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The analysis of experimental results with Python often requires writing many code scripts which all need access
to the same set of functions. In a common field of research, this set will be nearly the same for many users. The
gspec Python package was developed to provide functions for physical formulas, simulations and data analysis
routines widely used in laser spectroscopy and related fields. Most functions are compatible with numpy arrays,
enabling fast calculations with large samples of data. A multidimensional linear regression algorithm enables
a King plot analyses over multiple atomic transitions. A modular framework for constructing lineshape models
can be used to fit large sets of spectroscopy data. A simulation module within the package provides user-friendly
methods to simulate the coherent time-evolution of atoms in electromagnetic fields without the need to explicitly

1. Introduction

Laser spectroscopy is in general concerned with the manipulation of
the inner and outer degrees of freedom of atoms or ions using laser light.
The subject of the interaction reaches from individual ions or atoms
captured in a trap, over hot thermal ensembles in a neutral or charged
plasma up to beams at high and even relativistic speed. The goal of
the laser interaction can also be divers, e.g., transferring atoms into a
specific (excited) state, generating fluorescence photons for detection,
change the ions motional degree by momentum transfer (laser cooling),
or to produce nuclear or atomic polarization or alignment. The gspec
package presented here is intended to provide a fundamental physics
and data processing framework for experiments based on laser-atom in-
teractions, where atoms are understood as electrons bound to a moving
unresolved nucleus. While parts of gspec are made for general data
processing and physics calculations, being based in laser spectroscopy
experiments, the generic experiment benefiting the most from gspec
produces data by reading out the response of atoms after manipulating
them with lasers. Ultimately, these are experiments whose means are the
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determination of high-precision transition frequencies for a wide variety
of possible goals, which range from collinear laser spectroscopy (CLS) to
probe atomic or nuclear structure theory [1-6], over searches for new
physics [7,8], to the development of atomic clocks [9-11] or quantum
computing with atom or ion traps [12-14]. During the planning or the
analysis phase, most of these experiments require simulations of the time
evolution of atoms in laser fields, nonlinear fits to spectroscopy data,
error propagation or simple calculations of laser frequencies, power,
polarization as well as energies, velocities, Doppler, hyperfine-structure
(hfs), or Zeeman shifts etc.

The goal of the gspec package is to make calculations of such observ-
ables and simulations easily accessible in any analysis script without the
need to copy source code into every new project. While this is already
useful for the most basic functions, it is even more practical for more
extensive calculations, as long as they can still be defined in sufficiently
general terms. In this sense, the package has been widely used and tested
in simulating and analyzing laser spectroscopy results in collinear laser
spectroscopy at COALA [15], COLLAPS/ISOLDE [16], and spectroscopy
at storage rings [17], but can be easily used for laser spectroscopy on
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thermal beams or in ion or atom traps as well.

gspec expands on the concept of assisting the planning and analy-
sis of experiments by also providing general mathematical, statistical
and optimization methods, building on the foundation of the numpy
and scipy packages. Additionally, object-oriented frameworks to cre-
ate fit models in a modular way (gspec.models) and to time-evolve
coherent laser-atom interactions (gspec . simulate) are implemented.
These two frameworks and the derivation of a maximum-likelihood fit of
a straight line to n-dimensional uncertain data points constitute the main
body of this article. In the following section, a brief introduction into
atomic hyperfine structure and fluorescence spectra is given, as these
constitute the core of the implemented theory of light-matter interac-
tions. In Sec. 3, a technical summary and an overview over the gspec
package is given, including a short tutorial on how to get started.

2. Theory

In atomic physics, the required theory and calculations are often
well understood and developed such that the user of a physics code li-
brary can quickly relate a name of a method to the theory and asses the
underlying physical assumptions and approximations. Hence, for intro-
ductions to the general physical concepts and the standard approaches
to laser spectroscopy and the underlying atomic physics of the gspec
package, standard textbook resources can be consulted [18-20]. How-
ever, in high-precision experiments, also small effects such as hyperfine-
induced mixing [21] or quantum interference in the photon scattering
rate [22,23] can significantly influence an experiment. Since these ef-
fects go beyond the standard frameworks, but are also within the scope
of gspec, they shall be briefly introduced in the following paragraphs.
In the field of laser spectroscopy, usually transition frequencies between
fine-structure states are addressed, e.g., for determining isotope shifts, or
are specified in literature, while hyperfine-structure splittings, emerging
in isotopes with nonzero nuclear spin, often need to be calculated. The
hyperfine structure Hamiltonian, describing the higher-order multipole
terms of the electromagnetic interaction between the electrons and the
nucleus beyond the Coulomb interaction, can be written as [18,24]

k
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where M® and T® are irreducible tensor operators of rank and mul-
tipole order k, acting on the nucleus and the electrons, respectively. In
the second expression, the scalar product is written out in the spherical
basis. Using the Wigner-Eckhart theorem, this can be written as
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where £ is the Planck constant, 6, 6,,, are Kronecker-deltas, (:::)
and {:::} are the Wigner-3j and -6j symbols and reduced matrix ele-
ments are denoted by (-|| - ||-). The quantum numbers I, I’ represent
the nuclear spin, J, J' the total electron angular momentum, F the com-
bined total angular momentum and a, y encapsulate additional quantum
numbers such as particle spins. If the off-diagonal elements, linking dif-
ferent I and J, vanish, this expression can be simplified to the textbook
hyperfine structure formula [18,24]

B LK %K(K+1)—I(I+1)J(J+1)

s 5
Vo e 2t 2011 - 1)J2J - 1) ®

Computer Physics Communications 311 (2025) 109550
2K3+5K2=SIU+ DI +1)

+KUU+D)+JJT +D)=-3II+DJJ +1)+3)
IJ-D2I-1)JJ -1D)2J-1)

K:=F(F+1)—II+1)—J(J +1) (6)

A =My T ) )
Al

hA = 7 hB :=4A,, hC := A;, (8

with the hyperfine structure constants A, B and C in frequency units for
the magnetic dipole, electric quadrupole and magnetic octupole term,
respectively. Off-diagonal elements with respect to / are often neglected
due to the large energy gaps between nuclear states, but will be of
interest in very rare cases like 2?*Th, which has a particularly low-
lying isomeric state that leads to hyperfine-induced nuclear-level mixing
with dramatic consequences for the lifetime of the nuclear state [25].
Off-diagonal terms in J are much more common and can give rise to
hyperfine-induced fine-structure mixing, as for example in *He [26] or
113+ [271]. If this is the case, the full Hamiltonian has to be diagonalized
block-wise for each F to extract individual fine-structure frequencies v,
i.e., the matrices

F — F
N(YJ)(}”J’) =V 5(7-’)(}’/J/) + Yoo 9

need to be diagonalized. The gspec package enables fitting to spec-
tra with mixed J through numerical diagonalization. However, this
requires additional input from theory or experiment. The nuclear mo-
ments, as well as the off-diagonal matrix elements (yJ | [T®|y"J "y need
to be provided. Nuclear magnetic dipole moments (k = 1) can be found
in [28], electronic magnetic dipole matrix elements for He-like systems
are listed, e.g., in [21]. The implementation in gspec is currently lim-
ited to k = 1, but the extension is straightforward and may follow in a
future update.

Fluorescence spectra are generated from detected photons resonantly
scattered from an atom. Resonance peaks appear where the frequency
of the incident photon matches that of an atomic transition. If excited
quantum states are energetically close, a fluorescence spectrum cannot
be simply described as a sum of resonance peaks anymore, but the su-
perposition of the excited states has to be considered. This is particularly
relevant for unresolved hyperfine structure spectra [3], but can also
become relevant in high-precision measurements were peaks are hun-
dreds of linewidths separated [23]. This “quantum interference” (QI)
effect depends on the solid angle of detection of the emitted fluores-
cence light and leads in general to asymmetric lineshapes, which leads
to shifts in the determined transition frequencies if simply fitted with a
sum-of-peaks model. In gspec, the QI scattering rate derived in [22] is
implemented as a fit model of the form
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where p(ky, q) can be used as a fit parameter, takes values in [-0.5,1]
and depends on the polarization of incident and the directions of de-
tectable scattered photons. [, is the saturation intensity, 7 the re-
duced Planck constant, ¢ the vacuum speed of light, App/ ‘=0 —wp,
® :=2xv and I is the natural linewidth of the electronic transition. The
coefficients A;’, B;, and C?F " only depend on angular momentum
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algebra and are derived in [22]. For simulations, as part of gspec.sim-
ulate, the scattering rate was extended to address individual magnetic
substates, allowing the use of a magnetic field. If the perturbative scat-
tering rate is not sufficient, the gspec.simulate module can be used
to coherently evolve an atom in a laser field using a master-equation ap-
proach. The resulting density matrix can be used to calculate the expec-
tation value of a detection operator that gives the full non-perturbative
solution and converges to the perturbative result for low laser powers
and closed transitions in the equilibrium state. This is described in more
detail in Sec. 6.

3. Structure

The gspec package provides functions for physical calculations and

simulations such as the aforementioned examples in a user-friendly
and efficient way. Whenever useful, functions are compatible with the
ndarray class of numpy [29]. This enables fast calculations with large
samples of data. In addition to numpy, a small number of established
scientific Python packages are required with scipy [30], sympy [31]
and matplotlib [32]. Parts of gspec are written in C++ and are cur-
rently only compiled for Windows systems in a Dynamic Link Library
(DLL). A detailed overview of gspec with installation instructions, tu-
torials, the API documentation and links to the Python Package Index
(PyPI), the GitHub repository and this publication can be found on the
official website [33]. Supplemental details are also given in [34].
The content of the gspec package is distributed over seven largely in-
dependent modules/categories. These are named analyze, algebra,
models, physics, simulate, stats, and tools. However, all but
the models and the simulate modules can be accessed by simply
importing gspec. This is demonstrated in the following short code ex-
ample, often required in collinear laser spectroscopy. In this technique,
a fast beam of ions or atoms is superimposed with a copropagating or
counterpropagating laser beam [35] and a resonance curve is usually
recorded by Doppler-tuning, i.e., changing the ion velocity with a small
potential change AU. The laboratory laser frequency required to excite
the 24516.65 cm™! transition in 88Srt ions, accelerated to 20 keV, with
a counterpropagating laser beam is calculated in the following example
together with the change in the rest-frame frequency of the ion for a po-
tential variation of 1 V. Note that, all of the scalar values in this example
could be replaced by numpy arrays.

1 gspec as Js

2 # This imports the analyze, algebra,

3 # physics, stats, and tools modules

4

5 |g=1 # (e), Ion charge state

6 |m = 87.905612253 - g * gs.me_u # (u)

7 # Mass of 88Sr+

8

9 U = 20000 # (V), Acceleration voltage
10

11 | # Resonance frequency from NIST database
12 |f0 = gs.inv _cm to freqg(24516.65) #

13 # >>> 734990676.5 MHz

14

15 | # Relativistic velocity of 88Sr+

16 |v = gs.v_el(U, g, m) # (m/s)

17 # >>> 209533.6 m/s

18

19 | # The anti-collinear lab. frequency

20 | f_laser = gs.doppler(

21 £0, v, gs.pi, return_ frame='lab’) # (MHz)
22 # >>> 734477149.8 MHz

23

24 | # The differential Doppler shift

25 | df_atom = gs.doppler_el di(

26 f laser, gs.pi, U, g, m) # (MHz / V)
27 # >>> +12.84 MHz / V
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Functions are generally named according to their returned observable
and required input parameters. Similar to this simple example, all func-
tions and classes can be accessed, including the n-dimensional linear
fit algorithm described in Sec. 4. Elaborate introductions to the two
separate frameworks gspec .models and gspec.simulate are given
in Sec. 5 and 6, respectively. The following paragraphs give a short
overview over the seven modules/categories.

3.1. Algebra

The algebra module is a collection of functions related to angular
momentum coupling such as Wigner-j symbols, reduced dipole matrix
elements and relative transition strengths for electronic transitions. This
is the only module that uses the sympy package to optionally return
algebraic expressions of coupling strengths.

3.2. Analyze

The analyze module contains general purpose routines for (non)lin-
ear data fitting as well as a convenience class for multi-dimensional
King plots [36]. Wrappers for the scipy.optimize.curve fit and
the scipy.odr.odr routine, which use least square optimization and
orthogonal distance regression, respectively [30], extend their function-
ality and standardize their syntax. For fitting of a straight line, as needed
in King-plots, the York algorithm described in [37] and the Monte-Carlo
(MC) method described in the supplementary material of [38] are im-
plemented. In both cases, also a generalized version is implemented
for fitting a straight line to data points in multiple dimensions, whose
uncertainties are determined by independent multivariate normal dis-
tributions. The multidimensional fit algorithms are described in Sec. 4.

3.3. Models

The models module contains classes and helper functions to create
lineshape models of fluorescence spectra or more general fit models for
nonlinear curve-fitting. This module is similar to the existing satlas2
Python package [39,401, which is widely used by laser spectroscopy
groups at KU Leuven, CERN/ISOLDE and JYVL. In models, additional
features such as numerical convolution with commonly used probability
density functions, quantum interference (QI) effects [22] or hyperfine-
induced mixing [21] are available. The models module is described in
detail in Sec. 5

3.4. Physics

The physics module provides physical relations, unit conversions
and observables surrounding (collinear) laser spectroscopy such as par-
ticle energy and velocity, Doppler, photon recoil, hyperfine structure
and Zeeman shifts, refractive indexes, etc.

3.5. Simulate

The simulate module offers an intuitive framework for simula-
tions of laser-atom interactions and is comparable to other packages
that simulate the time evolution of quantum systems such as qutip
[41,42] or PyLCP [43]. Currently, solvers for the Lindblad master, rate
and Schrodinger equation as well as a MC solver for the Lindblad mas-
ter equation are included. The differential photon scattering rate, which
also includes quantum interference effects, can be calculated from the
density matrix or the state vector. Additionally, a perturbative scatter-
ing rate can be calculated, as described in [22]. The gspec.simulate
module is described in more detail in Sec. 6.

3.6. Stats

The stats module contains routines for the statistical analysis of
data. Besides basic statistical measures such as the (weighted) average



P. Miiller and W. Nortershduser

Fig. 1. Fit of a straight line to 5 data points in 3 dimensions. The scatter plots
indicate the uncertainty regions of the data points. In the Monte-Carlo (MC)
method, similar random samples are generated to construct a distribution of
sample straight lines. The 1o uncertainty region of the straight line fitted with
the analytical algorithm is shown as a yellow-purple colormap. The projections
of the 1o uncertainty regions of the data points and the fitted straight line are
shown on the three orthogonal planes. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

or median, the module also provides a MC error propagator. In combi-
nation with the nonlinear curve fitters of the analyze module, this can be
used to calculate uncertainty bands for the fitted function while taking
the full covariance matrix into account.

3.7. Tools

The tools module provides methods for data processing and con-
version as well as general mathematical functions. Some examples are
the conversion between lists and dictionaries, merging intervals, round-
ing to n significant decimal places, transforming vectors or printing
colored text to the console etc.

4. Multidimensional linear regression

The gspec package provides an analytical and a MC method for fit-
ting a straight line to data points in k € N dimensions. For any set of
data points (X )icr> with the index set Z, the algorithms described here
assume that the real value of the random vector X ; is distributed ac-
cording to an independent multivariate normal distribution N (ji;, %;),
with the mean vector i; € R* and the positive-semidefinite covariance
matrix ¥; € R¥, Here, we distinguish between an uncertain data point
X ;» which may be the result of a measurement, and the actual or real
but unknown value X;. Fig. 1 depicts the optimization problem in 3 di-
mensions with the resulting straight line fit.

The MC approach generates sample vectors X; according to the distribu-
tions N'(ji;, Z;) under the condition that they are aligned on a straight
line. Accordingly, the result of the MC method are samples of straight
lines following the probability density function imposed by the uncer-
tain data points and the linear relation. The algorithm is described in
detail in the supplemental material of [38] for the 3-dimensional case.
However, the extension of this algorithm to k dimensions is straightfor-
ward and is, thus, not described here.

The analytical approach is a maximum likelihood fit given the above
described assumptions. Its result corresponds to the most probable sam-
ple straight line generated by the MC method. Note that in general
this straight line is not given by the mean values of the slopes and y-
intercepts of the samples. The algorithm described by York et al. [37]
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yields the analytical solution for 2 dimensions. Here, the extension to k
dimensions is not obvious. Hence, in the following, the solution devel-
oped for gspec is described.

Let a straight line in k dimensions be parameterized by

fla,bl : R—>R¥, 1> d+1b. 14)
Then we want to find the offset vector @ € R¥ and the directional vector
b € R¥ that define the most likely straight line through the set of uncer-
tain data points (X )ier>» which generate the independent multivariate
normal distributions M (4;, %;);c7- The probability density of X, ; can be
written as

> 1o = Te-l,= -
Pi(X[) = exp [_E(xi - Hi)TZi 1(Xi - ,‘4[) (15)

1
V@K|Z|
where T indicates transposition and |Z;| and Zi‘l are the determinant
and the inverse of the covariance matrix, respectively. We can now de-

fine the likelihood of observing a sample X; if it is constrained to the
straight line f[a, B]

Li(@.b|1) := p;(f1d.b)(1)
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The most likely straight line can be found by maximizing this likelihood
function with respect to @ and b. However, for any given straight line
f[a,b], the real value of ¢ that generates X; is unknown. Using

max L;(d@,b|7) <max Ly(d@b|r=1,)
ab ab

1 U e 1
=max ————exp |- | ¢; 2] a; — - s (18)
ab Qo)L 2 o;

and recalling that all (X )icz are independent by definition, the likeli-
hood function that needs to be maximized to find the desired straight
line through all data points is given by

L@@b) =[] L.@blt=1. (19)
i€l

Analogously to standard least-square optimization algorithms, this is

most efficiently done by minimizing

£ :=—-1log(L(@@,b))

2
- % 3 log(@n) %) +a'z ' a, - 6—’2 , (20)
i€l i

where the terms log((27)*|%;|) can be omitted as they are indepen-
dent of @ and b. In gspec, the minimization is performed using the
scipy.optimize.minimize function with the Newton conjugate
gradient (Newton-CG) method [30,44]. For the fastest possible con-
vergence, both the gradient and the Hessian of Eq. (20) are computed
analytically, see Appendix A. The covariance matrix of the resulting
and b are calculated by numerically inverting the Hessian at the so-
lution with numpy.linalg.inv. For two dimensions, the algorithm
described here reproduces the fit performed with the York algorithm to
machine precision. The estimated uncertainties deviate slightly in the
third significant digit.

The gspec package also contains a class to set up King plots where usu-
ally the data vectors, consisting of isotope shifts or nuclear charge radii,
are multiplied by mass factors to yield modified data vectors according
to
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Table 1

List of features implemented in satlas2 or gspec.models. Please note that
this feature list is only a momentary capture, as both packages are in active
development, but it serves as a useful overview. Here (x, y) is a data point to be
fitted, Ay is the uncertainty of the y value, f is the fit model, {p} is the set of
fit parameters and p returns the uncertainty Ay of a data point at runtime.

Feature satlas2 gspec.models

Modular fit models v
Quantum interference —
Hyperfine mixing
Convoluted lineshapes
Shared parameters
Parameters as functions
Priors

N OSSN N

Gaussian statistics
Poisson statistic
Ay as a function
Bayesian inference

S {p}) p(x.y. fx. {p). {p}))

S2RSSN S S

AN AN G AN (M4 +m)MA +m,) AN
mod MA — MA ’
where M4 is the mass of the nucleus of the isotope with mass number
A and m, is the mass of the electron. The modified data vectors X4
are then aligned on a straight line. In this case, the covariance matri-
ces X; are calculated from the masses and data vectors %AA" This yields
notable positive correlations between the vector components if the un-
certainties of the masses are comparable or larger than those of the
data vectors. Correlations between different data vectors are neglected.
Improved or new data is gained from using the fitted straight line to
calculate missing vector components j from one known component /

(21)

. b
o ! !

xmod =d + ﬁ (xmod —a ) . (22)

The improved unmodified data and their covariance matrix is deter-

mined by inverting Eq. (21) and using Gaussian error propagation. A

code example of a simple 2d King plot with Ca* isotopes is given in

Code Listing 1, with data from [6,55,56].

5. Modular fit models

In gspec.models, a modular system for constructing fit models,
with a focus on lineshape models, is implemented. This module can
be compared to the satlas2 package, which is used for fitting line-
shape models to low- and high-statistics data [39,40]. In the backend,
gspec.models extends the scipy.optimize.curve fit method
for fitting [30] while satlas2 uses the 1lmfit package [45]. Both
packages provide a modular system for constructing nonlinear func-
tions, routines for fitting data with low statistics and options to alter the
influence of individual parameters. While gspec.models implements
models and features that are currently not available in satlas2, we
also acknowledge that satlas2 provides additional fit options such as
Poisson-statistic maximum-likelihood fitting or Bayesian inference that
are currently not available in gspec.models. A complete up-to-date
feature comparison is given in Table 1.

There are several reasons that have lead to the development of
gspec .models. At the beginning of its development, only the old ver-
sion of satlas was available [39]. Therefore, a large performance boost
was expected in gspec.models, as evidenced by the now available
faster new version satlas2 [40]. In gspec.models, new features
and physical models are implemented that were/are not available in
satlas2, such as consideration of quantum interference effects or
convolutions of lineshape models. The dependencies of gspec.mod-
els are kept at a minimum of only numpy and scipy. Moreover,
gspec.models is now used as the backend of an updated version of
the Tilda.PolliFit framework, which provides a graphical user in-
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terface and is already used for the analyses of online data [46-48]. In
the following, the structure of gspec.models is described and a per-
formance comparison to satlas2 is given.

The basis for the modular system is the abstract Mode1 class, from which
all models inherit, see the class diagram in Fig. C.5. Composite models
are created by passing a model to the constructor of another model. A
basic example could be the creation of a hyperfine-structure model for
a transition from a lower state |J = 1/2) to an upper state |J’ =3/2) in a
system with nuclear spin I =1/2

fG)=p, Z a(F, F")Voigt(x — %,T,6) + ¥ (23)
F—F'
i} A, A
% =xq+ S [F'(F'+1)=9/2] = Z[F(F +1)=3/2],

where T, o, A, A’, a(F, F’), x, py and y, are parameters. This would
correspond to the following lines of code.

1 gspec.models \

2 Voigt, Hyperfine, NPeak, Offset

3

4 |1, 31, Ju=0.5 0.5 1.5 # =1, J, J’
5 |hfs = Hyperfine(Voigt(), I, J_1, J u)

6

f = Offset (NPeak (hfs, n peaks=1))

Here, Voigt creates the peak shape model with parameters I'
(Lorentzian FWHM) and ¢ (Gaussian standard deviation) and Hyper-
fine introduces the sum in Eq. (23), the hyperfine-structure constants
A, A’ and the peak intensities a(F, F’). The NPeak model creates a sum
over, in this case, one instance of the passed hyperfine-structure model
at the position x, with intensity p,. The Offset model creates the offset
parameter y,.

The lineshape model defined in Eq. (23) can be substantially modified.
The Voigt profile can be replaced by other peak shapes. The chosen peak
shape can also be numerically convolved with a second peak shape
of choice. The multipole expansion of the hyperfine structure is im-
plemented up to magnetic octupole terms. Quantum interference (QI)
effects can be considered by replacing Hyperfine with HyperfineQI,
see Eq. (10). This creates an extra parameter that encapsulates the de-
tector geometry determining the QI effect. Hyperfine-induced mixing is
considered in HyperfineMixed. The NPeak model can be used to cre-
ate additional copies of the passed submodel with individual positions
and intensities. Of fset can divide the x-axis into intervals with indi-
vidual offset functions, which can be any polynomial. All parameters of
a model can be free, fixed, functions of other parameters, bounded to an
interval or statistically constraint by a reference value with uncertainty,
also known as a prior [40,49]. Additionally, simultaneous fits of mul-
tiple data sets with shared parameters are possible. In a future update,
gspec.models can be combined with the gspec.simulate module,
described in Sec. 6, to enable fitting of non-perturbative scattering rates.
The computing time for a fit with shared parameters increases polyno-
mially with the number of linked data sets. Therefore, the fit models
have to be calculated efficiently. To test the speed of gspec.models,
the benchmark test described in the documentation of satlas2 [40]
was adapted, which compares satlas2 to satlas for fits to different
numbers of data sets using shared parameters. There, a speedup fac-
tor of two to three orders of magnitude was found, depending on the
number of data sets [40]. The benchmark test is a fit of Voigt profiles
to the hyperfine structure spectrum of a |J =1/2) — |J/ =3/2) transi-
tion with low Poisson statistics in a system with nuclear spin 7/2. The
hyperfine-structure parameters A, A’ and B’ as well as the parameters
xg, I and o were shared across data sets, compare Eq. (23). The mag-
netic octupole constant C’ was fixed and set to zero. The low Poisson
statistics were accounted for by a custom function

p(x, 3, fO {ph, {p}) =V f(x, {p}), 24

which computes the uncertainty of the data during runtime, see Table 1.
Fig. 2 shows a comparison of the computing times of gspec.models
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Fig. 2. Speed comparison of gspec.models with satlas2 using an adaption
of the benchmark test described in the documentation of satlas2. The com-
puting time increases polynomially with the number of linked data sets. The
ratio of the computing times of satlas2 and gspec.models grows linearly.
The benchmark test was performed with satlas2 version 0.2.7 and gspec ver-
sion 0.3.5 with an AMD Ryzen™ 7 7800X3D 8-Core Processor on Windows 11.

and satlas2. A linearly growing speedup factor of 1.2 to 7 was found
when using gspec . models for simultaneously fitting 1 to 40 randomly
generated data sets, respectively. The fit results agree well and only de-
viate in the third significant digit of the uncertainties. Please note that
these computing speed results are only valid for this specific test configu-
ration, as the speedup factor can depend on many parameters such as the
used fit algorithm, the number of fit parameters, the number of linked
parameters or the used test machine. Moreover, satlas2 provides ad-
ditional statistical measures for the fit results whose computing times we
could not test. However, these results show that the basic framework of
gspec .models meets the required performance standards and addi-
tional features, currently not implemented in gspec.models, such as
Bayesian inference or maximum-likelihood fitting, can now be added to
the robust basis. These will call for a separate benchmark test.

6. Interaction of light and matter

The lineshape of fluorescence spectra cannot always be described
by an analytical model, especially when atomic states are optically
pumped. In such cases it is desirable to simulate the evolution of the
atomic state population in the laser field to understand the origin of the
experimental lineshape and to investigate systematic frequency shifts
when using a simple lineshape model. Moreover, the simulations can
help to find the optimal experimental parameters in experiments that
rely on optical pumping effects. All experiments that involve light-atom
interactions can potentially benefit from such simulations. Some exam-
ples are saturation spectroscopy, Ramsey interferometry or quantum
computing with atom/ion traps.

Python packages to simulate the interaction of light and matter already
exist. However, they are often designed for a certain subspace of atomic
systems and applications or require the user to derive the mathemati-
cal objects such as Hamiltonians or observable operators. For example,
the qutip package is a powerful library of solvers for open quantum
systems which takes the Hamiltonian of the system as an input [41,42].
For the simulation of laser spectroscopy experiments, where multiple
isotopes with different hyperfine structures are of interest, a lot of work
is required to set up all Hamiltonians. The PyLCP package facilitates
this process, provides classes to set up lasers and external static elec-
tromagnetic fields and also allows to simulate the motional degrees of
freedom, e.g., to simulate laser cooling [43]. While this package has a
large range of applications, it still requires the user to construct a Hamil-
tonian from individual energy contributions and it currently does not
support passing numpy arrays of velocities or laser detunings to simu-
late large samples. As a consequence, iterations over the samples and
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multi-threading for better performance have to be implemented by the
user.

The gspec.simulate module provides an intuitive class system,
which is comparable to drawing an atomic level scheme, to define laser-
atom interactions. A class diagram of gspec.simulate is depicted in
Fig. C.6. Time-independent Hamiltonians in the interaction picture are
generated automatically from the specified atom, lasers and environ-
ment. Initial populations of atomic states, initial velocities and laser
detunings can be passed as numpy arrays. The backend utilizes multi-
threading and is written in C++ for the best performance and long-term
support. Solvers for the rate equations, the Schrédinger equation and
the master equation are available. Additionally, a Monte-Carlo (MC)
master equation solver can be used to also simulate the recoil motion
of the atom in the laser field. In gspec.simulate, an atom is defined
as a list of states |i) :=|y,S,L,J, I, F,mp) with eigen energies hv; that
are connected through spontaneous decay rates I';;. The eigen frequen-
cies v; are either specified directly or calculated from Eq. (5) and the
center-of-gravity frequency v of the fine-structure states |y, .S, L, J).
Lasers are approximated as classical monochromatic plane waves, for
which the user specifies the frequency ¥, intensity I; and complex
polarization vector 7. The atom and the lasers are combined into an
Interaction object which generates the differential equations to be
solved. For a complete list of definitions for the mathematical objects
used in gspec.simulate, see Appendix B.

6.1. Hamiltonian
To simulate the coherent dynamics of the system, a Hamiltonian ma-

trix is created in the basis of the atom, spanned by the user-specified
states |i). The starting point is the time-dependent Hamiltonian

H= 2 0;; ho; + 2 Z o;j thj cos(@y 1), (25)
i k ij
i#j

where o;; := i) (j|, @ = 2zv are circular frequencies and Qf‘ are the

Rabi frequencies generated by laser k. This Hamiltonian describes the
interaction of an atom with multiple classical laser fields. In this form,
every laser drives all atomic transitions 6;;. The gspec.simulate
module identifies the transitions that fulfill the electric-dipole-transition
rules and calculates the Rabi frequencies from the parameters of the
lasers and the properties of the involved atomic states. The full set of

conditions for a transition o;; to be considered is given by

|/, =<1, 00 (26)
|F;—F|<1, 00 27)
Im;—m;| <1, 0«0 if AJ,F=0 (28)
r;>0 (29)

I, >0 (30)
. @D
[v; =vil = V| < Apaxs (32)

with the Einstein Aj; coefficient and a user-defined cutoff frequency
A . to ignore fast oscillations. Since the Hamiltonian still depends on
the fast oscillating terms cos(@y1), it is transformed into an interaction
picture and the rotating-wave approximation is applied to frequencies
of the order of 2&,. The transformation is constructed to produce a
time-independent Hamiltonian whenever possible to avoid complex ex-
ponentials for faster computation. This is possible if and only if two or
more lasers do not form loops in the multigraph generated by connect-
ing the atomic states with the lasers. Since the transformation depends
on the particular graph, which is only determined at runtime, no closed
expression for the transformed Hamiltonian can be specified. The graph
search algorithm that is used for the transformation is described in Fig. 3
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Fig. 3. Sketch of the algorithm used to transform the Hamiltonian into the in-
teraction picture for a laser-driven 3S; — 3P, transition in a nuclear spin-!/2
system. The solid black and red lines depict the energies of the atomic states
(diagonal elements of the Hamiltonian) before and after the transformation, re-
spectively. The solid orange arrows depict the lasers, which are slightly detuned
from resonance. The dashed arrows indicate the transformations applied to each
state. The transformations applied to the 3S, (F = 1/2) states (small dashed blue
arrows) are carried over to the 3P0 states due to the connection through the
laser. Additionally, the *P,, states are shifted by the laser frequency @ (dashed
orange arrow). The dotted black arrows show the path taken by the graph search
algorithm. Note that this path changes, e.g., if the maximum detuning A, is
large enough to bring the laser in resonance with the F =3/2 — F’ =1/2 transi-
tion.

based on a laser-driven 3S; — 3P, transition in a system with nuclear
spin 1/2. The transformed time-independent Hamiltonian of this exam-
ple is given by [50]

H' :=U*HU+ihd%U

= h(wy — @y — @)(6py + 633)
Q . N Q. N
+h5(602+513)+h7(0'20+l731), (33)

where the indexes correspond to the states indicated in the simplified
graph in Fig. 3, @ and Q are the laser and Rabi frequencies, respec-
tively, U is the unitary transformation defined in Fig. 3, and @, = w;
as well as w, = w3 due to the absence of an external magnetic field.
When the time-dependence cannot be eliminated completely in the pres-
ence of multiple lasers, the off-diagonal elements of the Hamiltonian will
contain time-dependent Rabi frequencies, which oscillate with the fre-
quency differences between the lasers. This is automatically detected by
the algorithm and the Hamiltonian is adjusted accordingly.

6.2. Lindblad master equation
The complete coherent and dissipative population dynamics of the

atomic states in the laser fields can be determined by solving the Lind-
blad master equation. It can be written as [50-52]

dp i
E:—E[H,p]+;F[jD[6ij]p (34)
Dislp :=cpo’ — %(afap +po'o), (35)

where the coherent dynamics are described by the first term and the
coupling to the vacuum by the second term. Note that I';; #0=>T; =
0 as spontaneous decay from [i) to |j) only occurs if ®; > w;. In
gspec.simulate, the differential Eq. (34) is solved numerically in ma-
trix form using the C++ libraries Boost .Numeric.0Odeint and Eigen.
Large parameter spaces or numbers of samples can be explored by spec-
ifying frequency detunings, velocities (Doppler shifts) or initial density
matrices (state populations) as numpy arrays, which are addressed in
parallel by the C++ backend. Hence, a user is neither required to write
any loops in Python nor to implement parallel computing. The perfor-
mance of the master equation solvers in gspec and qutip for a single
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parameter sample are comparable and mainly depend on the chosen in-
tegration algorithm, integration steps and error tolerances.

A MC master equation solver is available, following the approach de-
scribed in [53], which is also implemented in qutip [41]. The basic
idea is to solve the Schrédinger equation with a modified non-hermitian
Hamiltonian that leaks population into the environment according to
the dissipation rates I';;. Whenever the norm of a simulated state vector
|y, ), where s numerates the samples, falls below a randomly generated
fraction of unity, the state vector “collapses”, destroying all superpo-
sitions and resetting the system to the collapsed state. Averaging the
resulting state vectors for n — oo samples yields the density matrix de-
scribed by the master equation

n
.1 . .
pij = lim - ; (ily) (wili) - (36)

The MC method is particularly useful for large atomic systems since
its complexity only increases linearly with the number of atomic
states as opposed to the quadratic growth of the master equation. In
gspec.simulate, the MC master equation additionally can be used
to simulate the motional degrees of freedom of the atom. Whenever the
atom spontaneously decays, the photon momenta of the lasers leading
from the initial to the excited state and the recoil from the spontaneous
decay are added to the momentum of the atom. Note that in this method,
the momentum of the atom only changes upon spontaneous decays but
not during any coherent interaction.

6.3. Rate equations

A simplification of the master equation are the rate equations which
omit all coherent dynamics. In laser spectroscopy, the use of rate equa-
tions is often sufficient due to how precise the state populations need to
be known or due to the width of the velocity distribution of the atomic
ensemble, which can average out coherent effects. The rate equations
implemented in gspec.simulate are given by

ap;;
d_t”=z |:<2Rfcj>(pjj_pii)+rijpjj_rjipii , 37)
J k

where R;‘A are the stimulated emission/absorption rates for laser k,
which depend on the frequency, intensity and polarization of the laser,
I';; are the spontaneous decay rates from Eq. (34) and p;; =0 for i # j.

6.4. Differential scattering rate

From the density matrices determined through Eq. (34), (36) and
(37), a differential scattering rate into the solid angle Q can be calcu-
lated that, in case of the coherent approaches, also considers quantum
interference (QI) effects. The differential scattering rate is given by [18]

%(7&80) =Tr (PD(iésc))

G- dp)dy; )

=% > X N Jrur, ——2—. (38)

4 7.\ld*
GeP(ky) fEF ijEly |dfi||dfj

where D(%SC) is a detection operator, P(%SC) is a basis set of normalized
polarization vectors for scattered photons with direction }SC, If)ser
and F are sets of excited and final states between which spontaneous
decay can occur and d are the dipole transition strengths, see Eq. (B.7).
Limiting the three sums to detectable spontaneous decay and integrating
over the solid angle of detection yields a photon detection rate.
Equation (38) reproduces the perturbative differential scattering rate
derived by Brown et al. [22], see Eq. (10), that considers QI effects in
closed electronic transitions in the case of small laser intensities, such
that Q;; <I;, linear polarization and equilibrium population. These
conditions are rarely met exactly in the experiment as in most real
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Fig. 4. Simulated differential scattering rate of the %S, pF=2)-> 2p, /> transi-
tions in 7Li in the direction of the linear polarization vector of a spectroscopy
laser with an intensity of 1 wW/mm?. The perturbative scattering rate, which in-
cludes quantum interference (QI) effects derived by Brown et al. [22] (black) is
compared to the solutions of the rate (blue) and master (orange) equations after
an integration time of 0.2 pus. While the rate equations yield a sum of Lorentzians
with averaged out coherent and QI effects, the master equation approach shows
the intensity modulations of the coherent Rabi oscillations and converges to the
perturbative QI approach for later times (red dashed). A small difference comes
from optical population transfer into the F =1 ground state. This plot repro-
duces Fig. 2 of [22]. The shown data was generated using Code Listing 2.

atomic systems, especially if they have a hyperfine structure, optical
pumping and population transfer will occur already within short in-
teraction times and laser powers on the uW/mm? level. A comparison
of differential scattering rates of the %S, ,, — 2P, transition in "Li is
shown in Fig. 4. The scattering rates were determined with Eq. (38) us-
ing the master and the rate equation approaches as well as with the
perturbative scattering rate from [22] for detection at 0° angle relative
to the polarization vector of absorbed photons. A code example that pro-
duces the data shown in Fig. 4 is given in Code Listing 2, using data from
[22,57]. The shown plot reproduces Fig. 2 from [22] and additionally
shows the solution of the master equation approach after an integration
time of 0.2 and 0.4 us, demonstrating the need of the non-perturbative
approach if the system equilibrium is not reached yet.

7. Summary and outlook

The Python package gspec provides a variety of classes and func-
tions to facilitate the analysis and simulation workflow in laser spec-
troscopy experiments. In this article, a multidimensional linear regres-
sion algorithm, modular fit models and light-matter simulations are
introduced. The maximum-likelihood fit of a straight line in multiple di-
mensions constitutes a generalization of the linear regression algorithm
introduced by York et al. [37]. The system of modular fit models pro-
vides a basis for combining and linking different fit models, parameters
and data sets and can be easily expanded with new models. The simu-
lation module for coherent light-matter interactions offers an intuitive
and user-friendly interface without the need to specify a Hamiltonian or
other complicated mathematical objects.

The gspec package is built to be as general as possible within the given
set of physical conditions. An expansion of gspec with new features and
further generalization for a larger scope of applications is planned. For
example, the simulation module can be used to define a new lineshape
model for fitting, which can account for the population dynamics of an
atom in a laser field. The simulation module itself can be expanded, e.g.,
by accounting for finite laser linewidths, adding molecular systems or al-
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lowing higher-order multipole transitions or time-dependent velocities
and laser parameters.
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Appendix A. Gradient and Hessian of the negated log-likelihood
function

For the minimization of the negative log-likelihood function given
by Eq. (20), its gradient vector and Hessian are calculated analytically.
Both are used in the Newton conjugate gradient (Newton-CG) method
[30,44] and the Hessian is also used to estimate the covariance matrix
of the resulting parameters. We define

a; = (5'a),. b= (2;13)/_. 7%))
Then the components of the gradient vector of Eq. (20) are given by
 p [ g ] (A.2)
F e dij = 3% .
aa/ i€ 6,'2
2
[ L Il 7
—L= —a;——b;|, (A.3)
0b; i€l |:‘7,'2 N ‘7,4 !
and the components of the Hessian are given by
9% _1 Bij~il
— = (=", - A9
2000, & [ =
2 2
02 T 1 Iy
= L (=Y, - —a,a,-4-b,b,
abjabl - |:614( i )// O_iz 1y o_iﬁ 1y
o7 |7 -
+2z (@b +b;;a;) (A.5)
i
i L=y —ﬁ(z—‘) +2005, 5, - Lab (A.6)
aaj b, iel Ul«z Bt O'? L o'l.2 i ’

Appendix B. Definitions for gspec.simulate

The following definitions are used to calculate light-matter interac-
tions in gspec.simulate [22,54]
_ F; HB
Vi =Yy, +v(7i"i)(?'i"i) ~ME8F, 7’3 (B.1

FE+D+JUJ+1)-IUT+1)
2F(F+1)

EFr =87
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§1=7 200 +1)
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s 2J(J +1) ’

a;; = (=D OF +14/20, + 1

J J; 1
X (Fym; 1m; _milemj>{I;j_ Fl' I}
i Ay

5 _ Aji v <v;
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A;;  else
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Appendix C. Class diagrams of gspec.models and gspec.simulate
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1 Eq.(26) - (32) fulfilled
Mik'z g.(26) - (32) e B.8)
J 0 else

ZIk dij(‘?k)mj—m,-

Kk _ T Tmpmmg

S (B.9)
k12T

k 1217 (B.10)

Y@, - lv; =vi)2+ %I?l
where i and j enumerate individual quantum states, v; are the eigen fre-
quencies, m; are the z-projection quantum numbers of the total angular
momentum quantum numbers F;, B is the magnetic flux density, g are
the Landé factors, uy and pp are the nuclear and Bohr magneton, re-
spectively, (- - - - | - -) are the Clebsch-Gordan coefficients, {: : :} are the
Wigner-6; symbols, ¥ is a normalized complex laser polarization vec-
tor of laser k, A ji are Einstein coefficients, I; are the laser intensities,
&g is the vacuum permittivity and c is the vacuum speed of light.

® Model

O Model model
Qoint size

A None __init__(Model model)

Andarray __call__(ndarray x, *args)
< None _add_arg(str name, float val, bool fix, bool link)

o float dx()

o float min()

o float max()

o list[list[float]] intervals()

A

® Listed

O list[Model] models

(©Linked

|

Splitter
® s @®) Convolved @®) Spectrum
O list[float] racah_intensities
O Model model_1 o float fwhm()
© None racah() %
Lorentz,
LorentzQl,
Hyperfine, GaussConvolved, (\B/il‘ijsts"
© HyperfineQl, © LorentzConvolved, © tDe?iv’ative
HyperfineMixed GaussChi2Convolved \g/oiglAsy ’
VoigtCEC,
GaussChi2

Fig. C.5. Class inheritance diagram of gspec.models. All models inherit from the Model class. The abstract Listed class enables the combination of models to
link parameters or sum models. The Splitter class is an abstract class for Hyperfine structure models. Convolved allows numerical convolution of two models

and Spectrum is a generic lineshape/peak model.
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bool dynamics, int ntraj)

Fig. C.6. Class diagram of gspec.simulate. A State represents a single quantum mechanical state. A DecayMap object links multiple states with the same user-
defined labels through spontaneous decay. A list of all states and the DecayMap object form an Atom. A Laser consists of a frequency, an intensity, a Polarization
and a directional vector. The Atom and a list of lasers is combined in an Interaction. Rate, Schrodinger, master and a Monte-Carlo (MC) master equation solver
can be accessed directly from the Interaction. An Environment can be defined to alter the quantum state energies, but is not fully implemented yet and currently
only supports linear Zeeman shifts. Note that the list of shown member functions is not complete for better clarity.

Appendix D. Code examples of gspec

Code Listing 1: Example code to perform a 2d King-plot analysis with Ca* isotopes. In this example two transitions, named D1 and D2 line, are
plotted against each other for the stable Ca™ isotopes [6]. Transition frequencies are specified as absolute values (line 14-21) so that gspec can
calculate isotope shifts at runtime, which facilitates reassignments of reference isotopes (line 28-29). The fitted parameters of the straight line are
used to determine the isotope shifts of the D1 line in >*32Ca* by inserting the isotope shifts of the D2 line (line 42-43) [55]. Finally the results
are printed to the console output (line 45-47). Masses are taken from the Atomic Mass Evaluation (AME) 2020 [56]. Note that this example can be
extended to an n-dimensional fit simply by adding more columns/observables to x_abs. If absolute values are unknown, the isotope shifts have to
be passed to the king. fit routine in the same format as x_abs and need to concur with the specified lists of (reference) isotopes.

1 | import gspec as Jgs

2

3 | # The mass numbers of the Ca isotopes.

4 |a = [40, 42, 43, 44, 46, 48, 50, 52]

5

6 # The masses of the isotopes (u, AME 2020).

7 |m = [(39.962590850, 22e-9), (41.958617780, 159e-9), # 40Ca, 42Ca
8 (42.958766381, 244e-9), (43.955481489, 348e-9), # 43Ca, 44cCa
9 (45.953687726, 2398e-9), (47.952522654, 18e-9), # 46Ca, 48Ca
10 (49.957499215, 1.7e-6 ), (51.963213646, 720e-9)] # 50Ca, 52Ca
11

12 | # Use absolute values given in the shape (#isotopes, #observables, 2).
13 Frequencies for the (D1, D2) lines (MHz).

**

14 | x_abs = [[(755222765.66, 0.10), (761905012.53, 0.11)], # 40Ca
15 [(755223191.15, 0.10), (761905438.57, 0.10)], # 42Ca
16 [(755223443.57, 0.30), (761905691.89, 0.17)], # 43Ca
17 [(755223614.66, 0.10), (761905862.62, 0.09)], # 44Ca
18 [(755224063.27, 0.33), (761906311.60, 0.57)], # 46Ca
19 [(755224471.12, 0.10), (761906720.11, 0.11)], # 48Ca
20 [( 0. , 0 ), ( 0. , 0. )1, # 50ca
21 [( 0. , 0 ), ( 0. , 0. )11 # 52ca
22

23 | # Construct a King object. Optionally specify ’‘x abs’ here

24 | # to omit isotope shifts when fitting. 20 electron masses are subtracted
25 | # to perform the King plot analysis with the nuclear masses.

26 |king = gs.King(a=a, m=m, x_abs=x abs, subtract electrons=20)

10
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

a_fit = [42, 43, 44, 46, 48] # Choose the isotopes to fit.

a_ref = [40, 48, 42, 40, 44] # Choose individual reference isotopes.
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# Do a simple 2d King plot. The ’‘mode’ keyword is only used for the axis labels.

popt, pcov = king.fit(a_fit, a_ref, mode=’'shifts’)

# >>> f(x) = (177.3 u MHz) + 1.00068 * x
a_unknown = [50, 52] # Specify the unknown isotopes
a_unknown_ref = [40, 40] # and their references.

# Specify the isotope shifts of the D2 line.
y = [(1969.2, 5.6), (2219.2, 7.0)]

# Calculate the isotope shifts of the D1 line and their covariances.

X, cov, cov_stat = king.get_unmodified(
a_unknown, a_unknown ref, y, axis=1, show=True, mode='shifts’)

for iso, ¢ in zip(a_unknown, cov):
gs.printh(f’\n{iso}Ca+:’) # Print colored headline.
gs.print_cov(c) # Print color-coded covariance matrix.

Code Listing 2: Example code to produce the data shown in Fig. 4. Lists of the magnetic substates of the ground (s) and the excited state (p) are
created (line 10-13), connected in a DecayMap (line 15) and used to define a ’Li atom (line 16). A laser is defined with an intensity of 1 uW/ mm? and
m-polarized light (line 18-20). An Interaction object combines the atom and a list of lasers (line 22). The rate (line 29) and master (line 32, 35)
equation solvers are called directly from the Interaction object for an array of frequency detunings delta. The scattering rate for the different
detunings defined in Eq. (38) is calculated directly from the array of density matrices rho or state populations n (line 30, 33, 36). An extended version
of the perturbative scattering rate derived by Brown et al. [22] is calculated using a ScatteringRate object (line 38-39). Transition frequencies
and hyperfine structure constants are taken or calculated from the data in [22]. The Einstein coefficient is taken from [57].

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

import numpy as np
import gspec.simulate as sim

f sp = 446810183.163 # Transition frequency (MHz)
a_sp = 36.891 # Einstein coefficient (rad MHz)

s_hyper = [401.75825] # HFS constants (MHz)
p_hyper = [-3.055038, -0.29670

s = sim.construct_electronic_state(
0., s=0.5, 1=0, j=0.5, i=1.5, hyper const=s_hyper, label='s’
p = sim.construct_electronic_state(
f sp, s=0.5, 1=1, j=1.5, i=1.5, hyper_ const=p_hyper, label='p’)

decay = sim.DecayMap (labels=[('s’, 'p’)], a=[a_spl)
1i7 = sim.Atom(s + p, decay)

intensity = 1. # uW /mm*#2
polarization = sim.Polarization ([0, 1, 0]) # Linear polarization
laser = sim.Laser(f_sp, intensity, polarization)

inter = sim.Interaction(1li7, [laser])
inter.controlled = True # Error controlled integrator

t = 0.2 # Integration time (us)
delta = np.linspace(-325, -275, 201) # Frequency detunings (MHz)

theta, phi = 0., 0. # Angles from z-axis in x- and y-direction (rad)

n = inter.rates(t, delta) # Rate equations, 0.2 us

y_rates = 1li7.scattering rate(n, theta, phi, as_density matrix=False)

rho = inter.master(t, delta) # Master equation, 0.2 us
y_master = 1i7.scattering rate(rho, theta, phi)

rho = inter.master (0.4, delta) # Master equation, 0.4 us
y4_master = 1i7.scattering rate(rho, theta, phi)

sr = sim.ScatteringRate(1i7, laser=laser)
y _brown = sr.generate_ y(delta, theta, phi)[:, 0, 0] # Brown et al.
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Data availability

The algorithms described within this article are implemented in the
open-source Python package gspec, available per request or online at
https://pypi.org/project/qspec/ and https://github.com/patmlr/qspec.
Data shown in the article is either cited or generated using the gspec
package.
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