [35] and a resonance curve is usually 
recorded by Doppler-tuning, i.e., changing the ion velocity with a small 
potential change Δ� . The laboratory laser frequency required to excite 
the 24516.65 cm−1 transition in 88Sr+ ions, accelerated to 20 keV, with 
a counterpropagating laser beam is calculated in the following example 
together with the change in the rest-frame frequency of the ion for a po-
tential variation of 1 V. Note that, all of the scalar values in this example 
could be replaced by numpy arrays.

1 i m p o r t q s p e c a s q s 
2 # T h i s i m p o r t s t h e a n a l y z e , a l g e b r a , 
3 # p h y s i c s , s t a t s , a n d t o o l s m o d u l e s 
4 
5 q = 1 # ( e ) , I o n c h a r g e s t a t e 
6 m = 8 7 . 9 0 5 6 1 2 2 5 3 - q * q s . m e _ u # ( u ) 
7 # M a s s o f 8 8 S r + 
8 
9 U = 2 0 0 0 0 # ( V ) , A c c e l e r a t i o n v o l t a g e 
10 
11 # R e s o n a n c e f r e q u e n c y f r o m N I S T d a t a b a s e 
12 f 0 = q s . i n v _ c m _ t o _ f r e q ( 2 4 5 1 6 . 6 5 ) # ( M H z ) 
13 # > > > 7 3 4 9 9 0 6 7 6 . 5 M H z 
14 
15 # R e l a t i v i s t i c v e l o c i t y o f 8 8 S r + 
16 v = q s . v _ e l ( U , q , m ) # ( m / s ) 
17 # > > > 2 0 9 5 3 3 . 6 m / s 
18 
19 # T h e a n t i -c o l l i n e a r l a b . f r e q u e n c y 
20 f _ l a s e r = q s . d o p p l e r ( 
21 f 0 , v , q s . p i , r e t u r n _ f r a m e = ’ l a b ’ ) # ( M H z ) 
22 # > > > 7 3 4 4 7 7 1 4 9 . 8 M H z 
23 
24 # T h e d i f f e r e n t i a l D o p p l e r s h i f t 
25 d f _ a t o m = q s . d o p p l e r _ e l _ d 1 ( 
26 f _ l a s e r , q s . p i , U , q , m ) # ( M H z / V ) 
27 # > > > + 1 2 . 8 4 M H z / V 

Functions are generally named according to their returned observable 
and required input parameters. Similar to this simple example, all func-
tions and classes can be accessed, including the �-dimensional linear 
fit algorithm described in Sec. 4. Elaborate introductions to the two 
separate frameworks qspec.models and qspec.simulate are given 
in Sec. 5 and 6, respectively. The following paragraphs give a short 
overview over the seven modules/categories.

3.1. Algebra

The algebra module is a collection of functions related to angular 
momentum coupling such as Wigner-� symbols, reduced dipole matrix 
elements and relative transition strengths for electronic transitions. This 
is the only module that uses the sympy package to optionally return 
algebraic expressions of coupling strengths.

3.2. Analyze

The analyzemodule contains general purpose routines for (non)lin-
ear data fitting as well as a convenience class for multi-dimensional 
King plots [36]. Wrappers for the scipy.optimize.curve_fit and 
the scipy.odr.odr routine, which use least square optimization and 
orthogonal distance regression, respectively [30], extend their function-
ality and standardize their syntax. For fitting of a straight line, as needed 
in King-plots, the York algorithm described in [37] and the Monte-Carlo 
(MC) method described in the supplementary material of [38] are im-
plemented. In both cases, also a generalized version is implemented 
for fitting a straight line to data points in multiple dimensions, whose 
uncertainties are determined by independent multivariate normal dis-
tributions. The multidimensional fit algorithms are described in Sec. 4.

3.3. Models

The models module contains classes and helper functions to create 
lineshape models of fluorescence spectra or more general fit models for 
nonlinear curve-fitting. This module is similar to the existing satlas2
Python package [39,40], which is widely used by laser spectroscopy 
groups at KU Leuven, CERN/ISOLDE and JYVL. In models, additional 
features such as numerical convolution with commonly used probability 
density functions, quantum interference (QI) effects [22] or hyperfine-
induced mixing [21] are available. The models module is described in 
detail in Sec. 5

3.4. Physics

The physics module provides physical relations, unit conversions 
and observables surrounding (collinear) laser spectroscopy such as par-
ticle energy and velocity, Doppler, photon recoil, hyperfine structure 
and Zeeman shifts, refractive indexes, etc.

3.5. Simulate

The simulate module offers an intuitive framework for simula-
tions of laser-atom interactions and is comparable to other packages 
that simulate the time evolution of quantum systems such as qutip
[41,42] or PyLCP [43]. Currently, solvers for the Lindblad master, rate 
and Schrödinger equation as well as a MC solver for the Lindblad mas-
ter equation are included. The differential photon scattering rate, which 
also includes quantum interference effects, can be calculated from the 
density matrix or the state vector. Additionally, a perturbative scatter-
ing rate can be calculated, as described in [22]. The qspec.simulate
module is described in more detail in Sec. 6.

3.6. Stats

The stats module contains routines for the statistical analysis of 
data. Besides basic statistical measures such as the (weighted) average 
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Fig. 1. Fit of a straight line to 5 data points in 3 dimensions. The scatter plots 
indicate the uncertainty regions of the data points. In the Monte-Carlo (MC) 
method, similar random samples are generated to construct a distribution of 
sample straight lines. The 1 uncertainty region of the straight line fitted with 
the analytical algorithm is shown as a yellow-purple colormap. The projections 
of the 1 uncertainty regions of the data points and the fitted straight line are 
shown on the three orthogonal planes. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

or median, the module also provides a MC error propagator. In combi-
nation with the nonlinear curve fitters of the analyzemodule, this can be 
used to calculate uncertainty bands for the fitted function while taking 
the full covariance matrix into account.

3.7. Tools

The tools module provides methods for data processing and con-
version as well as general mathematical functions. Some examples are 
the conversion between lists and dictionaries, merging intervals, round-
ing to � significant decimal places, transforming vectors or printing 
colored text to the console etc.

4. Multidimensional linear regression

The qspec package provides an analytical and a MC method for fit-
ting a straight line to data points in � ∈ ℕ dimensions. For any set of 
data points ("⃗�)�∈ , with the index set , the algorithms described here 
assume that the real value of the random vector "⃗� is distributed ac-
cording to an independent multivariate normal distribution  (#⃗� ,Σ�), 
with the mean vector #⃗� ∈ℝ

� and the positive-semidefinite covariance 
matrix Σ� ∈ℝ

�×�. Here, we distinguish between an uncertain data point 
"⃗�, which may be the result of a measurement, and the actual or real 
but unknown value $⃗�. Fig. 1 depicts the optimization problem in 3 di-
mensions with the resulting straight line fit. 
The MC approach generates sample vectors $⃗� according to the distribu-
tions  (#⃗�,Σ�) under the condition that they are aligned on a straight 
line. Accordingly, the result of the MC method are samples of straight 
lines following the probability density function imposed by the uncer-
tain data points and the linear relation. The algorithm is described in 
detail in the supplemental material of [38] for the 3-dimensional case. 
However, the extension of this algorithm to � dimensions is straightfor-
ward and is, thus, not described here. 
The analytical approach is a maximum likelihood fit given the above 
described assumptions. Its result corresponds to the most probable sam-
ple straight line generated by the MC method. Note that in general 
this straight line is not given by the mean values of the slopes and %-
intercepts of the samples. The algorithm described by York et al. [37] 

yields the analytical solution for 2 dimensions. Here, the extension to �
dimensions is not obvious. Hence, in the following, the solution devel-
oped for qspec is described. 
Let a straight line in � dimensions be parameterized by

� [&⃗, '⃗] ∶ℝ→ℝ
�, (↦ &⃗+ ('⃗. (14)

Then we want to find the offset vector &⃗ ∈ℝ
� and the directional vector 

'⃗ ∈ℝ
� that define the most likely straight line through the set of uncer-

tain data points ("⃗�)�∈ , which generate the independent multivariate 
normal distributions  (#⃗�,Σ�)�∈ . The probability density of "⃗� can be 
written as
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where T indicates transposition and |Σ�| and Σ−1
�

are the determinant 
and the inverse of the covariance matrix, respectively. We can now de-
fine the likelihood of observing a sample $⃗� if it is constrained to the 
straight line � [&⃗, '⃗]
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with the definitions

&⃗� ∶= &⃗− #⃗�,  � ∶=
1 √

'⃗TΣ−1
�
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T
� Σ
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The most likely straight line can be found by maximizing this likelihood 
function with respect to &⃗ and '⃗. However, for any given straight line 
� [&⃗, '⃗], the real value of ( that generates $⃗� is unknown. Using

max
&⃗,'⃗

)�(&⃗, '⃗ | () ≤max
&⃗,'⃗

)�(&⃗, '⃗ | ( = (�)

= max
&⃗,'⃗

1 √
(2�)�|Σ�|
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−
1

2

(
&⃗T� Σ
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� &⃗� −

(2
�

 2
�

)]
, (18)

and recalling that all ("⃗�)�∈ are independent by definition, the likeli-
hood function that needs to be maximized to find the desired straight 
line through all data points is given by

)(&⃗, '⃗) ∶=
∏

�∈

)�(&⃗, '⃗ | ( = (�). (19)

Analogously to standard least-square optimization algorithms, this is 
most efficiently done by minimizing

 ∶= − log()(&⃗, '⃗))

=
1

2

∑

�∈

[
log((2�)�|Σ�|) + &⃗T� Σ

−1
� &⃗� −

(2
�

 2
�

]
, (20)

where the terms log((2�)�|Σ�|) can be omitted as they are indepen-
dent of &⃗ and '⃗. In qspec, the minimization is performed using the
scipy.optimize.minimize function with the Newton conjugate 
gradient (Newton-CG) method [30,44]. For the fastest possible con-
vergence, both the gradient and the Hessian of Eq. (20) are computed 
analytically, see Appendix A. The covariance matrix of the resulting &⃗
and '⃗ are calculated by numerically inverting the Hessian at the so-
lution with numpy.linalg.inv. For two dimensions, the algorithm 
described here reproduces the fit performed with the York algorithm to 
machine precision. The estimated uncertainties deviate slightly in the 
third significant digit. 
The qspec package also contains a class to set up King plots where usu-
ally the data vectors, consisting of isotope shifts or nuclear charge radii, 
are multiplied by mass factors to yield modified data vectors according 
to
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Table 1
List of features implemented in satlas2 or qspec.models. Please note that 
this feature list is only a momentary capture, as both packages are in active 
development, but it serves as a useful overview. Here ($, %) is a data point to be 
fitted, Δ% is the uncertainty of the % value, � is the fit model, {�} is the set of 
fit parameters and * returns the uncertainty Δ% of a data point at runtime.

Feature satlas2 qspec.models

Modular fit models ✓ ✓

Quantum interference — ✓

Hyperfine mixing — ✓

Convoluted lineshapes — ✓

Shared parameters ✓ ✓

Parameters as functions ✓ ✓

Priors ✓ ✓

Gaussian statistics ✓ ✓

Poisson statistic ✓ — 
Δ% as a function *(� ($,{�})) *($, %, � ($,{�}),{�})

Bayesian inference ✓ — 

$⃗��′

mod
= #��

′
$⃗��′

=
(�� +�e)(�

�′
+�e)

��′
−��

$⃗��′
, (21)

where �� is the mass of the nucleus of the isotope with mass number 
� and �e is the mass of the electron. The modified data vectors $⃗mod

are then aligned on a straight line. In this case, the covariance matri-
ces Σ� are calculated from the masses and data vectors $⃗��′

. This yields 
notable positive correlations between the vector components if the un-
certainties of the masses are comparable or larger than those of the 
data vectors. Correlations between different data vectors are neglected. 
Improved or new data is gained from using the fitted straight line to 
calculate missing vector components � from one known component +

$
�

mod
= &� +

'�

'+

(
$+
mod

− &+
)
. (22)

The improved unmodified data and their covariance matrix is deter-
mined by inverting Eq. (21) and using Gaussian error propagation. A 
code example of a simple 2d King plot with Ca+ isotopes is given in 
Code Listing 1, with data from [6,55,56].

5. Modular fit models

In qspec.models, a modular system for constructing fit models, 
with a focus on lineshape models, is implemented. This module can 
be compared to the satlas2 package, which is used for fitting line-
shape models to low- and high-statistics data [39,40]. In the backend,
qspec.models extends the scipy.optimize.curve_fit method 
for fitting [30] while satlas2 uses the lmfit package [45]. Both 
packages provide a modular system for constructing nonlinear func-
tions, routines for fitting data with low statistics and options to alter the 
influence of individual parameters. While qspec.models implements 
models and features that are currently not available in satlas2, we 
also acknowledge that satlas2 provides additional fit options such as 
Poisson-statistic maximum-likelihood fitting or Bayesian inference that 
are currently not available in qspec.models. A complete up-to-date 
feature comparison is given in Table 1. 
There are several reasons that have lead to the development of
qspec.models. At the beginning of its development, only the old ver-
sion of satlaswas available [39]. Therefore, a large performance boost 
was expected in qspec.models, as evidenced by the now available 
faster new version satlas2 [40]. In qspec.models, new features 
and physical models are implemented that were/are not available in
satlas2, such as consideration of quantum interference effects or 
convolutions of lineshape models. The dependencies of qspec.mod-
els are kept at a minimum of only numpy and scipy. Moreover,
qspec.models is now used as the backend of an updated version of 
the Tilda.PolliFit framework, which provides a graphical user in-

terface and is already used for the analyses of online data [46–48]. In 
the following, the structure of qspec.models is described and a per-
formance comparison to satlas2 is given. 
The basis for the modular system is the abstract Model class, from which 
all models inherit, see the class diagram in Fig. C.5. Composite models 
are created by passing a model to the constructor of another model. A 
basic example could be the creation of a hyperfine-structure model for 
a transition from a lower state |� = 1∕2⟩ to an upper state |� ′ = 3∕2⟩ in a 
system with nuclear spin � = 1∕2

� ($) = �0
∑


→
 ′

&(
 ,
 ′)Voigt($− $̄,Γ,  ) + %0 (23)

$̄ = $0 +
�′

2 
[
 ′(
 ′ + 1) − 9∕2] −

�

2 
[
 (
 + 1) − 3∕2],

where Γ,  , �, �′, &(
 ,
 ′), $0, �0 and %0 are parameters. This would 
correspond to the following lines of code.

1 f r o m q s p e c . m o d e l s i m p o r t \ 
2 V o i g t , H y p e r f i n e , N P e a k , O f f s e t 
3 
4 I , J _ l , J _ u = 0 . 5 , 0 . 5 , 1 . 5 # = I , J , J ’ 
5 h f s = H y p e r f i n e ( V o i g t ( ) , I , J _ l , J _ u ) 
6 f = O f f s e t ( N P e a k ( h f s , n _ p e a k s = 1 ) ) 

Here, Voigt creates the peak shape model with parameters Γ

(Lorentzian FWHM) and  (Gaussian standard deviation) and Hyper-
fine introduces the sum in Eq. (23), the hyperfine-structure constants 
�, �′ and the peak intensities &(
 ,
 ′). The NPeakmodel creates a sum 
over, in this case, one instance of the passed hyperfine-structure model 
at the position $0 with intensity �0. The Offset model creates the offset 
parameter %0. 
The lineshape model defined in Eq. (23) can be substantially modified. 
The Voigt profile can be replaced by other peak shapes. The chosen peak 
shape can also be numerically convolved with a second peak shape 
of choice. The multipole expansion of the hyperfine structure is im-
plemented up to magnetic octupole terms. Quantum interference (QI) 
effects can be considered by replacing Hyperfinewith HyperfineQI, 
see Eq. (10). This creates an extra parameter that encapsulates the de-
tector geometry determining the QI effect. Hyperfine-induced mixing is 
considered in HyperfineMixed. The NPeak model can be used to cre-
ate additional copies of the passed submodel with individual positions 
and intensities. Offset can divide the $-axis into intervals with indi-
vidual offset functions, which can be any polynomial. All parameters of 
a model can be free, fixed, functions of other parameters, bounded to an 
interval or statistically constraint by a reference value with uncertainty, 
also known as a prior [40,49]. Additionally, simultaneous fits of mul-
tiple data sets with shared parameters are possible. In a future update,
qspec.models can be combined with the qspec.simulate module, 
described in Sec. 6, to enable fitting of non-perturbative scattering rates. 
The computing time for a fit with shared parameters increases polyno-
mially with the number of linked data sets. Therefore, the fit models 
have to be calculated efficiently. To test the speed of qspec.models, 
the benchmark test described in the documentation of satlas2 [40] 
was adapted, which compares satlas2 to satlas for fits to different 
numbers of data sets using shared parameters. There, a speedup fac-
tor of two to three orders of magnitude was found, depending on the 
number of data sets [40]. The benchmark test is a fit of Voigt profiles 
to the hyperfine structure spectrum of a |� = 1∕2⟩ → |� ′ = 3∕2⟩ transi-
tion with low Poisson statistics in a system with nuclear spin 7∕2. The 
hyperfine-structure parameters �, �′ and �′ as well as the parameters 
$0, Γ and  were shared across data sets, compare Eq. (23). The mag-
netic octupole constant � ′ was fixed and set to zero. The low Poisson 
statistics were accounted for by a custom function

*($, %, � ($,{�}),{�}) =
√
� ($,{�}), (24)

which computes the uncertainty of the data during runtime, see Table 1. 
Fig. 2 shows a comparison of the computing times of qspec.models
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Fig. 2. Speed comparison of qspec.models with satlas2 using an adaption 
of the benchmark test described in the documentation of satlas2. The com-
puting time increases polynomially with the number of linked data sets. The 
ratio of the computing times of satlas2 and qspec.models grows linearly. 
The benchmark test was performed with satlas2 version 0.2.7 and qspec ver-
sion 0.3.5 with an AMD Ryzen™ 7 7800X3D 8-Core Processor on Windows 11.

and satlas2. A linearly growing speedup factor of 1.2 to 7 was found 
when using qspec.models for simultaneously fitting 1 to 40 randomly 
generated data sets, respectively. The fit results agree well and only de-
viate in the third significant digit of the uncertainties. Please note that 
these computing speed results are only valid for this specific test configu-
ration, as the speedup factor can depend on many parameters such as the 
used fit algorithm, the number of fit parameters, the number of linked 
parameters or the used test machine. Moreover, satlas2 provides ad-
ditional statistical measures for the fit results whose computing times we 
could not test. However, these results show that the basic framework of
qspec.models meets the required performance standards and addi-
tional features, currently not implemented in qspec.models, such as 
Bayesian inference or maximum-likelihood fitting, can now be added to 
the robust basis. These will call for a separate benchmark test.

6. Interaction of light and matter

The lineshape of fluorescence spectra cannot always be described 
by an analytical model, especially when atomic states are optically 
pumped. In such cases it is desirable to simulate the evolution of the 
atomic state population in the laser field to understand the origin of the 
experimental lineshape and to investigate systematic frequency shifts 
when using a simple lineshape model. Moreover, the simulations can 
help to find the optimal experimental parameters in experiments that 
rely on optical pumping effects. All experiments that involve light-atom 
interactions can potentially benefit from such simulations. Some exam-
ples are saturation spectroscopy, Ramsey interferometry or quantum 
computing with atom/ion traps. 
Python packages to simulate the interaction of light and matter already 
exist. However, they are often designed for a certain subspace of atomic 
systems and applications or require the user to derive the mathemati-
cal objects such as Hamiltonians or observable operators. For example, 
the qutip package is a powerful library of solvers for open quantum 
systems which takes the Hamiltonian of the system as an input [41,42]. 
For the simulation of laser spectroscopy experiments, where multiple 
isotopes with different hyperfine structures are of interest, a lot of work 
is required to set up all Hamiltonians. The PyLCP package facilitates 
this process, provides classes to set up lasers and external static elec-
tromagnetic fields and also allows to simulate the motional degrees of 
freedom, e.g., to simulate laser cooling [43]. While this package has a 
large range of applications, it still requires the user to construct a Hamil-
tonian from individual energy contributions and it currently does not 
support passing numpy arrays of velocities or laser detunings to simu-
late large samples. As a consequence, iterations over the samples and 

multi-threading for better performance have to be implemented by the 
user. 
The qspec.simulate module provides an intuitive class system, 
which is comparable to drawing an atomic level scheme, to define laser-
atom interactions. A class diagram of qspec.simulate is depicted in 
Fig. C.6. Time-independent Hamiltonians in the interaction picture are 
generated automatically from the specified atom, lasers and environ-
ment. Initial populations of atomic states, initial velocities and laser 
detunings can be passed as numpy arrays. The backend utilizes multi-
threading and is written in C++ for the best performance and long-term 
support. Solvers for the rate equations, the Schrödinger equation and 
the master equation are available. Additionally, a Monte-Carlo (MC) 
master equation solver can be used to also simulate the recoil motion 
of the atom in the laser field. In qspec.simulate, an atom is defined 
as a list of states |�⟩ ∶= |�,/,),� , �,
 ,�
 ⟩ with eigen energies ℎ	� that 
are connected through spontaneous decay rates Γ�� . The eigen frequen-
cies 	� are either specified directly or calculated from Eq. (5) and the 
center-of-gravity frequency 	0 of the fine-structure states |�,/,),� ⟩. 
Lasers are approximated as classical monochromatic plane waves, for 
which the user specifies the frequency 	̃�, intensity �� and complex 
polarization vector 1⃗ �. The atom and the lasers are combined into an
Interaction object which generates the differential equations to be 
solved. For a complete list of definitions for the mathematical objects 
used in qspec.simulate, see Appendix B.

6.1. Hamiltonian

To simulate the coherent dynamics of the system, a Hamiltonian ma-
trix is created in the basis of the atom, spanned by the user-specified 
states |�⟩. The starting point is the time-dependent Hamiltonian

� =
∑

� 
 �� ℏ�� +

∑

� 

∑

�,�
�≠�

 �� ℏΩ
�
�� cos(�̃�(), (25)

where  �� ∶= |�⟩ ⟨�|, � = 2�	 are circular frequencies and Ω�
��
are the 

Rabi frequencies generated by laser �. This Hamiltonian describes the 
interaction of an atom with multiple classical laser fields. In this form, 
every laser drives all atomic transitions  �� . The qspec.simulate

module identifies the transitions that fulfill the electric-dipole-transition 
rules and calculates the Rabi frequencies from the parameters of the 
lasers and the properties of the involved atomic states. The full set of 
conditions for a transition  �� to be considered is given by

|�� − ��| ≤ 1, 0↮ 0 (26)

|
� − 
�| ≤ 1, 0↮ 0 (27)

|�� −��| ≤ 1, 0↮ 0 if Δ�,
 = 0 (28)

Γ�� > 0 (29)

�� > 0 (30)

(1⃗ �)��−��
≠ 0, 	� > 	� (31)

||||	� − 	�|− 	̃�
||| ≤Δmax, (32)

with the Einstein ��� coefficient and a user-defined cutoff frequency 
Δmax to ignore fast oscillations. Since the Hamiltonian still depends on 
the fast oscillating terms cos(�̃�(), it is transformed into an interaction 
picture and the rotating-wave approximation is applied to frequencies 
of the order of 2�̃�. The transformation is constructed to produce a 
time-independent Hamiltonian whenever possible to avoid complex ex-
ponentials for faster computation. This is possible if and only if two or 
more lasers do not form loops in the multigraph generated by connect-
ing the atomic states with the lasers. Since the transformation depends 
on the particular graph, which is only determined at runtime, no closed 
expression for the transformed Hamiltonian can be specified. The graph 
search algorithm that is used for the transformation is described in Fig. 3
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Fig. 3. Sketch of the algorithm used to transform the Hamiltonian into the in-
teraction picture for a laser-driven 3S1 → 3P0 transition in a nuclear spin-1∕2
system. The solid black and red lines depict the energies of the atomic states 
(diagonal elements of the Hamiltonian) before and after the transformation, re-
spectively. The solid orange arrows depict the lasers, which are slightly detuned 
from resonance. The dashed arrows indicate the transformations applied to each 
state. The transformations applied to the 3S1(
 = 1∕2) states (small dashed blue 
arrows) are carried over to the 3P0 states due to the connection through the 
laser. Additionally, the 3P0 states are shifted by the laser frequency �̃ (dashed 
orange arrow). The dotted black arrows show the path taken by the graph search 
algorithm. Note that this path changes, e.g., if the maximum detuning Δmax is 
large enough to bring the laser in resonance with the 
 = 3∕2→ 
 ′ = 1∕2 transi-
tion.

based on a laser-driven 3S1 →
3P0 transition in a system with nuclear 

spin 1∕2. The transformed time-independent Hamiltonian of this exam-
ple is given by [50]

� ′ ∶=�†�� + �ℏ
d�†

d( 
�

= ℏ(�2 −�0 − �̃)( ̂22 +  ̂33)

+ ℏ
Ω

2 
( ̂02 +  ̂13) + ℏ

Ω∗

2 
( ̂20 +  ̂31), (33)

where the indexes correspond to the states indicated in the simplified 
graph in Fig. 3, �̃ and Ω are the laser and Rabi frequencies, respec-
tively, � is the unitary transformation defined in Fig. 3, and �0 = �1

as well as �2 = �3 due to the absence of an external magnetic field. 
When the time-dependence cannot be eliminated completely in the pres-
ence of multiple lasers, the off-diagonal elements of the Hamiltonian will 
contain time-dependent Rabi frequencies, which oscillate with the fre-
quency differences between the lasers. This is automatically detected by 
the algorithm and the Hamiltonian is adjusted accordingly.

6.2. Lindblad master equation

The complete coherent and dissipative population dynamics of the 
atomic states in the laser fields can be determined by solving the Lind-
blad master equation. It can be written as [50–52]

3*

3( 
= −

� 
ℏ
[�,*] +

∑

�,�

Γ��[ �� ]* (34)

[ ]* ∶=  * † −
1

2
( † *+ * † ), (35)

where the coherent dynamics are described by the first term and the 
coupling to the vacuum by the second term. Note that Γ�� ≠ 0⇒ Γ�� =

0 as spontaneous decay from |�⟩ to |�⟩ only occurs if �� > �� . In
qspec.simulate, the differential Eq. (34) is solved numerically in ma-
trix form using the C++ libraries Boost.Numeric.Odeint and Eigen. 
Large parameter spaces or numbers of samples can be explored by spec-
ifying frequency detunings, velocities (Doppler shifts) or initial density 
matrices (state populations) as numpy arrays, which are addressed in 
parallel by the C++ backend. Hence, a user is neither required to write 
any loops in Python nor to implement parallel computing. The perfor-
mance of the master equation solvers in qspec and qutip for a single 

parameter sample are comparable and mainly depend on the chosen in-
tegration algorithm, integration steps and error tolerances. 
A MC master equation solver is available, following the approach de-
scribed in [53], which is also implemented in qutip [41]. The basic 
idea is to solve the Schrödinger equation with a modified non-hermitian 
Hamiltonian that leaks population into the environment according to 
the dissipation rates Γ�� . Whenever the norm of a simulated state vector 
|45⟩, where 5 numerates the samples, falls below a randomly generated 
fraction of unity, the state vector “collapses”, destroying all superpo-
sitions and resetting the system to the collapsed state. Averaging the 
resulting state vectors for �→∞ samples yields the density matrix de-
scribed by the master equation

*�� = lim 
�→∞

1

� 

� ∑

5=1 
⟨�|45⟩ ⟨45|�⟩ . (36)

The MC method is particularly useful for large atomic systems since 
its complexity only increases linearly with the number of atomic 
states as opposed to the quadratic growth of the master equation. In
qspec.simulate, the MC master equation additionally can be used 
to simulate the motional degrees of freedom of the atom. Whenever the 
atom spontaneously decays, the photon momenta of the lasers leading 
from the initial to the excited state and the recoil from the spontaneous 
decay are added to the momentum of the atom. Note that in this method, 
the momentum of the atom only changes upon spontaneous decays but 
not during any coherent interaction.

6.3. Rate equations

A simplification of the master equation are the rate equations which 
omit all coherent dynamics. In laser spectroscopy, the use of rate equa-
tions is often sufficient due to how precise the state populations need to 
be known or due to the width of the velocity distribution of the atomic 
ensemble, which can average out coherent effects. The rate equations 
implemented in qspec.simulate are given by

3*��

3( 
=
∑

�

[(
∑

� 
6�
��

)
(*�� − *��) + Γ�� *�� − Γ�� *��

]
, (37)

where 6�
��
are the stimulated emission/absorption rates for laser �, 

which depend on the frequency, intensity and polarization of the laser, 
Γ�� are the spontaneous decay rates from Eq. (34) and *�� = 0 for � ≠ �.

6.4. Differential scattering rate

From the density matrices determined through Eq. (34), (36) and 
(37), a differential scattering rate into the solid angle Ω can be calcu-
lated that, in case of the coherent approaches, also considers quantum 
interference (QI) effects. The differential scattering rate is given by [18]

dΓ 
dΩ

(�⃗sc) ∶= Tr
(
*7(�⃗sc)

)

=
1 
4�

∑

1⃗∈(�⃗sc)

∑

�∈

∑

�,�∈�

√
Γ��Γ��

(1⃗ ⋅ 8⃗��)(8⃗
∗
��

⋅ 1⃗∗)

|8⃗��||8⃗∗�� | 
*∗�� , (38)

where 7(�⃗sc) is a detection operator, (�⃗sc) is a basis set of normalized 
polarization vectors for scattered photons with direction �⃗sc , (� )�∈
and  are sets of excited and final states between which spontaneous 
decay can occur and 8⃗ are the dipole transition strengths, see Eq. (B.7). 
Limiting the three sums to detectable spontaneous decay and integrating 
over the solid angle of detection yields a photon detection rate.

Equation (38) reproduces the perturbative differential scattering rate 
derived by Brown et al. [22], see Eq. (10), that considers QI effects in 
closed electronic transitions in the case of small laser intensities, such 
that Ω�� ≪ Γ�� , linear polarization and equilibrium population. These 
conditions are rarely met exactly in the experiment as in most real 
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Fig. 4. Simulated differential scattering rate of the 2S1∕2(
 = 2)→ 2P3∕2 transi-
tions in 7Li in the direction of the linear polarization vector of a spectroscopy 
laser with an intensity of 1 µW∕mm2 . The perturbative scattering rate, which in-
cludes quantum interference (QI) effects derived by Brown et al. [22] (black) is 
compared to the solutions of the rate (blue) and master (orange) equations after 
an integration time of 0.2 µs. While the rate equations yield a sum of Lorentzians 
with averaged out coherent and QI effects, the master equation approach shows 
the intensity modulations of the coherent Rabi oscillations and converges to the 
perturbative QI approach for later times (red dashed). A small difference comes 
from optical population transfer into the 
 = 1 ground state. This plot repro-
duces Fig. 2 of [22]. The shown data was generated using Code Listing 2.

atomic systems, especially if they have a hyperfine structure, optical 
pumping and population transfer will occur already within short in-
teraction times and laser powers on the µW∕mm2 level. A comparison 
of differential scattering rates of the 2S1∕2 →

2P3∕2 transition in 
7Li is 

shown in Fig. 4. The scattering rates were determined with Eq. (38) us-
ing the master and the rate equation approaches as well as with the 
perturbative scattering rate from [22] for detection at 0◦ angle relative 
to the polarization vector of absorbed photons. A code example that pro-
duces the data shown in Fig. 4 is given in Code Listing 2, using data from 
[22,57]. The shown plot reproduces Fig. 2 from [22] and additionally 
shows the solution of the master equation approach after an integration 
time of 0.2 and 0.4 µs, demonstrating the need of the non-perturbative 
approach if the system equilibrium is not reached yet.

7. Summary and outlook

The Python package qspec provides a variety of classes and func-
tions to facilitate the analysis and simulation workflow in laser spec-
troscopy experiments. In this article, a multidimensional linear regres-
sion algorithm, modular fit models and light-matter simulations are 
introduced. The maximum-likelihood fit of a straight line in multiple di-
mensions constitutes a generalization of the linear regression algorithm 
introduced by York et al. [37]. The system of modular fit models pro-
vides a basis for combining and linking different fit models, parameters 
and data sets and can be easily expanded with new models. The simu-
lation module for coherent light-matter interactions offers an intuitive 
and user-friendly interface without the need to specify a Hamiltonian or 
other complicated mathematical objects. 
The qspec package is built to be as general as possible within the given 
set of physical conditions. An expansion of qspecwith new features and 
further generalization for a larger scope of applications is planned. For 
example, the simulation module can be used to define a new lineshape 
model for fitting, which can account for the population dynamics of an 
atom in a laser field. The simulation module itself can be expanded, e.g., 
by accounting for finite laser linewidths, adding molecular systems or al-

lowing higher-order multipole transitions or time-dependent velocities 
and laser parameters.
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Appendix A. Gradient and Hessian of the negated log-likelihood 
function

For the minimization of the negative log-likelihood function given 
by Eq. (20), its gradient vector and Hessian are calculated analytically. 
Both are used in the Newton conjugate gradient (Newton-CG) method 
[30,44] and the Hessian is also used to estimate the covariance matrix 
of the resulting parameters. We define

&̃�� ∶=
(
Σ−1
� &⃗�

)
�
, '̃�� ∶=

(
Σ−1
� '⃗

)

�
. (A.1)

Then the components of the gradient vector of Eq. (20) are given by

3

3&�
 =

∑

�∈

[
&̃�� −

(�

 2
�

'̃��

]
(A.2)
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 4
�

'̃��

]
, (A.3)

and the components of the Hessian are given by

32
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�∈

[
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]
(A.4)
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Appendix B. Definitions for qspec.simulate

The following definitions are used to calculate light-matter interac-
tions in qspec.simulate [22,54]

	� = 	�� + 	

�
(����)(����)

−�
�
�
�

#B
ℎ 
 (B.1)

�
 = ��

 (
 + 1) + � (� + 1) − �(� + 1)

2
 (
 + 1) 
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+ ��
#N

#B


 (
 + 1) − � (� + 1) + �(� + 1)

2
 (
 + 1) 
(B.2)

�� = −
� (� + 1) +)()+ 1) −/(/ + 1)

2� (� + 1) 

+ �5
� (� + 1) −)()+ 1) +/(/ + 1)

2� (� + 1) 
, (B.3)

&�� = (−1)�+��+
�+1
√
2
� + 1

√
2�� + 1

× ⟨
���; 1 �� −��|
���⟩
{
�� �� 1


� 
� �

}
(B.4)

Γ̃�� =

{
��� 	� < 	�

��� else
(B.5)

Γ�� = &2�� ��� (B.6)

8�� =

√√√√ 3:0�
3ℏΓ̃��

8�2|	� − 	�|3
&�� (B.7)

��
�� =

{
1 Eq. (26) - (32) fulfilled

0 else
(B.8)

Ω�
�� =

√
2��

:0�

8�� (1⃗
�)��−��

ℏ 
��

�� (B.9)

6�
�� =

|Ω�
��
|2 Γ̃��

(2�)2(	̃� − |	� − 	�|)2 +
1

4
Γ̃2
��

, (B.10)

where � and � enumerate individual quantum states, 	� are the eigen fre-
quencies, �� are the ;-projection quantum numbers of the total angular 
momentum quantum numbers 
�,  is the magnetic flux density, � are 
the Landé factors, #N and #B are the nuclear and Bohr magneton, re-
spectively, ⟨⋅ ⋅ ⋅ ⋅ | ⋅ ⋅⟩ are the Clebsch-Gordan coefficients, {∶ ∶ ∶} are the 
Wigner-6� symbols, 1⃗ � is a normalized complex laser polarization vec-
tor of laser �, ��� are Einstein coefficients, �� are the laser intensities, 
:0 is the vacuum permittivity and � is the vacuum speed of light.

Appendix C. Class diagrams of qspec.models and qspec.simulate

Fig. C.5. Class inheritance diagram of qspec.models. All models inherit from the Model class. The abstract Listed class enables the combination of models to 
link parameters or sum models. The Splitter class is an abstract class for Hyperfine structure models. Convolved allows numerical convolution of two models 
and Spectrum is a generic lineshape/peak model.
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Fig. C.6. Class diagram of qspec.simulate. A State represents a single quantum mechanical state. A DecayMap object links multiple states with the same user-
defined labels through spontaneous decay. A list of all states and the DecayMap object form an Atom. A Laser consists of a frequency, an intensity, a Polarization
and a directional vector. The Atom and a list of lasers is combined in an Interaction. Rate, Schrödinger, master and a Monte-Carlo (MC) master equation solver 
can be accessed directly from the Interaction. An Environment can be defined to alter the quantum state energies, but is not fully implemented yet and currently 
only supports linear Zeeman shifts. Note that the list of shown member functions is not complete for better clarity.

Appendix D. Code examples of qspec

Code Listing 1: Example code to perform a 2d King-plot analysis with Ca+ isotopes. In this example two transitions, named D1 and D2 line, are 
plotted against each other for the stable Ca+ isotopes [6]. Transition frequencies are specified as absolute values (line 14-21) so that qspec can 
calculate isotope shifts at runtime, which facilitates reassignments of reference isotopes (line 28-29). The fitted parameters of the straight line are 
used to determine the isotope shifts of the D1 line in 50,52Ca+ by inserting the isotope shifts of the D2 line (line 42-43) [55]. Finally the results 
are printed to the console output (line 45-47). Masses are taken from the Atomic Mass Evaluation (AME) 2020 [56]. Note that this example can be 
extended to an �-dimensional fit simply by adding more columns/observables to x_abs. If absolute values are unknown, the isotope shifts have to 
be passed to the king.fit routine in the same format as x_abs and need to concur with the specified lists of (reference) isotopes.

1 i m p o r t q s p e c a s q s 
2 
3 # T h e m a s s n u m b e r s o f t h e C a i s o t o p e s . 
4 a = [ 4 0 , 4 2 , 4 3 , 4 4 , 4 6 , 4 8 , 5 0 , 5 2 ] 
5 
6 # T h e m a s s e s o f t h e i s o t o p e s ( u , A M E 2 0 2 0 ) . 
7 m = [ ( 3 9 . 9 6 2 5 9 0 8 5 0 , 2 2 e - 9 ) , ( 4 1 . 9 5 8 6 1 7 7 8 0 , 1 5 9 e - 9 ) , # 4 0 C a , 4 2 C a 
8 ( 4 2 . 9 5 8 7 6 6 3 8 1 , 2 4 4 e - 9 ) , ( 4 3 . 9 5 5 4 8 1 4 8 9 , 3 4 8 e - 9 ) , # 4 3 C a , 4 4 C a 
9 ( 4 5 . 9 5 3 6 8 7 7 2 6 , 2 3 9 8 e - 9 ) , ( 4 7 . 9 5 2 5 2 2 6 5 4 , 1 8 e - 9 ) , # 4 6 C a , 4 8 C a 
10 ( 4 9 . 9 5 7 4 9 9 2 1 5 , 1 . 7 e - 6 ) , ( 5 1 . 9 6 3 2 1 3 6 4 6 , 7 2 0 e - 9 ) ] # 5 0 C a , 5 2 C a 
11 
12 # U s e a b s o l u t e v a l u e s g i v e n i n t h e s h a p e ( # i s o t o p e s , # o b s e r v a b l e s , 2 ) . 
13 # F r e q u e n c i e s f o r t h e ( D 1 , D 2 ) l i n e s ( M H z ) . 
14 x _ a b s = [ [ ( 7 5 5 2 2 2 7 6 5 . 6 6 , 0 . 1 0 ) , ( 7 6 1 9 0 5 0 1 2 . 5 3 , 0 . 1 1 ) ] , # 4 0 C a 
15 [ ( 7 5 5 2 2 3 1 9 1 . 1 5 , 0 . 1 0 ) , ( 7 6 1 9 0 5 4 3 8 . 5 7 , 0 . 1 0 ) ] , # 4 2 C a 
16 [ ( 7 5 5 2 2 3 4 4 3 . 5 7 , 0 . 3 0 ) , ( 7 6 1 9 0 5 6 9 1 . 8 9 , 0 . 1 7 ) ] , # 4 3 C a 
17 [ ( 7 5 5 2 2 3 6 1 4 . 6 6 , 0 . 1 0 ) , ( 7 6 1 9 0 5 8 6 2 . 6 2 , 0 . 0 9 ) ] , # 4 4 C a 
18 [ ( 7 5 5 2 2 4 0 6 3 . 2 7 , 0 . 3 3 ) , ( 7 6 1 9 0 6 3 1 1 . 6 0 , 0 . 5 7 ) ] , # 4 6 C a 
19 [ ( 7 5 5 2 2 4 4 7 1 . 1 2 , 0 . 1 0 ) , ( 7 6 1 9 0 6 7 2 0 . 1 1 , 0 . 1 1 ) ] , # 4 8 C a 
20 [ ( 0 . , 0 . ) , ( 0 . , 0 . ) ] , # 5 0 C a 
21 [ ( 0 . , 0 . ) , ( 0 . , 0 . ) ] ] # 5 2 C a 
22 
23 # C o n s t r u c t a K i n g o b j e c t . O p t i o n a l l y s p e c i f y ’ x _ a b s ’ h e r e 
24 # t o o m i t i s o t o p e s h i f t s w h e n f i t t i n g . 2 0 e l e c t r o n m a s s e s a r e s u b t r a c t e d 
25 # t o p e r f o r m t h e K i n g p l o t a n a l y s i s w i t h t h e n u c l e a r m a s s e s . 
26 k i n g = q s . K i n g ( a = a , m = m , x _ a b s = x _ a b s , s u b t r a c t _ e l e c t r o n s = 2 0 ) 
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27 
28 a _ f i t = [ 4 2 , 4 3 , 4 4 , 4 6 , 4 8 ] # C h o o s e t h e i s o t o p e s t o f i t . 
29 a _ r e f = [ 4 0 , 4 8 , 4 2 , 4 0 , 4 4 ] # C h o o s e i n d i v i d u a l r e f e r e n c e i s o t o p e s . 
30 
31 # D o a s i m p l e 2 d K i n g p l o t . T h e ’ m o d e ’ k e y w o r d i s o n l y u s e d f o r t h e a x i s l a b e l s . 
32 p o p t , p c o v = k i n g . f i t ( a _ f i t , a _ r e f , m o d e = ’ s h i f t s ’ ) 
33 # > > > f ( x ) = ( 1 7 7 . 3 u M H z ) + 1 . 0 0 0 6 8 * x 
34 
35 a _ u n k n o w n = [ 5 0 , 5 2 ] # S p e c i f y t h e u n k n o w n i s o t o p e s 
36 a _ u n k n o w n _ r e f = [ 4 0 , 4 0 ] # a n d t h e i r r e f e r e n c e s . 
37 
38 # S p e c i f y t h e i s o t o p e s h i f t s o f t h e D 2 l i n e . 
39 y = [ ( 1 9 6 9 . 2 , 5 . 6 ) , ( 2 2 1 9 . 2 , 7 . 0 ) ] 
40 
41 # C a l c u l a t e t h e i s o t o p e s h i f t s o f t h e D 1 l i n e a n d t h e i r c o v a r i a n c e s . 
42 x , c o v , c o v _ s t a t = k i n g . g e t _ u n m o d i f i e d ( 
43 a _ u n k n o w n , a _ u n k n o w n _ r e f , y , a x i s = 1 , s h o w = T r u e , m o d e = ’ s h i f t s ’ ) 
44 
45 f o r i s o , c i n z i p ( a _ u n k n o w n , c o v ) : 
46 q s . p r i n t h ( f ’ \ n { i s o } C a + : ’ ) # P r i n t c o l o r e d h e a d l i n e . 
47 q s . p r i n t _ c o v ( c ) # P r i n t c o l o r -c o d e d c o v a r i a n c e m a t r i x . 

Code Listing 2: Example code to produce the data shown in Fig. 4. Lists of the magnetic substates of the ground (s) and the excited state (p) are 
created (line 10-13), connected in a DecayMap (line 15) and used to define a 7Li atom (line 16). A laser is defined with an intensity of 1 µW∕mm2 and 
�-polarized light (line 18-20). An Interaction object combines the atom and a list of lasers (line 22). The rate (line 29) and master (line 32, 35) 
equation solvers are called directly from the Interaction object for an array of frequency detunings delta. The scattering rate for the different 
detunings defined in Eq. (38) is calculated directly from the array of density matrices rho or state populations n (line 30, 33, 36). An extended version 
of the perturbative scattering rate derived by Brown et al. [22] is calculated using a ScatteringRate object (line 38-39). Transition frequencies 
and hyperfine structure constants are taken or calculated from the data in [22]. The Einstein coefficient is taken from [57].

1 i m p o r t n u m p y a s n p 
2 i m p o r t q s p e c . s i m u l a t e a s s i m 
3 
4 f _ s p = 4 4 6 8 1 0 1 8 3 . 1 6 3 # T r a n s i t i o n f r e q u e n c y ( M H z ) 
5 a _ s p = 3 6 . 8 9 1 # E i n s t e i n c o e f f i c i e n t ( r a d M H z ) 
6 
7 s _ h y p e r = [ 4 0 1 . 7 5 8 2 5 ] # H F S c o n s t a n t s ( M H z ) 
8 p _ h y p e r = [ - 3 . 0 5 5 0 3 8 , - 0 . 2 9 6 7 0 ] 
9 
10 s = s i m . c o n s t r u c t _ e l e c t r o n i c _ s t a t e ( 
11 0 . , s = 0 . 5 , l = 0 , j = 0 . 5 , i = 1 . 5 , h y p e r _ c o n s t = s _ h y p e r , l a b e l = ’ s ’ ) 
12 p = s i m . c o n s t r u c t _ e l e c t r o n i c _ s t a t e ( 
13 f _ s p , s = 0 . 5 , l = 1 , j = 1 . 5 , i = 1 . 5 , h y p e r _ c o n s t = p _ h y p e r , l a b e l = ’ p ’ ) 
14 
15 d e c a y = s i m . D e c a y M a p ( l a b e l s = [ ( ’ s ’ , ’ p ’ ) ] , a = [ a _ s p ] ) 
16 l i 7 = s i m . A t o m ( s + p , d e c a y ) 
17 
18 i n t e n s i t y = 1 . # u W / m m * * 2 
19 p o l a r i z a t i o n = s i m . P o l a r i z a t i o n ( [ 0 , 1 , 0 ] ) # L i n e a r p o l a r i z a t i o n 
20 l a s e r = s i m . L a s e r ( f _ s p , i n t e n s i t y , p o l a r i z a t i o n ) 
21 
22 i n t e r = s i m . I n t e r a c t i o n ( l i 7 , [ l a s e r ] ) 
23 i n t e r . c o n t r o l l e d = T r u e # E r r o r c o n t r o l l e d i n t e g r a t o r 
24 
25 t = 0 . 2 # I n t e g r a t i o n t i m e ( u s ) 
26 d e l t a = n p . l i n s p a c e ( - 3 2 5 , - 2 7 5 , 2 0 1 ) # F r e q u e n c y d e t u n i n g s ( M H z ) 
27 t h e t a , p h i = 0 . , 0 . # A n g l e s f r o m z -a x i s i n x - a n d y -d i r e c t i o n ( r a d ) 
28 
29 n = i n t e r . r a t e s ( t , d e l t a ) # R a t e e q u a t i o n s , 0 . 2 u s 
30 y _ r a t e s = l i 7 . s c a t t e r i n g _ r a t e ( n , t h e t a , p h i , a s _ d e n s i t y _ m a t r i x = F a l s e ) 
31 
32 r h o = i n t e r . m a s t e r ( t , d e l t a ) # M a s t e r e q u a t i o n , 0 . 2 u s 
33 y _ m a s t e r = l i 7 . s c a t t e r i n g _ r a t e ( r h o , t h e t a , p h i ) 
34 
35 r h o = i n t e r . m a s t e r ( 0 . 4 , d e l t a ) # M a s t e r e q u a t i o n , 0 . 4 u s 
36 y 4 _ m a s t e r = l i 7 . s c a t t e r i n g _ r a t e ( r h o , t h e t a , p h i ) 
37 
38 s r = s i m . S c a t t e r i n g R a t e ( l i 7 , l a s e r = l a s e r ) 
39 y _ b r o w n = s r . g e n e r a t e _ y ( d e l t a , t h e t a , p h i ) [ : , 0 , 0 ] # B r o w n e t a l . 
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Data availability

The algorithms described within this article are implemented in the 
open-source Python package qspec, available per request or online at 
https://pypi.org/project/qspec/ and https://github.com/patmlr/qspec. 
Data shown in the article is either cited or generated using the qspec
package.
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